

Architectural Requirements Engineering: Theory vs. Practice

Robert W. Schwanke
Siemens Corporate Research, Inc.
robert.schwanke@scr.siemens.com

Abstract

This paper discusses how architectural requirements
engineering fits into an overall software development
process in the concept and definition phases of a project.
It defines a reference process identifying the “ideal”
artifacts and their interrelationships, describes some key
technical activities that are useful for producing these
artifacts, and captures some practical experience in
commercial projects.

1. Introduction

Theory and practice are generally the same, in theory.
– Anonymous

This paper is an attempt to reduce the wide gap that so

often occurs between the theory and practice of
architecture requirements engineering in real software
development projects. Too frequently, an organization
fails to capitalize on a good software architecture, for
reasons such as: the development process is not aligned to
profit from it; the key stakeholders do not buy into it; or, it
simply solves the wrong problem.

The “theory” aspect of this paper offers a reference
process for architecture requirements engineering and
related activities. The artifacts and dependencies are
foremost in the process definition, because (in practice)
most software analysis and design activities are artifact-
driven and opportunistically scheduled, so modeling the
data of the process gives more insight than trying to model
control. These artifacts are sequenced within a simple
phase-and-gate framework that shows the phases and
decision points where the project can be cancelled, sent
for rework, or approved to enter the next phase.

The central artifact, for the purposes of this paper, is
the Global Analysis document, first introduced by
Hofmeister, Nord and Soni [1]. The software architects at
Siemens Corporate Research have used Global Analysis in
half a dozen projects since the book was written. This
paper gives a brief review of the approach, updated based
on our experiences.

The “practice” aspect of this paper offers hints on
doing software architecture effectively and efficiently.
Doing it effectively means building stakeholder consensus
and buy-in for both the technical design and the
development plan, by obtaining agreement on the
requirements and other constraints that they must satisfy,
and convincing people that the design and the plan do
satisfy the requirements and constraints. Doing it
efficiently means focusing attention and other resources
on the important issues, at the right times, while tracking,
but living with, a large number of less-important
inconsistencies, unsatisfied constraints, and other
unknowns.

The “theory” and “practice” aspects are intermingled in
the presentation, in hopes of reducing that gap.

2. An Architecture-Centered Process

The architecture group at Siemens Corporate Research
provides technical and project management consulting
services to a wide variety of software development groups
within Siemens (primarily in the United States but
occasionally in Europe). The process described here is our
starting point: how we would like to do architecture if we
could. Naturally, every real project has constraints that
prevent this, such as the legacy process used previously,
the legacy artifacts providing input to the project, and the
skills and comfort zones of the key players. After
presenting this idealized process we will discuss some of
the adaptations that may be necessary to use it in a real
project. (Hereafter, the word “we” usually refers either to
the SCR architecture team or to the team and the readers
of this paper, depending on context. “I” refers to the
author.)

The process definition has four major parts: the
artifacts produced, the dependencies between artifacts, the
phases of the project, and the rules for coordinating
artifacts. It does not specify any activities separately from
artifacts, other than reviews, because most activities are
artifact driven, anyway, and best discussed in the context
of the artifacts they produce. This process definition also

does not describe how to assign artifacts to teams and how
to coordinate teams; that would take another whole paper.

For brevity, this process description only covers the
parts of the process most related to architecture
requirements engineering. It assumes that the project has
already completed its “idea phase”, and sufficient
resources have been allocated to carry out the concept
phase. It also assumes that the project is predominantly a
software development project, and therefore does not
address hardware design, manufacturing, or separate
“system” artifacts. The principles presented here certainly
apply to such systems, but would require a longer
treatment.

3. Artifacts, dependencies, and activities

Figure 1 shows the artifacts and dependencies of the
process. Each arrow represents a dependency: “X � Y”
means “information in artifact X depends on (or is
justified by) information in artifact Y.” Typically, each
individual item in X, such as a specification, is annotated
with references to specific items in Y, such as
requirements.

 Although many of the artifacts are familiar to the
reader, a few comments are in order.

3.1. Stakeholder list

A stakeholder is an accessible person who represents a
class of persons who will be significantly affected by
architectural decisions. The stakeholder must be
accessible to the project team to answer questions and
review artifacts. Sometimes the stakeholder is a member
of the class (e.g. a testing manager can speak for all
testers), but sometimes he is appointed to represent the
class from outside (e.g. a marketing analyst who speaks
for the end user.) Every such class should be considered
for representation, including such diverse classes as
salespersons, buyers, end users (could be multiple
classes), software testers, installers, trainers, and help desk
attendants.

The stakeholder list clarifies exactly who cares about
the project, why they care, and why that matters. As the
list develops, it may go through several refinement steps.
The first draft might identify all the candidate stakeholder
classes, with stakeholder names, where known, and
explanations of why each class is important. As the list
stabilizes, the classes without named stakeholders become
action items, either to find stakeholders or to explain why
the class is not important enough to be represented. Later
on, the list may also prioritize stakeholders or define
different groups of stakeholders, typically for allocating
stakeholders to artifact reviews.

If an organization has a well-developed business
process model, showing all the actors in the product’s
target business domain, many of these actors will require
stakeholders to represent them. However, since such
business process models are still uncommon in current
practice, this software process does not assume that such
an artifact exists.

3.2. Stakeholder requests

Stakeholder requests document the concerns of
stakeholders. Some stakeholders produce artifacts that are
defined in the company software process; others just write
white papers, send e-mails, and attend reviews. For the
purpose of this process definition, we assume that any
input from a stakeholder can be documented as a
stakeholder request. Since a stakeholder could request
almost anything, we are usually only interested in
qualified stakeholder requests, which have been reviewed
and approved as being worth addressing.

Most stakeholders are “outside” the architecture team.
The chief architect and the project manager are often also
stakeholders. However, their requests should be qualified
by someone outside the project, so that they do not appear
to abuse their right to write requests.

3.3. Features

Requirements, in general, define properties of the
product, in terms that external (outside the development
project) stakeholders recognize and understand. Features
are requirements at a coarse granularity, suitable for use in
sales presentations and for allocating to product releases
(in the Build/Release Plan). A feature could be a specific
service that the product provides, but it could also be an
attribute of the whole product, such as “fault-tolerant.”

The Features artifact should specify which
stakeholders’ interests it represents. Often, it is limited to
customer stakeholders, and becomes the “voice of the
customer.” Eventually, each feature should be annotated
with references to qualified stakeholder requests that
justify the feature.

This process avoids using the terms “functional” and
“non-functional” to characterize requirements and
specifications, because these terms mean different things
to different people.

3.4. Detailed requirements

Detailed requirements spell out what the feature level

requirements mean in terms that are testable, but still in
the stakeholders’ language. We often find that 15-30
detailed requirements are needed per feature, to be

complete and unambiguous. A single detailed requirement
can support several features.

For user interface requirements, a UI prototype is
strongly recommended, to capture both the intent and the
details of features, particularly aesthetic features like
“easy to use” and “common look and feel”. Eventually,
the prototype can be captured in a conventional
requirements artifact by copying screen shots into it, with
accompanying text and models (e.g. state transition
diagrams or message sequence charts) to nail down
exactly what the product should do.

Some projects do not need both detailed requirements
and product specifications. (Cf. Section 6.4)

3.5. Product specifications

Specifications define properties of the product and its
parts, in technical terms that the developers, testers,
documenters, project engineers, maintainers, and other
“downstream” stakeholders understand. We often observe
an expansion factor of 2-5 between detailed requirements
and product specifications. A key, theoretical difference
between detailed requirements and product specifications
is that a requirement should state what the product should
do, without reference to any particular implementation,
whereas the product specification describes the externally-
visible properties of the externally-visible interfaces
identified in the architecture description.

When requirements and specifications are written by
different teams, the product specifications may represent
“push back” by the development team, conveying the
message, “We heard what you said you wanted, but this is
what we think we can build.”

Stakeholder Requests

Detailed Reqts

Product Specs

Test Plan

Features

SW Development Plan

Arch. Description

Project Risks

Build/Release Plan

Detailed Designs

Arch. Concept

Global Analysis
Constraints
Issues
Strategies

Organization, Technology, etc.

Product

Stakeholder List
C

oncept P
hase

D
efinition Phase

Figure 1. An architecture-centered process

3.6. Feasibility and global analysis

The architecture team has the responsibility to analyze
everything that may affect the success of the project,
determine what the critical issues are, propose strategies
to address those issues, and then develop an architecture
consistent with this analysis. It is called “global” analysis
because it is looks at the project from all directions (from
the perspectives of all the stakeholders), and because the
critical issues and strategies are typically also global,
cutting across subsystem boundaries and appearing in
more than one view of the architecture. The global
analysis artifact contains three kinds of items: factors,
issues, and strategies.

3.6.1. Factors. A factor is any fact that is likely to
constrain or otherwise influence the architecture. Some
factors can be written as requirements, but others cannot
be so rigorously stated. Normally, we expect requirements
to state properties of the product, and to be correct,
unambiguous, and testable, whereas a factor is often
unverified, ambiguous, or uncertain, and may describe
something other than the product itself. Furthermore, we
usually use a stylized language to write requirements, e.g.
“The product shall cost no more than $300 per floating
license per year.” Imposing stylized language on factors
would interfere with communication. For example, is it
clearer to write, “The product shall be developed using
programmers whose previous experience does not include
ASP technology” or “Our programmers don’t know
ASP”? The first alternative is verbose, passive voice,
vague, and might actually be incorrect, if there is an
option to hire a few ASP developers. The second
alternative succinctly captures one fact that constrains the
architecture.

Factors can come from anywhere. For convenience
they are grouped into three categories: product factors
(typically derived from features); technology factors,
which involve the technologies available to implement the
product; and, organizational factors, which involve
properties of the company or other organization that is
developing the product. These categories are further
grouped into sub-categories, such as product performance,
services provided, programming tools, technical
standards, staff skills, schedule constraints, and so on.
These categories and sub-categories should not be
considered exhaustive; any stakeholder request might
draw attention to a significant factor, whether or not it fits
neatly into one of the categories.

A factor should have a standard structure. We typically
record the following properties:

Category and sub-category
Name
Unique ID
Brief statement of the factor.
Flexibility (what sort of “wiggle room” is there in

the factor today?)
Changeability (how might it change later on?)
Impact (how does it affect the architecture?)
Authority (what or who justifies this constraint?)
Owner (person responsible for text of this factor)
Status
Priority

Previously, we have tried to capture each factor as a row
in a table of factors, but found several practical problems:
the columns became too narrow, there was lots of white
space, cross-referencing the factor name or number was
awkward, and our usual word processing tool didn’t
handle word-level change tracking very well in tables. So,
I recommend organizing the factors into categories and
subcategories, giving each constraint its own sub-sub-
section within its sub-category, and using a standard text
structure within the subsection. Figure 2 suggests a
format.

Although storing factors in an ordinary text document

is often practical, we are also considering using a

1. Organizational Constraints

1.3 Management

1.3.5 Buy reporting subsystem

(Factor-37)

The reporting subsystem should be based on a
commercial product, e.g. Crystal Reports

Flexibility. Previous reporting system was
implemented in-house, so buying COTS is not a
rigid requirement. But competitors are already doing
this.

Changeability. Reporting features may become
more specialized, making the “buy” option less
advantageous.

Impact. Buying the market leading product has low
development cost, risk, and time to market, but
introduces licensing costs and reduces product
differentiation.

Authority: Features 135, 136, and 139, and SR
174 from Jim Smith, who has interviewed
customers concerning reporting features.

Figure 2. Textual presentation of a constraint

requirements management tool to manage architecture
factors, but have no experience yet.

Even when a factor is written in the form of an
architecture requirement, there are two important
differences between a marketing feature and an
architecture factor: range and uncertainty. The range of
the architecture factor is a way of capturing a set of
similar requirements that vary only in certain dimensions.
For example, “The architecture must support customers
with transaction rates between 1 million and 100 million
per day.” This factor does not say that any particular
customer installation has to perform well across the whole
range, nor does it even say that any particular release of
the product has to handle the whole range. For example,
there could be two variants of the product for low-volume
and for high-volume customers.

The dimensions that factors frequently span include
numerical ranges, members of a product family,
successive generations of a product or family, and ranges
of calendar time. For example, “In four years, the
architecture must support GUIs on handheld devices.”
This allows the architect to choose between designing the
infrastructure for handheld GUIs now, or leaving a
placeholder for them and designing them in two years, by
which time the technology will have changed anyway.
Note that variation over calendar time is different from the
“stability” of a feature or a factor. In the example above,
the factor is very stable, but is chronologically positioned
four years in the future.

Allowing uncertainty in an architecture factor allows
the architect to document the problem before the
uncertainty is resolved. For example, now that Internet
services are beginning to be offered aboard airplanes, the
marketing department might envision the day when
radiologists, traveling on airplanes, want to download
medical images to their laptops. A factor might be written,
“the product must be evolvable to support medical image
viewing over low-bandwidth, high-latency Internet
connections.” Such a statement would normally be
disqualified as a requirement, because “evolvable” is a
vague word. But, such statements are valuable to the
architect, despite their vagueness. Note that “uncertainty”
is also somewhat different from “stability”, because the
statement of the factor explicitly captures the sense in
which it is uncertain, whereas calling a requirement
“unstable” has more to do with its status.

It may be useful to describe range and uncertainty as
separate attributes of a factor, but we haven’t tried it yet.

Unlike requirements catalogs, the collection of
architecture factors does not have to be complete. Global
analysis prioritizes them, finds conflicts and tradeoffs
between them, and finally reduces them to a set of key
issues that shape the architecture. The less important
factors will likely be ignored, for most purposes, so
missing a few of them is not important.

3.6.2. Issues. An architectural issue is a potential conflict
or tradeoff between two or more factors – usually many
more! For example, the issue “Aggressive Schedule”
might be stated as, “The project probably can’t be
completed in 14 months if we have to train our
programmers in Java, add new tools to our development
environment, and implement all 75 major features, 7 of
which require exploratory prototyping.” Normally, there
are many potentially significant issues, but certain ones
rapidly emerge as the most critical. Fortunately, because
of the inherent uncertainty of many factors, it is not
necessary to satisfy all of them. The architects must
identify and prioritize the issues, so that the architecture
and the project development plan can be designed to
address the most critical ones. The others are managed as
project risks, to be addressed later.

3.6.3. Strategies. A strategy is a decision that addresses
one or more significant issues. The strategy may be
technical, managerial, or a combination. For example, if
the issue is “ASP programming is best done in Java, but
our programmers only know C++”, the architect and
project manager could choose to “retrain our programmers
in JSP”, “buy an ASP development environment for
C++”, or “use some C++ programmers to write C++
applets, and retrain others to write JSP.”

3.6.4. Putting it all together. The original description of
Global Analysis[1] suggested using “Issue Cards”, where
each card defines and discusses one issue, then defines
and discusses strategies for addressing it. This approach
doesn’t work well when a strategy addresses several issues
– which many of them do. Instead, I recommend
documenting issues and strategies by embedding them in a
coherent presentation of the rationale for the architecture.
The first part of the Global Analysis artifact should be a
catalog of factors, as described above. The second part
should present the significant issues and strategies for
resolving them. Each issue should be documented in a
format that is partly structured and partly informal. The
structured part includes backward references to the most
relevant factors and references to the most important
strategies for dealing with the issue. Each strategy could
be defined at the first place it is referenced in the text,
perhaps in a sidebar or an inset box. The informal part of
the issue description discusses how the factors interact to
shape the issue, and how the proposed strategies would
help to resolve the issue. The third part of Global Analysis
should be a free-flowing, coherent rationale for the
proposed architectural approach. This presentation
technique emphasizes coherent argumentation more than
cataloging and cross-referencing the issues and strategies,
as we have sometimes done in the past.

3.7. Architecture concept

This artifact should not be confused with the

conceptual view of the architecture. The architecture
concept artifact is written for external stakeholders, is
informal, and presents the essential concepts of the
architecture in notations and words that are comfortable
for the stakeholders. It is typically based on a paper
“proof-of-concept”, which describes a slice of the system
using the proposed architecture approach. It then uses
portions of this system slice to illustrate the concepts it
presents, depending on what is needed to educate and
convince the stakeholders

3.8. Architecture description

This artifact is the complete description of the
architecture, typically following the IEEE standard 1471-
2000. Note that the architecture description depends on
the detailed requirements, but the architecture concept
does not. This is so because (a) the architecture concept
should not be sensitive to small changes in requirements,
and (b) the architecture concept usually needs to be
relatively complete, reviewed, and approved before
authorizing the expense of developing detailed
requirements.

3.9. Project risks

This process does not specify how project risks are
described and managed, but many risks are identified in
the course of global analysis and architecture design. Any
key issues that are not fully resolved by the strategies, as
well as any major assumptions made while drafting the
architecture description, become risks that must be
managed.

3.10. Build Plan and Release Plan

The build plan defines a sequence of internal
development milestones, or builds, with each module,
product specification, and detailed requirement to be
implemented in a specified build. We typically
recommend that the individual builds be scheduled about
6 weeks apart, to provide rapid feedback on the
effectiveness of the design and maintain a common
understanding of the system across the development team.
Some of the builds are designated as releases that the
customer will see (although perhaps only as a demo).

3.11. Software development plan

The software development plan depends on the global

analysis artifact for strategies and on the architecture
description as the basis for a bottom-up cost estimate. At
SCR we use an estimation methodology that annotates the
module view of the architecture with development cost
estimates, collecting the assumptions needed to make
those estimates. The modules become tasks in the plan;
the assumptions become risks to be managed. For more on
architecture-centric software project management, see
Paulish’s book of that title [2].

4. Project phases

Figure 1 divides the artifacts into two phases: the
concept phase and the definition phase. This division
signifies the phase in which each artifact receives its first
critical review and sign-off. Of course, each artifact is
revised in subsequent phases, as needed.

5. Coordinating artifacts and activities

Other than at the end of each phase, the process does
not specify an order in which the artifacts are finished and
reviewed, because this ordering varies widely between
projects, depending on many “soft” factors. Instead, we
expect that the artifacts will be written by different people,
and will therefore evolve concurrently. In order to manage
this efficiently, it is important to identify where
information provided in one artifact is used in another,
and to cross-review artifacts between teams. It is equally
important to allow, but document and manage,
incompleteness and inconsistency between artifacts.

5.1. Incompleteness and inconsistency

Recording incomplete links is especially valuable in

the global analysis artifact. It is true that, eventually, every
issue should be based on factors, and that those factors
should derive their authority from other artifacts.
However, global analysis frequently identifies potentially
significant factors long before the relevant stakeholders
have raised concerns about them. Rather than waiting to
document the factor until the stakeholder writes a request,
the architect should put a note in the authority field of the
factor, describing where he expects the authority will
come from. The note could even include a shortened draft
of the item (e.g. a feature) that he would like to see added
to some other artifact. (If necessary, the architect might
have to write his own stakeholder request.) Similar
techniques should be used wherever links between
artifacts may appear. (Incomplete links are very much like

the “fat references” used in the Pattern Languages of
Programming community.)

5.2. Cross-reviewing artifacts between teams

One of the most important heuristics for effective
artifact review is, “Choose reviewers who depend on the
information they are reviewing.” In this process, the
dependency links between artifacts are an excellent guide
for identifying reviewers. Consider, for example, the
detailed requirements. The people who wrote the features
(if different) will want to be sure that the detailed
requirements accurately define the features. The people
who will be writing product specifications will want to
make sure they receive good-quality detailed
requirements, to make their job easier. The people who
have to write tests against the detailed requirements will
want to be sure the requirements are testable.

Using the dependency links to identify reviewers also
reduces the chances of “disconnect” in a project. Many of
us have experienced projects where artifacts were “thrown
over the wall” from one group to another, leaving both
groups dissatisfied. Having such a wall between
requirements engineering and development, for example,
tempts developers to ignore the requirements they don’t
understand or don’t like. By using cross-reviewing to
strengthen communication and buy-in between teams,
such problems can be reduced.

5.3. Reviewing links between artifacts

Whenever an artifact is formally reviewed, the links

between it and other artifacts should also be reviewed.
This includes both the artifacts on which it depends, and
the artifacts that depend on it. This is very important for
building consensus! When a requirements engineer signs
off on the global analysis artifact, his signature should
mean that, except for noted defects, (a) all relevant,
previously documented features have been referenced in
the right places in the analysis, (b) any relevant, not-yet-
documented features have been discussed and given
incomplete references in the analysis, and (c) he agrees
with the analysis of these features. On the other side,
when the global analyst signs off on the Features artifact,
his signature means that every feature needed to justify
significant factors, whether or not they have been
published yet, appears either in the artifact itself or the
review notes.

The review notes then become action items for
resolving incomplete and inconsistent links. However, the
resolution does not necessarily need to happen
immediately. Some of the items may be very low priority,
some may require further investigation, and some may not
be resolvable until a later stage of the work.

5.4. Validation and Consistency

Each significant item in each artifact, such as a feature,
an issue, or a specification, is subject to validation in the
course of review. Part of the definition of consistency
between artifacts is that a link from an item in artifact X to
an item in artifact Y is only fully consistent when the item
in artifact Y has been validated. Sometimes the validation
is simply a yes/no decision on whether the item should be
included in the artifact; in other cases, included items are
further assigned to “buckets” that represent different
development/release cycles. In the latter case, of course,
the bucket assignments of X and Y must be compatible.

5.5. Phase reviews

At the end of each phase there is a review, often called

a gate, whereby managers outside the project determine
whether to continue funding the project. There are
actually two separate questions to answer: “Is the project
ready to move into the next phase?” and “Is the company
ready to pay for it?” Some organizations actually have two
separate reviews, because some of the decision-makers are
different for these two questions.

Each phase review specifies the artifacts that will be
considered at the review. In this process, each artifact is
considered at each phase review after its introduction, if it
is relevant to the decision. Naturally, these artifacts must
have been reviewed individually prior to the phase review.
However, they don’t have to be absolutely complete and
consistent, as long as there is an action plan for resolving
the inconsistencies.

This approach to handling incompleteness and

inconsistency is especially valuable when the development
organization is undergoing change to adapt to new or
improved development processes. Often artifacts cannot
be completed and reviewed in the same order as the chain
of dependencies. Because the show must go on, explicitly
documenting incompleteness and inconsistency for later
resolution is often the best approach.

6. Merging the Processes

Because there is little standardization of software

development processes across organizations, the process
defined above will normally have to be adapted for use in
the context of an organization’s existing process. This
section describes some of the adaptations that are likely to
be necessary, and some of the issues that may need
resolving.

6.1. Enriching the concept phase

Many existing processes focus mainly on defining

product features in the concept phase. If possible, one
should insist on doing some feasibility analysis in the
concept phase, before committing the resources necessary
to do a complete high-level design. This feasibility
analysis would then include global analysis and the
architecture concept, as well as a UI prototype if the
product has a user interface.

6.2. Regrouping information in artifacts

Sometimes it is necessary to combine logically separate

artifacts into a single artifact, or, for reasons of scale, to
divide a single logical artifact into a main artifact and
several subsidiary artifacts. However, it can also be
necessary to redefine an existing artifact so that it carries
more architecture information than it has in the past.

For example, a process may define a “System Concept”
artifact, typically due at the end of the concept phase,
which has historically been a very informal document.
This might be a good place to put the Architecture
Concept.

6.3. Caring for stakeholders

Many existing processes do not address all the

important stakeholders. For example, a Market
Requirements artifact might be limited to addressing the
logical functionality of the product, ignoring non-
functional features. This typically arises from a focus on
end-users, ignoring the needs of other stakeholders like
system administrators, buyers, and commissioning
engineers. The remedy might be to add another artifact to
carry non-functional features, or to address quality
attributes in the Global Analysis artifact.

More generally, the process should be adapted so that
every important stakeholder has a “voice” in some artifact
– in Global Analysis, if not elsewhere.

6.4. Detailed requirements vs. specifications

Although in theory there is a clear logical distinction

between a detailed requirement and a product
specification, in practice the two artifacts are frequently
combined. We have found several reasons for this:
�� Cost pressure: maintaining two descriptions of strongly

related information is more expensive than maintaining
one.

�� Skill shortage: good requirements engineers are under-
appreciated, and therefore in short supply!

�� Process: without an architecture description, the only
input to the product specification is the detailed
requirements, anyway, so why not combine them?

�� Disconnect: because of inadequate communication
between those who write features and those who write
specifications, it is not obvious that the detailed
requirements are missing.

�� Difficulty: it is actually quite difficult, in many
instances, to write a good set of detailed requirements
without referring to implementations, especially early
in the definition phase when so many questions are
unsettled.

One way often suggested to overcome these difficulties

is to introduce a prototype, often as a controlled process
artifact, whose purpose is to facilitate consensus-building
between requirements analysts and developers. The most
common types, of course, are the UI prototype and the
proof-of-concept prototype. The detailed requirements
and product specifications do not need to be written down
until the prototype stabilizes and is reviewed. Then, both
artifacts can be derived from it, if both are needed.

7. Future Work

We are currently investigating how to extend our

process to effectively use rigorous models for domain
analysis, requirements analysis, design, and testing.

Acknowledgements

The process diagram in Figure 1 was produced by

rapid iteration based on feedback from my colleagues,
each of whom contributed different expertise: project
management (Dan Paulish), problem statements (David
Laurance), architectural concept and consensus building
(Dilip Soni), global analysis (Bill Sherman and Rod
Nord), requirements engineering (Brian Berenbach), and
user interface design (Nuray Aykin).

References

[1] Hofmeister, C., R. Nord, and D. Soni, Applied Software
Architecture, Boston: Addison-Wesley, 2000.
[2] Paulish, D. Architecture Centric Software Project
Management: A Practical Guide, Boston: Addison-Wesley,
2002.

