Detailing Architectural Design in the Tropos M ethodol ogy

CalaT.L. L. Silval, Jaelson F. B. Castro?, John Mylopoulos?

1 Centro de Informética, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire SN, Recife PE, Brazil 50732-970, +1 5581
{ctlls,jbc} @cin.ufpe.br
2 Dept. of Computer Science University of Toronto, 10 King's College Road Toronto M5S3G4, Canada, +1 416 978 5180
jm@cs.toronto.edu

Abstract

Software systems development happens within a
context which organizational processes are well-
established. Hence, software needs to be built with
flexible architectures based in social and intentional
concepts to enable software to evolve consistently with
its operational environment. In this sense, the Tropos
requirements oriented development methodology, has
defined a number of organizational architectural styles
which are suitable to agent, cooperative, dynamic and
distributed applications. In this paper, we use an
extended version of UML to describe these novel
architectural styles in order to provide a detailed
representation of both the structure and behaviour of the
architectural design using these styles. This proposal has
been applied to an e-commer ce software system.

1. Introduction

Companies are continually changing and turning their
attention to improve their business strategies.
Stakeholders are demanding more flexible and complex
systems. Hence, software has to be based on
architectures that can evolve and change continually to
accommodate new components and meet new
requirements. A flexible architecture with loosely coupled
components is much more likely to accommodate new
feature requirements than one that has been highly
optimized for just itsinitial set of requirements. Tropos[1],
a requirements-driven development methodology, has
defined organizational architectural styles [6],[7],[8] based
on concepts and design alternatives coming from research
in organization management, used to model coordination
of business stakeholders — individuals, physical or social
systems. Tropos relies on the i* notation [4] to describe
both requirements and organizational architectural styles.
Unfortunately, this notation is not widely accepted by
software practitioners nor able to represent some detailed

information which sometimes is required in architectural
design such as set of signals that are exchanged between
architectural components, as well as the valid sequence of
these signals (protocol). On the other hand, the Unified
Modeling Language — UML [3] has been extended and
used to represent the architecture of simple and complex
systems. Such an architecture description language is
based on UML for Real-Time systems (UML-RT), an UML
extension tuned for real time software systems.

In an effort to provide detailed representation in
architectural phase of Tropos methodology, as well as to
represent the organizational architectural styles into a
mainstream industrial notation, in this work we propose to
accommodate within UML-RT the concepts and features
used for representing organizational architectures into
Tropos. In order to validate this proposal, we applied it to
an eccommerce software system extracted from [1]. This
work is an improvement of another attempt for
representing the Tropos conceptsin UML [2].

The rest of this paper is organized as follows: Section
2 presents the Tropos methodology. Section 3 describes
how software architecture can be modeled using UML. In
Section 4, we define how organizational architectures can
be modeled using UML-RT. Section 5 depicts the
application of the proposal to a case study. Section 6
points to some future work and discusses the contribution
of this proposal.

2. The Tropos M ethodology

Tropos proposes a software development
methodology and a development framework which are
founded on concepts used © model early requirements
and complements proposals for agent-oriented
programming platforms. This methodology is based on the
premise that in order to build software that operates within
a dynamic environment, one needs to analyze and model
explicitly that environment in terms of “actors’, their goals

and dependencies on other actors. Tropos supports five
phases of software development:

- Early requirements, concerned with the understanding
of a problem by studying an organizational setting; the
output is an organizational model which includes relevant
actors, their goals and dependencies.

- Late requirements, in which the system-to-be is
described within its operational environment, along with
relevant functions and qualities.

- Architectural design, in which the system's global
architecture is defined in terms of subsystems,
interconnected through data, control and dependencies.

- Detailed design, in which behaviour of each
architectural component isdefined in further detail.

In this work, our focus in on architectural design
phase. Software architecture is more than just structure, it
includes rules on how system functionality is achieved
across the structure. Unfortunately, traditional
architectural styles for ebusiness applications [12],[13]
focus on web concepts, protocols and underlying
technologies but not on business processes nor non
functional requirements of the application. As aresult, the
organizational architecture styles are not described nor
the conceptual high-level perspective of the e-business
application.

Tropos has defined organizational architectural styles
[6],[71.[8] for agent, cooperative, dynamic and distributed
applications to guide the design of the system
architecture. These architectural styles (pyramid, joint
venture (Fig. 1), structure in 5, takeover, arm’s length,
vertical integration, co-optation, bidding, ...) are based
on concepts and design alternatives coming from research
on organization management. From this perspective,
software system is like a social organization of
coordinated autonomous components that interact in
order to achieve specific and possibly common goals. The
purpose to reduce as much as possible the impedance
mismatch between the system and its environment.

For example, the joint venture architectura style
(Figure 1) allows a decentralized architecture. The main
feature of this style is that it involves an agreement
between two or more principal partners/components in
order to obtain the benefits derived from operating at a
large scale, such as partial investment and lower
maintenance costs, as well as reusing the experience and
knowledge of the partners/components, since they pursue
joint objectives.

To support modeling and analysis during the initial
phases, Tropos adopts the concepts offered by i* [4], a
modeling framework offering concepts such as actor
(actors can be agents, positions or roles), as well as social
dependencies among actors, i ncluding goal, softgoal, task

and resource dependencies. This means that both the
system’s environment and the system itself are seen as
organizations of actors, each having goals to be fulfilled
and each relying on other actors to help them with goal
fulfillment.

Principal
Parnar_n

Carathy

Egreamen Bxtianie

Frincipal

Frincigzl
ke PaHrer_z

Partrier_1

Eecondary
Patrer_2

Figure 1. Joint Venture

Asshown in Figure 1, actors are represented as circles;
dependums -- goals, softgoals, tasks and resources -- are
respectively represented as ovals, clouds, hexagons and
rectangles; and dependencies have the form
dependerb dependumb dependee. Hence, in Tropos we
have the following concepts:

- Actor: An actor is an active entity that carries out
actionsto achieve goals by exercising its know-how.

- Dependency: A dependency describes an intentional
relationship between two actors, i.e, an “agreement”
(called dependum) between two actors: the depender and
the dependee, where one actor (depender) depends on
another actor (dependee) on something (dependum).

- Depender: The depender is the depending actor.

- Dependee: The dependee is the actor who is
depended upon.

- Dependum: The dependum is the type of the
dependency and describes the nature of the agreement.

- Goal: A god is a condition or state of affairs in the
world that the stakeholders would like to achieve. How the
goal is to be achieved is not specified, allowing
alternatives to be considered.

- Softgoal: A softgoal is acondition or state of affairs
in the world that the actor would like to achieve, but unlike
in the concept of (hard) goal, there are no clear-cut criteria
for whether the condition is achieved, and it is up to
subjective judgment and interpretation of the developer to
judge whether a particular state of affairsin fact achieves
sufficiently the stated softgoal .

- Resource: A resourceis an (physical or informational)
entity, with which the main concern is whether it is
available.

- Task: A task specifies aparticular way of doing
something. Tasks can also be seen as the solutions in the
target system, which will satisfy the softgoals
(operationalizations). These solutions provide operations,
processes, data representations, structuring, constraints
and agents in the target system to meet the needs stated
in the goals and softgoals.

The first task during architectural design is to select
among alternative architectural styles using as criteria the
desired qualities identified in the previous phase (Late
Requirements). To this end, the NFR framework [5] can be
used to conduct the selection of the most suitable
organizational architectural style. More details about the
selection and non-functional requirements decomposition
process can be found in [6],[7].

In the next section, we show how architectural design
can be represented by using an extension of UML. We
expose our proposal for representing architectural design
in the Tropos methodol ogy using this extension of UML.

3. Architectural Representation in UML

The UMLRT [9],[10] is using UML as an architectural
modeling language. Some specific architectural modeling
concepts are defined as specializations of generic UML
concepts. These specializations, usually expressed as
stereotypes, conform to the generic semantics of the
corresponding UML concepts, but provide additional
semantics specified by constraints[9]:

- Capsules: A capsuleis a stereotype of the UML class
concept with some specific features. A capsule uses its
ports for all interactions with its environment. The
communication with others capsule is done by one or
more ports. The interconnection with other capsulesisvia
connectors using signals. A capsuleis aspecialized active
classand is used for modeling a self contained component

of a system. For instance, a capsule may be used to
capture an entire subsystem, or even acomplete system.

- Ports: A port represents an interaction point between
a capsule and its environment. They convey signals
between the environment and the capsule. The type of
signals and the order in which they may appear is defined
by the protocol associated with the port. The port
notation is shown as a small hollow sguare symbol. If the
port symbol is placed overlapping the boundary of the
rectangle symbol denotes a public visibility. If the port is
shown inside the rectangle symbol, then the port is
hidden and its visibility is private. When viewed from
within the capsule, ports can be of two kinds: relay ports
and end ports. Relay ports are ports that simply pass all
signals through and end ports are the ultimate sources
and sinks of all signals sent by capsules. These signals
are generated by the state machines of capsules (Figure
8).

- Protocols: A protocol specifies a set of valid
behaviors (signal exchanges) between two or more
collaborating capsules. However, to make such a dynamic
pattern reusabl e, protocols are decoupled from a particular
context of collaborating capsules and are defined instead
in terms of abstract entities called protocol roles
(stereotype of Classifier Rolein UML) (Figure 9).

- Connectors: A connector is an abstraction of a
message-passing channel that connects two or more
ports. Each connector is typed by a protocol that defines
the possible interactions that can take place across that
connector (Figure8).

4. Organizational Architectural Stylesin UML

The organizational styles are generic structures defined
at a metalevel that can be instantiated to design a specific
application architecture. They support non-functional
reguirements, represented in Tropos methodol ogy such as
softgoals, during architectural design phase. Unlike
functional requirements which define what a software is
expected to do, non-functional requirements specify
global constraints on how the software operates or how
the functionality is exhibited. NFRs are asimportant as the
functional ones. They are not simply desired quality
properties, but critical aspects of dynamic systems
without which the applications cannot work and evolve
properly. The need to treat non-<functional properties
explicitly is a critical issue when software architecture is
built. Organizational architectures integrate NFR with
architectural project, since NFRs are composing part of
these styles.

Tropos relies on the i* notation [4] to describe both
requirements and represent organizational architectural
styles. Unfortunately, this notation is not widely accepted

by software practitioners, since it is just beginning to be
recognized as a suitable notation for representing
requirements and its tool support is aso limited. On the
other hand, the Unified Modeling Language [3] has been
used to represent the architecture of simple and complex
systems. Using UML as an Architecture Design Language
in the Tropos methodology allow us for representing
detailed information which sometimes is required in
architectural design, such as set of signals that are
exchanged between architectural components, which are
not supported by the i* notation. In the sequel we explain
how the concepts of Troposcan be accommodated within
UML-RT, in order to represent organizational
architecturesin UML.

Asexplained in section 2.1, in Tropos actors are active
entities that carries out actions to achieve goals by
exercising their know-how. In section 3.1, we explained
that in UML-RT, capsules are specialized active classes
used for modeling self contained components of a system.
Hence, an actor in Tropos is mapped to acapsulein UML-
RT (Figure 2). Note that ports are physical parts of the
implementation of a capsule that mediate the interaction of
the capsule with the outside world.

e Diepender 5
L)

==capsule==
Capsuled

t S N t

«=pon== «=protocolRole==| |«=protocolRole== “=pon==
Portl F-{={ Depender Dependee [=77}-{ Pon2

==pratocal==
Protocol

==gapsule==
CapsuleB

Figure 2. Mapping a dependency between actorsto UML

In Tropos a dependency describes an “agreement”
(called dependum) between two actors playing the roles of
depender and dependee, respectively. The depender is
the depending actor, and the dependee, the actor who is
depended upon. Dependencies have the form
dependerb dependumb dependee. In UML-RT, a
protocol is an explicit specification of the contractual
agreement between its participants, which plays specific
roles in the protocol. In other words, a protocol captures
the contractual obligations that exist between capsules.
Hence, a dependumis mapped to a protocol and the roles
of depender and dependee are mapped to protocol roles
that are comprised by the protocol (Figure 2).

The type of the dependency between two actors
(called dependum) describes the nature of the agreement.
Tropos defines four types of dependums goals, softgoals,

tasks and resources. Each type of dependum will define
different features in the protocol and therefore in ports
that realizes its protocol roles. As noted earlier, protocols
are defined in terms of entities called protocol roles. Since
protocol roles are abstract classes and ports play a
specific role in some protocol, a protocol roledefines the
type of a port, which simply means that the port
implements the behavior specified by that protocol role.
As defined earlier, capsules are complex, physica,
possibly distributed architectural objects that interact with
their surroundings through ports. Note that a port is both
a composite part of the structure of the capsule and a
constraint on its behavior.

Goal type will be mapped to an attribute with boolean
type present into the port that realizes the protocolRole
dependee (Figure 3). It represents a goal that a capsuleis
responsible for fulfill by exchanging the signals defined in
the protocolRole dependee.

==ptalocol==
Froiocol

|==capsua==
Capsiles

=EpApEulE==
Capsules

Bexincoming== signald F
X Bepuigoing== sighal2g

1 £ =gt
SR | =<protmcalRales: | | <protcalRoles«| et
Porl |-[= DCapandar Dependae f]
[T x = [Zgnal Aoniean

Figure 3. Mapping a goal dependency to UML

Softgoal type is mapped to an attribute with
enumerated type present into the port that realizes the
protocol Role dependee (Figure 4). It represents a quality
goal that a capsule is responsible for fulfill to a given
extent by exchanging the signals defined in the
protocol Role dependee.

mepapzUlpes ==pnojorole= AaRgpElie e
Capsulet Frotocol CapsulaB
: R irnim e Bigna [
| Enuigning == sigralzn 1
L]
| e e | = = o F —zpofs=
| =poris= ==poiocolRale== | |=<prolocoRole>~ anrt}
Oependee =

Portl L[Depender

23 IE&EHUDHI Enumeraion |

Figure 4. Mapping a softgoal dependency toUML

Resource type is mapped to the return type of an
abstract method placed on protocolRole dependee that
will be realized by a port of a capsule (Figure 5). This
return type represents a resource that a capsule is
required to provide by exchanging signals defined in the
protocol Role dependee.

[y kil f
° ’ e ; o

==czpsulg=s

eccapsuloss

[Capsulad | Capsuled
I 1 F 1
+ 4=profoeole | ‘
Frotoe ol T
=cpori== el —

Pati | Ponz

l“':‘!I'IIIIZII""I|I1l.'a":' slghald : Resource
sl [L

=epmincolRoas=
Dependes

el coRokEs
Crapendar

1-'-::]:_|1|;||:||r|g\r:- =lgrall ; Resours | ‘-t-=in:umin-;r:- Signal] : Resource

Figure5. Mapping aresour ce dependency to UML

Task type is mapped to an abstract method placed on
protocol Role dependee that will be realized by a port of a
capsule (Figure 6). It represents an activity that a capsule
is required to perform by exchanging signals defined in
the protocol Roledependee.

ceranEUlETS | eIl cepapsila==
Capauled Prodacal Capaulel
M Hceineoming = = ik
. T

e eprolotoiRgles || t=proocolRoless | [~<potes
| Pod | [Cepender = LrBpendeg 1L Port2_ {
I | #vmgairg=s tazkp | | T=cneomingss tazi aekD

Figure 6. Mapping a task dependency to UML

A more compact form for describing capsules is
illustrated in Figure 7, where the ports of a capsule are
listed in a special labeled list. The protocol role (type) of a
port is normally identified by a pathname since protocol
role names are unique only within the scope of a given
protocol. However, ports are also depicted in the
collaboration diagrams (Figure 8) that describe theinternal
decomposition of a capsule. In these diagrams, ports are
represented by the appropriate classifier roles, i.e., the
port roles To reduce visua clutter, port roles are
generally shown in iconified form. For the case of binary
protocols, an additional stereotype icon can be used: the
port playing the conjugate role (depender role) is

indicated by a white-filled (versus black-filled) sguare. In
that case, the protocol name and the tilde suffix are
sufficient to identify the protocol role as the conjugate
role; the protocol role name is redundant and should be
omitted. Similarly, the use of the protocol name alone on a
black square indicates the base role (dependee role) of the
protocol. In Figure 8, we can see the details of (inside) the
capsule and the end port/relay port distinction isindicated

graphically.

= E Bl R # L papEis
[Copaulws | _ CameueR
grsporte= Forll ;P miocot Depender| ™ ge=port== Port? . Frol ocol .Cependes|

Figure 7. A capsule classdiagram

In UML-RT, each connector istyped by a protocol that
specifies the desired behavior that can take place over
that connector. A key feature of connectors is that they
can only interconnect ports that play complementary roles
in the protocol associated with the connector. In a class
diagram, a connector is modeled by an association while
in a capsule collaboration diagram it is declared through
an association role. Hence, a dependency (epender b
dependumb dependee) in Tropos is mapped to a
connector in UML-RT (Figure 7 and Figure 8). In the
sequel we show how the Joint Venture organizational
architectural style (Figure 1) ismodeled using UML-RT.

4.1. Joint Ventureln UML

The UML-RT notation of capsules, ports and
connectors is used to model the architectural actors and
their dependencies. In Figure 8, each capsule is
representing an actor of the joint venture architecture.
When an actor is a dependee of some dependency, its
corresponding capsule has an implementation port (end
port) for each dependency (ex. Portl), which is used to
provide services for others capsules. When an actor is a
depender of some dependency, its corresponding capsule
has an implementation port (relay port) to exchange
messages (ex. Port3).

The Joint Venture architectural style presents six
capsules disposed according to Figure 8. The capsule
Joint Management is responsible for ensuring the
strategic operation and coordination of such a system and
its partner capsules on a global dimension. Through the
delegation of authority it coordinates tasks and manages
sharing of knowledge and resources. The two secondary
partners are capsules responsible for supplying services
or for supporting tasks for the organization core. The
three principal partners are capsules responsible for
managing and controlling themselves on a local

dimension. They can interact directly with other principal
partners to exchange, provide and receive services, data
and knowledge.

From Figure 1 you can recall the goal dependency
Authority Delegation between Principal Partner_nand
Joint Management actors. Each actor present in Figure 1
is mapped to a capsule in Figure 8. Each dependum i.e,,
the “agreement” between these two actors is mapped to
the protocol (see Figure 9). A protocol is an explicit
specification of the contractual agreement between the
participants in the protocol. In our study these
participants are the two actors previously mapped to
capsules. Each dependency is mapped to a connector in
Figure 8. Each connector is typed by the protocol that
represents the dependum of its corresponding
dependency. The type of the dependency describes the
nature of the agreement, i.e., the connector type describes
the nature of the protocol. The four types of dependums
(Goal, Softgoal, Task and Resource) are mapped to four
types of protocols (Figures 9, 10, 11 and 12).

<ccapsufoss
Pabieipal Paitiei_i

Fowtl . Contgziuar 4 greernant SotAuhanty Dekastion
Fortd Authanly Dalagation?

Lt
= cipiless e B
Jiiwt Mamagsmenn

< capanl v
Frimcipal Parmen_1

o] e
Principal Parimer

oo il
Sacondary Pamner_1

<o hpal e
Secombary Pamner_n

Figure8. Joint Venture Stylein UML-RT's capsule
collaboration diagram

For example, in the Goal type, the protocol Authority
Delegation (Figure 9) assures that this goa will be
fulfilled by using the signals described in the protocolRole
dependee. The goal will be mapped to a boolean attribute
present in the port that implements the protocolRole
dependee. This attribute will be true if the goal has been
fulfilled and false otherwise. Hence, in the dependency
between Principal Partner_n and Joint Management
capsules depicted in the second doted area of Figure 8,
the goal dependency will be mapped to a boolean attribute

located in the port which composes the capsulePrincipal
Partner_n and implements the protocolRole dependee of
the protocol that assures the fulfillment of this goal
(Figure9).

Now examine the softgoal dependency Added Value
between Principal Partner_2 and Joint Management
actors depicted in Figure 1. In this case, the protocol
Added Value (Figure 10) assures that this softgoal will be
satisfied in some extent by using the signals described in
the protocolRole dependee. The softgoal will be mapped
to a enumerated attribute present in the port that
implements the protocol Role dependee. This attribute will
represent different degrees of softgoal fulfillment.

..-_.- paas s=prodocol==] =spop= =
Partd Authority Delegstion 1 Pard
'%-auﬂ"lt dtyDhalegation : Booslan
N
r 1Y
1 r, S,
| % A
=zproacolRole -"-'5 =sprofocolRole==
Depender Depandee

Figure9. Protocolsand Portsr epresenting the Joint
Ventur € sgoal dependency Authority Delegation

Hence, in the dependency between Principal
Partner_2 and Joint Management capsules depicted in
the third doted area of Figure 8, the softgoal dependency
will be mapped to a enumerated atribute located in the
port which composes the Joint Management capsule and
implements the protocolRole dependee of the protocol
that assures some degree of fulfillment of this softgoal
(Figure 10).

it el g «=profocal== “=pof=®= |
Foil1 Added Valua Pofs
%E ddedvalue | Erumeratian

(Y

o y L

==profocoiR olg== ==profocalRola==
Dapendar Dapandes

Figure 10. Protocols and Portsrepresenting the Joint
Ventur e s softgoal dependency Added Value

In the sequence, look at the task dependency
Coordination between Principal Partner_1 and Joint
Management actors depicted in the Figure 1. Here, the
protocol Coordination (Figure 11) assures that this task
will be performed by using the signals described in the
protocol Role dependee. The task itself will be mapped to a
<<incoming>> signal in the protocolRole dependee and
the port that implements that protocolRole will be

committed to realize their signals. Hence, in the
dependency between Principal Partner_1 and Joint
Management capsules depicted in the first doted area of
Figure 8, the task dependency will be mapped to a
<<incoming>> signal placed in the protocol Role dependee
of the protocol that assures the performing of this task.
The Joint Management capsule is composed by a port
which implements this protocol Role dependee (Figure 11).

<P <sprofocols= ==pan==
Fortd Coordination Ponf

®oamenrming== coordinafion

:..:_II o L %
=<protocoiRoles=
Depenter

Figure 11. Protocols and Portsrepresenting the Joint
Venture stask dependency Coordination

< PIADCDIR plgs >
Depandes

W=cincoming== coardinationd

Finally we have the resource dependency Resource
Exchange between Principal Partner_2 and Principal
Partner_n depicted in the Figure 1. Again, the protocol
Resource Exchange (Figure 12) assures that this resource
will be provided by using the signals described as
<<incoming>> signals in the protocolRole dependee. The
resource will be mapped to a <<incoming>> signal that
returns an information of type resource in the
protocolRole dependee and the port that implements that
protocol Role will be committed to realize their signals.

==pogt==

=gt ==profacol==
Fort13

Par3 | Fesource Exchangs

%< <incorning== signalf) : resoumcaBxchange |

- L]

< - ¥ F

. |' . .l__ -

=agiotocolRoles = ==pratacalRaka==
Crepander Dependes

\--cinr:nmim == Gignal] mesourcaExchanoe

Figure 12. Protocols and Portsrepresenting the Joint
Ventur €' sresour ce dependency Resour ce Exchange

Hence, in the dependency between Principal
Partner_2 and Principal Partner_n capsules depicted in
the fourth doted area of Figure 8, the resource
dependency will be mapped to an <<incoming>> signal
that returns an information of type resource and is placed
in the protocol Role dependee of the protocol that assures
the providing of this resource. The Principal Partner_2

capsule is composed by a port which implements this
protocol Role dependee (Figure 12).

Although we have only detailed the mapping of four
dependenciesin the Joint Venture Style to their respective
representation in UML-RT, the remaining ones are
mapped analogously, according to their types.

6. Case Study

We extracted a case study from [1] that describes a
business organization selling media items (books,
newspapers, CDs, etc.) that has decided to open up aB2C
retail sales front on the internet named Medi @.

Elorts Gkt

o e
Biling Precesses

o capinulers
Eadk 510

Figure 13— Media@ systemar chitecture

Based on the joint venture architectural style, Figure 13
suggests a possible assignment of system
responsibilities. Front Store primarily interacts with
Customer and provides her with a usable front-end web
application. Moreover, it is responsible for catalogue
browsing, items search in database and supplying ondine
customers with information about media items. Back Store
keeps track of all web information about customers,
products, sales, bills and other data of strategic
importance to Media Shop. Billing Processor isin charge
of the secure management of orders and bills, and other
financial data; also of interactions to Bank Cpy. Joint
Manager manages all of the controlling security gaps,
availability bottlenecks and adaptability issues, in order to
ensure the software non-functional requirements. All four
capsules need communicate and collaborate each other in
the running system.

Observe that the message exchange between capsules
happens in the context defined by protocol implemented
by prts that compose each capsule involved in the
interaction. For example, the communication protocol in
Figure 15 shows a request from Back Store to Front Store
for producing the Customer Profile.

<<protocol>>
Profile

[#i<<incoming>> request custome profile() : customer profile

Figure 15. Profile Communication protocol between
Front Storeand Back Store capsules

Moreover, we can use sequence diagrams to depict the
interaction between the capsules which compose the
system when realizing a particular scenario: the request for
ordering amediaitem.

Froft SLire Eiling

Bk St | |M
Pripec-sgr

~ Cugiomar
| salect tem

A EvEN |
add gem
checkoul

rmorit corrpe

B! identilcatng —
o 1 |

|derdfication Hetags |
progprs order| carl informadion)
| RSt o 1
an]iffyl cusiomer)
valggal custamer |

autenficels customer)
I

camy ot papTEnl
pm;:-ess imaice ; -

[sfing informatinn |

procEzaad andar |
rder camed puf P Z 1

A=

L
pocedgcurhmer molle |
rafieeL l?l.-":‘{l:lll'lé' anafie

rukstomer piodle
selactad anls rmlings

elatied f'léjl'l"i. fale
B
|

procpss statihes

I
[
I
|
I
[
I
|
T
I
|
deivey mivimation |
|
I
I
|
I
I
I
I
1

f——————

Figure 14. Sequence diagram for Ordering Media Item
context

Using UML-RT capsules enable usto refine the system
architecture to lowerlevel components (sub-capsules)
which depend on each other to realize the whole system
responsibilities. Sequence diagrams insert details in
architectural behaviour, since it shows the exchanged

signalsin the interactions, as well as the valid sequence of
these signal's (communication protocol between capsules).

7. Conclusions and Future Work

In this work, we have been proposed using UML Real-
Time to accommodate the concepts and features used for
representing organizational architectures in Tropos,
nowadays. This proposal has been applied to multi-agent
software system development for an e-commerce
application. In this paper, we outline an organizational
architecturein UML. Our approach is appropriate for:

- Obtaining an architectural model closer to
organizational environment where the system will
eventually operate, mitigating the existent semantic gap
between the software system and its running
environment.

- Modeling more detailed architectures both in
structural and behavioural aspects.

- Building a flexible architecture with loosely coupled
components, which can evolve and change continually to
accommodate new components and meet new
requirements, as well as support non-functional
requirements. Hence, it enables to realize stakeholders
demand for more flexible and complex systems.

- Being able to use UML elements to represent non-
UML artifacts enables us to use existing UML toolsets to
createthose views.

- Making organizational architectures styles widely
used in industry, namely by other agent-oriented
methodologies or those tuned to open, cooperative,
dynamic and distributed systems.

In Tropos, UML is used only in detailed design phase.
However using UML-RT for modeling architecture can
help Troposin the following issues:

- Common Representation Model: Modeling
information of different types of views (UML and non-
UML) can be physically stored in the same repository.

- Unified Way of CrossReferencing Model
Information: Having modeling information stored at one
physical location further enables us to crossreference
that information. Crossreferencing is useful for
maintaining the traceability among artifacts from
architectural design and detailed design phasesin Tropos.

To improve this proposal, future work is required to
provide systematic guidelines. Currently this processes
happens in a ad hoc way based on software engineer
experience. Proper guidance will enable us to create
instances from architectural metamodels, defined by

Tropos, from requirement models represented in i*
notation. Also we intend to model internal behaviour of
capsules with state diagram. Moreover, we am at
proposing UML extensions for representing social
patterns involving agents, as well as both the structural
and behavioural aspects and features defining such a
software agents, in the context of Tropos Methodology.

7. References

[1] Castro, J, Kolp, M., Mylopoulos, J.:. Towards
Requirements-Driven Information Systems Engineering:
The Tropos Project. In Information Systems, Vol. 27.
Elsevier, Amsterdam, The Netherlands (2002) 365—-389

[2] Mylopoulos, J., Kolp, M., Castro, J.: UML for Agent-
Oriented Software Development: the Tropos Proposal. In
Proceedings of the Fourth International Conference on the
Unified Modeling Language (<<UML>> 2001). Toronto,
Canada (2001), LNCS 2185, p.p. 422-423

[3] Rumbaugh, J., Jacobson, I., Booch, G.: The Unified
Modeling Language — Reference Manual. Addison
Wesley (1999)

[4] Yu, E.: Modelling Strategic Relationships for Process
Reengineering. Ph.D. thesis, Department of Computer
Science, University of Toronto, Canada (1995)

[5] Chung, L., Nixon, B. A., Yu, E., Mylopoulos, J.. Non-
Functional Requirements in Software Engineering. Kluwer
Publishing (2000)

[6] Kolp, M., Castro, J, Mylopoulos, J. A socid
organization perspective on software architectures. In
Proc. of the 1st Int. Workshop From Software
Requirements to Architectures. STRAW’01, Toronto,
Canada (2001) 5-12

[7] Kolp, M., Giorgini, P., Mylopoulos, J.: A goal-based
organizational perspective on multi-agents architectures.
In Proc. of the 8th Int. Workshop on Intelligent Agents:
Agent Theories, Architectures, and Languages. ATAL'01,
Segttle, USA (2001)

[8] Kolp, M., Mylopoulos, J.: Software architectures as
organizational structures. In Proc. ASERC Workshop on
"The Role of Software Architectures in the Construction,
Evolution, and Reuse of Software Systems’, Edmonton,
Canada (2001)

[9] Sdic, B., Rumbaugh, J.: Using UML for Modeling
Complex Red-Time Systems. Rational Whitepaper
(Www.rational.com) (1998)

[10] OMG: Unified Modeling Language 2.0. Initid
submission to OMG RFP ad/00-0901 (UML 20
Infrastructure RFP) and ad/00-0902 (UML 20
Superstructure RFP).: Proposal version 0.63 (draft).
http://www.omg.org/.

[11] Shaw, M., Garlan, D.: Software Architecture:
Perspectives on an Emerging Discipline. Upper Saddle
River, N.J., Prentice Hall (1996)

[12] Condlen, J.: Building Web Applications with UML.
Addison-Wesley (2000)

[13] IBM: Patterns for e-business. At
http://www.ibm.com/devel operworks/patterns (2001)

[14] Silva, C. T. L. L., Castro, J. F. B.: Detailing
Architectural Design in the Tropos Methodology.
CAISEG3 - The 15Th Conference on Advanced
Information Systems Engineering, 2003,
Klagenfurt/Velden, Austria (to appear).

