
Pattern Oriented SoftwareDevelopment: Moving Seamlesslyfr om Requirements
to Ar chitecture

M SRajasree, PJithendraKumarReddy, D Janakiram
Distributed& ObjectSystemsLab

Departmentof ComputerScienceandEngineering
IndianInstituteof Technology, Madras

Chennai,India�
rajasree,jithendra� @cs.iitm.ernet.in,djram@lotus.iitm.ernet.in

Abstract

RequirementsEngineering(RE) deals with the early
phasesof software engineeringnamelyrequirementelici-
tation,modeling, specificationandvalidation. Architecture
of a software systememphasizesthe structural constraints
imposedon the application. Potential reusein the form of
software patternsare available for software designers to
structure their applications. This paper proposesa pat-
tern orientedmethodology for software development.Us-
ing this approach, the skeletonof the application can be
perceivedup-front by usingknowledge of previously iden-
tified patterns.Functionalrequirementsof the application
cansubsequentlybemadeevolvingaroundthisbasicstruc-
ture. The methodology thus bridges the gap betweenre-
quirementsspecificationand the architecture of the appli-
cation. Thisapproach not only leadsto highly flexible and
reusabledesignsolutions,but alsoprovidestraceabilityof
requirementsin designsolutionsmakingmaintenanceless
tedious.

Keywords: RequirementsEngineering(RE),Software
Architecture, DesignPatterns,Architectural Patterns

1. Intr oduction

Architecturegainedimportancein softwaredevelopment
processas a powerful meansof software abstraction. To
a greatextent,architectureis distancedaway from the de-
tails of the system.Potentialreusein the form of interac-
tion modelingis capturedin patternsat varying levels of
granularity. Patternsenabledesignersto capturethesein-
teractionsasreusableartifactsin softwaredesignprocess.
Theseinteractionsin turn provide a structurefor theentire
application. In other words, patternsdeal with the archi-
tecturalaspectsof asoftwaresystem.Commonlyoccurring

patternsin softwaresystemshave beencategorized.Archi-
tecturalpatternexpressesa fundamentalstructuralorgani-
zation for the software systemby providing a set of pre-
definedsubsystemsand their responsibilities. It also in-
cludesrulesandguidelinesfor organizingtherelationships
betweenthesesubsystems[8]. Objectorientationfacilitates
reuseof classeswithin and acrossapplications. General-
izationandaggregationhierarchiesenablethis. Designpat-
terns[7] are basedon theseprinciples. The fundamental
structureof the entiresoftware is not governedby design
patterns.But they do influencethearchitectureof a subsys-
tem.

Software developmentmethodologiespracticedtoday,
fail to addressthe synergy betweenthe requirementengi-
neeringprocessandarchitecturaldesign. Traditional sys-
tem developmentmethodologieslike waterfall model fol-
low a sequentialstep. The requirementsarecapturedfirst
andonly uponcompletionof this step,designandsubse-
quentstagesin thedevelopmentprocessareaddressed.Re-
quirementelicitationmainly concentrateson thefunctional
aspectsof thesystem.Unlessthecollaborationsamongthe
entitiesdirectly contribute to the functional aspects,they
arenot adequatelycapturedduringthis phase.We propose
a developmentmethodologywhereinthesystemsstructure
in termsof the collaborations,is capturedat the require-
mentsphaseitself by intuitively understandingthe interac-
tionsamongtheparticipantsandrelatingthemwith thepre-
viously known patterns.This givesa skeletonfor the ap-
plication’s solutionat a higher level, which canfurther be
refinedto lower level patterns.

Patternsareavailableat varyinglevelsof granularityfor
theabove mentionedapproach[5, 7, 8]. Architecturalpat-
ternsguideus in giving a structurefor thesoftware.Gang-
of-Four (GoF) patternsaddressissuescloseto code. The
sameprincipleswhichform thebasisof thesepatternscould
aswell beappliedat anabstractlevel in thedesignprocess.



Choosingan appropriatestructurefor the applicationup-
front, constrainsandboundsthedesignspace.Also, choice
of a patternconveys the semanticsof the application.The
characterizationof applicationin termsof patternsdo not
stick to any formal definition of that pattern,but they do
convey muchmoreaboutthestructureaswell ascomputing
model.

Creatinganexhaustivesetof patternsfor theentiresoft-
waredomainis aneverendingprocess.Also, it is notpossi-
bleto haveacompletepatternlanguageto designasoftware
system.In suchcases,thedesignshouldbebasedonthere-
lationshipbetweentheentitiesidentifiedduringtherequire-
mentsphase.Dependingontheproblemdomaininvolved,a
hierarchyof patternsandarelationshipbetweenthemcould
be figured out. As this processattainsmaturity, it could
leadtowardsvaluabledesignguidancein theform of a de-
signhandbookfor theorganizationfor specificdomainsand
specificconcerns[4] similar to theonesavailablein mature
engineeringdisciplines.

Thepaperis organizedasfollows. Section2 detailsthe
importantactivities in requirementsengineering. Section
3 introducesthepatternorientedsoftwaredevelopmentlife
cyclemodel.Section4 explainssoftwaredesignasapattern
compositionproblem.Theapproachproposedin Section3
is explainedin Section5 usingasmallcasestudy. Section6
providesa comparative accountof relatedwork. Section7
concludesthepaperwith adiscussionona few ideaswhich
includesoutstandingissuesfor furtherwork.

2. Requirementsengineering

Requirementsengineeringdealswith theearlyphasesof
softwareengineeringnamelyrequirementselicitation,mod-
eling, specificationandvalidation[6]. We couldemploy a
varietyof techniquesfor thissuchasinterviewing,use-case
modeling,essentialprototyping,ClassResponsibilityCol-
laborator(CRC) modelingetc. Irrespective of the model-
ing techniquesused,thebasisof theactivity remainssame.
Requirementsanalysisresultsin domainclasses.Domain
classesalongwith framework classesleadto classmodels.

Extractinginformationout of problemspaceitself may
not beeasyin somecases.Conceptsin problemspacemay
not necessarilybetranslatedto concreteobjects.This may
be dueto the fact that realizationof requirementsmay re-
quiremultiple classes.Ambiguity in problemspaceneeds
to beresolvedbeforemoving on to solutions.

Requirementspecificationsshouldnot only aim at so-
lution end from implementationpoint of view, but should
also focus on the long life of designs. Suchdesignswill
beresilientto evolving requirements.RE is concernedwith
theservicesprovidedby andtheconstraintson a largeand
complex softwaresystem[9]. Apart from this, RE is also
concernedwith the relationshipof thesefactorsto precise

specificationsof systemsbehavior andtheir evolution over
time andacrosssystemfamilies.ThusRE becomesa chal-
lengingactivity whichhaseffectontheforthcomingphases
andthe quality of the design. For an applicationwhich is
intendedto be usedonce,the traceabilityof requirements
is importantonly duringthemaintenancephase.However,
for thederivationof architectureslike productlines,this ac-
tivity is morecrucial. HereRE encompassesactivities like
planningthebaselinearchitecture,analyzingcommonality-
variabilityetc.A patternorientedapproachfor thedesignof
frameworksfor softwareproductlinesis explainedin [17].

3. Pattern oriented software development life
cyclemodel

We proposea patternorientedlife cycle modelfor soft-
ware development. Figure 1 gives an outline of this ap-
proach.Thekey ideahereis to have a globalstructurefor
the applicationbasedon its overall computationandcom-
municationmodel, guidedby the knowledgeavailable in
theform of patterncatalogsandpatternlanguages.An intu-
itiveunderstandingof theapplicationin termsof theglobal
dataflows would suffice for this step. This is an elegant
approachsincethe global concernsof the applicationare
addressedhereandit is possibleto apply this approachto
the systemat varying levels of granularity. Architectural
patterns[8] can be usedas fundamentaldesigndecisions
for the software system,imposinga structuralframework
for theapplicationduring this step.For example,a system
whereinformationflows in a sequentialfashioncanbeper-
ceived asa pipe andfilter architecturalpattern. Database
applicationsandnetwork protocolscouldbestructuredasa
layerspattern[8]. Thestructuralframework thusperceived,
in turn formsa context for subsequentanalysisandrealiza-
tion of requirements.

in design
Patterns 

Refinement 
to design

Communication model
Global data flow

Pattern languages
Pattern catalogs

Architecture

Cyclic progress of requirements and design activities

Concepts

Problem Domain 
Towards solution

Require−
ments

Figure 1. Pattern Oriented Lif e Cycle Model

Next stepin thelife cycle is therefinementof this archi-
tectureto design. During this phase,requirementscould
further be analyzedin detail, to identify lower level pat-
ternsin the systemsandsubsystems.By lower level pat-
terns,wemeandesignpatternswhichcouldbeproductspe-
cific like J2EEpatternsor generalsolutionslike GoF pat-
terns.Choiceof productspecificpatternsagaincouldbea

2



requirementdriven factor. This is a cyclic activity during
which, requirementsaswell asstructureof theapplication
getevolvedsimultaneously, eachactivity forming the con-
text for theother.

3.1. Processimpr ovementby patterns

The applicationof a well-managed,iterative andincre-
mentaldevelopmentlife-cycle hasbeenpointedout asone
of five characteristicsof successfulobject-orientedprojects
[10]. Usually in systemdevelopmentprocess,the require-
mentmodelsdevelopedearly in thedevelopmentcycle un-
dergo several working compromisesduring the develop-
mentcycle. So it is naturalthat the initially perceivedand
documentedmodelsare not available when the develop-
mentis complete.Patternbasedrequirementmodelssolve
this problemconsiderablybecausethe basicdesigntrade-
offs encounteredby softwaredesignersarewell capturedin
thepatternschosento fit in thedesign.Considerablevaria-
tion from thisstructureis unlikelywhenthedesignelements
arefilled up in this structure.Thesemodelsact aspower-
ful communicationmechanismsduringdesignandredesign
process.

Softwaredesignis primarily dictatedby the context in
which the designactivity takesplace,andis influencedby
enablingtechniqueslike modularization,encapsulationin-
formationhiding, separationof interfaceandimplementa-
tion etc. Softwarepatternsaresolutions,which arebased
on theseenablingtechniques.Patternsaddresstheissuesin
designto agreatextent.Requirementmodelscanrightly be
transformedto designmodelsby meansof thesepatterns.
Thedomainfunctionalitycouldthenbeprovidedin thede-
sign. Sincethe induction of a patternis for addressinga
specificconcernin thesystem,traceabilityof requirements
in solutionsbecomeseasy.

3.2. Requirementsengineeringfr om anewperspec-
tive

Requirementsengineeringshould adequatelyaddress
functionalandnon-functionalrequirementsof thesoftware.
In fact, if functional requirementsaffect only that part of
the software that determinesthem,they typically have lo-
calizedeffects. On theotherhand,requirementswhich cut
acrossvariouspartsof thesystem,canbecapturedfrom the
interactionsamongtheseparts. Theseinteractionsgovern
thestructureof thesystem.

While analyzingthe requirementsin a systemit is a
good idea to classify the requirements. Certain require-
mentscouldbecurrentlyexisting in thesystem.Theanal-
ysis processcould stretchitself to foreseecertainrequire-
mentswhich thesystemis likely to accommodatein thefu-
tureatthesametimemakingprovisionfor incorporatingthe

requirements.Certainrequirementsmaynecessitatepoten-
tial changesin systemsdesign.Theremaybesome,which
thesystemwill neverbeableto handle.Thiscategorization
helpsthesystemsdesignerto comeupwith anoptimumar-
chitecturefor the system. The designercould also make
judgementaboutthecapabilityof thesystemthathasbeen
designedbasedon this classification.

Architecture concernswith the structure and is like
”load-bearingwalls” [13] of thesoftware. This meansthat
within a particulararchitecturalframework, it is possible
for the applicationto undergo changes,without affecting
thisstructure.Thesystemfunctionalityshouldbeevolvable
within this architecture.Patternorientedapproachthatwe
suggestbecomesmeaningfulin thiscontext. Sincethereare
infinite waysof realizingthesedesignsolutionsin code,it
will bepossibleto addor removerequirementswhich have
localizedeffectsin the future unlessthey areprecludedin
advanceby thechoiceof aspecificpattern.

3.3. Novel approachfor requirementscapturing

To ensurelonglife for designs,they shouldbeadaptable.
Software in generaland OO systemsin particularshould
be realizedasan implementationof anabstraction.At the
sametime, theseabstractionsshouldhave theability to ac-
commodaterequirementchanges.The modulardecompo-
sition of a systemshouldbebothopenandclosed[1]. The
designsthushave a stablecoreon which the resultingap-
plicationscanrely on, at thesametime have openportions
whichcanaccommodatecontext dependentvariationsor re-
quirementchanges.Mostof thedesignpatternsaddressthis
issue.

Portionsof anapplicationthatshouldbekeptresilientto
changesandextensionareoftenreferredto ashotspots[21].
Organizationof anapplicationaroundsuchhot spotsdeter-
mineshow well it is closedfor modificationsat the same
timeopenfor adaptation.Knowledgeaboutthehotspotsin
adesignandhow they areaccessedby theclientsoftwareis
importantfor all phasesof softwaredevelopmentandmain-
tenance,whetherit is construction,comprehensionor evo-
lution. The”open-closed”principleandhot spotdrivende-
signshouldbeconceivedveryearlyin thedevelopmentlife
cycle;preciselyat requirementcapturestagesitself. Pattern
basedmodelsthatwesuggestessentiallydo this.

3.4. Patterns in requirementsengineering

Any softwaredevelopmentmethodologyhasanunderly-
ing modelsupportingthedevelopmentprocess.Modelsand
abstractionsconstitutethebasicframework for thedevelop-
mentprocessin a domain.Fromtherequirementspoint of
view, architecturalabstractionsmaketrade-off analysissim-
pler, andprovidesa modelthat is easilyrefinableto code.

3



Themodelgetsitself evolvedasthedevelopmentproceeds.
For example,the domainprocessesat a coarselevel could
be expressedby usingsubsystemor componentsandtheir
interactions.Furtheranalysiscould be aidedby usecases
for requirementmodeling. Usecasesleadto a conceptual
model whereconceptsare realizedusing objects. Subse-
quently, the collaborationbetweenobjectsare addressed.
Subsysteminteractionsand relation betweenvarious use
casescould be seenasrequirementpatterns,which canbe
documented.Oncetheserequirementpatternsaremapped
to correspondingarchitecturalor designpatterns,themap-
pingcouldaswell beusedasareusableartifact.

Interactiondiagramsareoneof themostimportantarti-
factscreatedduringRE.Skillful assignmentof responsibil-
ities for the participantsin the interactiondiagramsis also
importantirrespectiveof thegranularityof theparticipants,
whetherthey besubsystemsor objects.Proactive andpre-
scriptiveuseof patternsassistthedesignerto a greatextent
in this step. Patternscanaid the RE processin two ways.
They canresultin singlesolutions.Secondly, they canaid
in thedevelopmentof reusableframeworkswhich arecus-
tomizabledesignsolutions.Patternsplay animportantrole
in customizinganddesigningapplicationframeworks.This
hasbeenemphasizedin [15].

It is generallyobserved that successfulprojectsspend
considerableamountof timeandresourcesin theREphase.
It would be useful if, this phasecanaswell comeup with
requirementspatternsandtheir correspondingmappingfor
relatedproblems. Requirementspatternscould be docu-
mentedin the form of usecases,combinationof usecases
or sequenceof occurrenceof events.

3.5. Patterns assolution to non-functional require-
mentsof software

In softwaredesignprocess,choiceof an architectureis
moreof an activity of giving a structureto the whole ap-
plication. The realizationof the rest of the functionality
of the softwaresucceedsthis stepandideally the software
functionality shouldbe evolvablewithin this architecture,
withoutcompromisingits constraints.

Patternsmostly addressnonfunctionalrequirementsof
software.Bystructuringadatabaseapplicationusingamul-
tiple layeredpattern [8], we make the changesisolated.
Problemssuchas lack of flexibility in most OO systems
canbesolvedby reorganizingthedesignby makinguseof
a strategy pattern[7]. Theimplicationof this is thatthede-
sign is addressinga non functionalrequirementof thesys-
temcalledflexibility . Anotherinterestingpoint is that this
reorganizationwill resultin thedegradationof systemper-
formancebecausetheinstanceof oneclassneedsto invoke
aninstanceof a strategy class.Thus,patternbasedrequire-
mentmodelssincethey abstractout details,serve the ideal

solutionsfor requirementmodels. Also, thesemodelsen-
ablethe point at which certainquality attributesareinhib-
ited. As a result,selectingdesiredsolutionsfrom a setof
alternatesolutionsbecomeseasier.

In order to make surethat a systemis well structured
andorganized,in addition to exposingglobal structureof
the system,designshouldobey certainbasicdesignprin-
ciples which are to be well documented.Well structured
requirementsanddesigndecisionsat several layersof ab-
stractionarecrucial for understandinga detailedspecifica-
tion document[20]. Thepatternorientedsoftwaredevelop-
mentmethodproposed,assistsin systematicunfolding of
requirementsat varying levels of abstractionandprovides
sounddesigndocumentation.

4. Software design as pattern composition
problem

Applicationof patternsin softwaredevelopmentis to be
seenasa patterncompositionproblem. Herewe provide
a designsolution,ratherthana programmingsolutionthat
is tunableonly at the implementationlevel. Understand-
ing of how the abstractionsin softwareareto be adapted,
extendedcomposedandmaintainedis equallyimportantas
providing knowledgeaboutthelocatingof thekey abstrac-
tions in it.Advantagesof usingpatternsasbuilding blocks
of architectureandtherelatedissuesareexplainedin [12].

The combinationof collective behavior of components
needto be exploredat the designandarchitecturallevels.
This issueis addressedby designpatterns.Ifweusepatterns
asbuilding blocksof architecture,not only thatwe address
a specificfunctionalaspect,but alsothe interactionamong
thevariousrequirements.Theobjectivesmetby designele-
mentscouldbeaddressedusingtherolesplayedby different
objectsin that pattern. Requirementsmodelingaddresses
dynamicnatureof therequirementsin this case.

When patternscombineto generatesolution architec-
tures,thestructuralandbehavioral compositionneedto be
addressed.Behavior compositionaddressesconcernslike
therolesplayedby variousobjectsaselementsin patterns.
This kind of designis referredto as responsibility-driven
designor interactionorienteddesignin OO literature[16].
Assignmentof responsibilitiesto objectsanddesignof ob-
jectcollaborationsis very important.Neglectingtheimpor-
tanceof the creationof interactiondiagramsandresponsi-
bility assignmenthasbeenpointedout asa commonprob-
lem in object technologyprojects[2]. We believe that re-
quirementsanalysisemphasizingthesestepsand patterns
as designsolutions,will alleviate this problemto a large
extent. Whenpatternsareusedascompositionalunits of
an architecture,an elegant mechanismfor addressingthe
collaborationsamongthe patternparticipantsis discussed
in [3].

4



5. Casestudy

This Sectionillustratesthe methodologywe have pro-
posedusing an example of componentinteractionsin a
feedbackcontrol system. The systemusesfeedbackfrom
the output to control a processlike any feedbackcontrol
systemavailablein control literature. Feedbackunit takes
theoutputdatafrom theprocessbeingcontrolledandthen
makesnecessaryadjustmentto be fed to the feedforward
unit after comparingthe feedbackvalue derived from the
output, with a referencevalue. Then, feedforward unit
sendsthe modifiedoutputto the controlledprocess.Con-
sideringtheglobaldataflow in theapplication,theadjustor
readsfeedbackdataandreferencedata,thecontrolledpro-
cessreadsthemodifiedoutputandthe feedbackunit reads
theoutputdatafrom thecontrolledprocess.

Adjustor

Feedforward 

Controlled

Process

Feedback 
unit

Feedback value

unit

M
odified output

O
utput data

Adjustment

Reference value

Figure 2. Component Interactions in a Feed-
back Contr ol System

Even though the global data flows in the application,
look like a pipe-and-filterarchitecturalpattern [8], this ar-
chitecturedoesnot fit in heresincepipe-and-filterdoesnot
allow any feedbackloops.On theotherhand,it fits into the
blackboardpattern[8], in whichseveralspecializedsubsys-
temsassembletheirknowledgeto build apossiblypartialor
approximatesolution.

Figure3 givesonepossibledesignfor thisproblem.An-
alyzing the requirementsfurther, it can be seenthat con-
trolled processactsasa mediatorbetweenfeedforwardand
feedbackunits thusthe interactionsamongthemresemble
thatof a mediatorpattern[7]. Controlledprocesscanalso

be realizedasa singletonpattern. Now, having identified
thesepatterns,requirementscould further be analyzedin
detailto assignresponsibilitiesto theclassesin thepatterns.

Adjustor

Feedforward 

Controlled

Process

Feedback 
unit

Feedback value

unit

M
odified output

O
utput data

Adjustment

Reference value

Mediator 

Singleton

Figure 3. Design 1 for the Feedbac k Contr ol
system

It is naturalthatmorethanonedesignis possiblefor the
sameproblem. In this context we give an alternative de-
signfor thesameproblem.Thisdesignis givenin Figure4.
The functionality provided by the feedforward unit to the
restof theunitsshouldbethesame,irrespective of thedif-
ferentcontrol strategiesusedby it. A strategy pattern[7]
couldbeusedfor this. Thesameinterpretationholdswith
feedbackunit also.To reducethedependency betweencon-
trolled processandthe feedbackunit, observer patterncan
beused.

When alternatedesignsexist for the same problem,
basedon sometrade-off analysis,thedesignermayhave to
choosethe bestdesign. In suchsituations,a methodology
proposedin [4] aidsthe designerto comparethe alternate
designsin termsof somemetricslikestaticadaptability, dy-
namicadaptability, extendibility etc. Detailsregardingthis
methodologyis availablein [4].

Fromthecasestudy, it is evidentthatpatternorientedlife
cycle model allows the developerto systematicallyarrive
at thedesign,by concentratingon the interactionsexisting
in the domain. It is to be emphasizedthat trade-off analy-
sis for alternatedesignsis alsopossible.Therequirements
aremappedto correspondingpatternsasthedesignevolves.
This makes traceabilityof requirementsin solutionseasy.
Designsolutionsthusobtainedarereusablesincethey are
composedof patternswhich are implementationindepen-
dent,abstractentities.

5



Adjustor

Strategy

Observer

Feedforward 

Controlled

Process

Feedback 
unit

Feedback value

unit

M
odified output

O
utput data

Adjustment

Reference value

Figure 4. Design 2 for the feedbac k contr ol
System

6. Relatedwork

Softwareengineeringis definedas the applicationof a
systematic,disciplined,quantifiableapproachto thedevel-
opment,operation,andmaintenanceof software;thatis, the
applicationof engineeringto software[11]. Stepsavailable
in softwaredevelopmentlife cyclemodelsexplainedin [14]
do not seemto be addressingall theseaspects.Sincepat-
ternsareidentifiedasdistilled experienceof expertdesign-
ers,patternorienteddevelopmentlife cyclemodelturnsout
to bea systematicanddisciplinedapproach.

[19] proposesa mechanismthat utilizes UML model-
ing capabilitiesto composedesignpatternsat variouslev-
els of abstractions. The approachgives emphasisto the
traceabilityof patternsin designs.A systematicapproach
whichtakesinto accounttheglobalstructureof theapplica-
tion andsubsequentlyrefining this structureto lower level
patternsdoesnotseemto beaddressedby researchcommu-
nity yet. Our approachalsoopensup issuesthatarisewhen
patternsareusedasfundamentalbuilding blocksof archi-
tecture,mostimportantissuebeingthe interactionsamong
patterns.

Patterncompositionis addressedby usingrole diagrams
in [18]. Thefocushereis on deriving a compositepattern,
whichisacombinationof individualpatterns.Thiscompos-
ite patternsolvesabiggerproblemin thesensethatthesyn-
ergy of participatingpatternsmakesthe compositionmore
thanits parts.However, a generalizedapplicationdevelop-
mentusingpatternsis not addressedhere.

Patternssolving independentproblemsaredocumented
in [8, 5, 7]. Theseserve only asindependentpatterndocu-
mentations,explainingthecontext, forcesandsolution.Our
approachis towardsrefiningandcombiningthesesolutions
to build reusableapplicationsolutions.

7. Conclusionsand futur e work

We have proposeda life cycle modelusingpatternori-
entedapproachfor the developmentof software. The ap-
proachrelieson the applicationof previously known solu-
tionsto designproblemsin theform of patterns.Thestruc-
tureof theapplicationis perceivedin thebeginningandde-
tailedrequirementselicitationfollows this step.As thepat-
ternsarerefinedto lower level patterns,requirementsalso
get refined. Throughthis approach,RE, aidsarchitectural
designby mappingtheconstraintsimposedby therequire-
mentsto known solutionsandfacilitatesfasttrade-off anal-
ysis. Architecturalmodelingis supportedby not only the
functionalandnonfunctionalrequirements,but alsothera-
tionalebehindthe formationof the pattern. The method-
ology proposedenablesrequirementscapturein the con-
text of formal architectures.We believe that when com-
plex systemsarecomposedfrom pre-existing components,
thecontractualobligationsof theparticipatingcomponents
alsoneedto be capturedasrequirements.Thesecontracts
may leadto compositionpatterns,asnecessitatedby com-
positioncontext andsemantics.As partof our futurework,
we plan to addresstheseissues.We foreseethis asan im-
portantproblemworth addressingin the context of design
reusein the form of patternsandcodereusein theform of
components.

References

[1] B. Meyer. ObjectOrientedSoftware Construction. Prentice
Hall, 1988.

[2] Craig Larman. ApplyingUML and Patterns: An Introduc-
tion to ObjectOrientedAnalysisandDesign. PrenticeHall,
PTR,UpperSaddleRiver, New Jersey 07458,1998.

[3] D. JanakiRam,JithendraKumarReddy, M. S.Rajasree.An
Approachto form a PatternOrientedDesignGraphUsing
PPCModel. In Proceedingsof theSoDA’02, International
Workshopon Software DesignandArchitecture. Bangalore,
India,December2002.

[4] D. JanakiRam,K. N. Anantharaman,K. N. Guruprasad,M.
Sreekanth,S.V.G.K.RajuandA. AnandaRao.An Approach
for PatternOrientedSoftwareDevelopmentBasedon a De-
signHandbook. Annalsof Software Engineering, 10:329–
358,October2000.

[5] D. Schdmit,M. Stal, H. Rohnert,F. Buschmann. Pattern
OrientedSoftware Architecture: A Systemof Patterns- Vol
II . JohnWiley andSons,1999.

[6] A. M. Davis. Software Requirements:AnalysisandSpecifi-
cation. PrenticeHall, EnglewoodClif fs, New Jersey, 1990.

6



[7] E. Gamma,R.Helm, R.Johnson,J.Vlissides. DesignPat-
terns,Elementsof ReusableObjectOrientedSoftware. Ad-
disonWesley, 1995.

[8] F. Buschman,R. Meunier, H. Rohnert,P. Sommerlab,M.
Stal. Pattern OrientedSoftware Architecture: A Systemof
Patterns- Vol - I . JohnWiley andSons,1996.

[9] A. Finkelstein. The future of SoftwareEngineering:2000.
In Proceedingsof 22 nd InternationalConferenceon Soft-
ware Engineering, 2000,ACM Press.

[10] GradyBooch. ObjectSolution,Managing the ObjectOri-
entedProjects. AddisonWesley, 1996.

[11] IEEE. IEEE Standards Collection: Software Engineering.
IEEE Standard610.12-1990,IEEE 1993.

[12] M. S. Rajasree,D. JanakiRam,P. JithendraKumarReddy.
ComposingArchitecturesfrom patterns.In Proceedingsof
the SoDA’02, International Workshopon Software Design
andArchitecture. Bangalore,India,December2002.

[13] Perry, D. E., A. L. Wolf. Foundationsfor thestudyof soft-
warearchitecture.ACM SIGSOFT, 1992.17(4).

[14] R. S. Pressman.Software EngineeringA Practitioner’s Ap-
proach. TataMcGraw-Hill Companies,Inc.,1997.

[15] R. Johnson,B. Foote. DesigningReusableClasses.Jour-
nal of Object-OrientedProgramming, 1(2):22–35,June/July
1988.

[16] R. Wirfs-Brock B. Wilkerson. Object-OrientedDesign: A
Responsibility-DrivenApproach.In Proceedingsof Object-
OrientedProgramming, Systems,Languages and Applica-
tions,OOPSLA’89., pages71–75,1989.

[17] RajasreeM S,D JanakiRam,JithendraKumarReddy.Sys-
tematicApproachfor Design of Framework for Software
Productlines. In Proceedingsof the PLEES’02,Interna-
tional Workshopon ProductLine Engineering: TheEarly
StepsPlanning Modeling and Managing, In Association
with OOPSLA2002. FraunhoferIESE,October28,2002.

[18] Riehle, D. CompositeDesign Patterns. In Proceedings
of Object-OrientedProgramming, Systems,Languagesand
Applications,OOPSLA’97, Atlanta, Georgia, USA, pages
218–228,October1997.

[19] SherifM. Yacoub,Hany H. Ammar. UML Supportfor De-
signingSoftwareasa Compositionof DesignPatterns. In
UML 2001 - The Unified Modeling Language - Modeling
Languages,Concepts,andTools,4th InternationalConfer-
ence, Toronto, Canada,October 1-5, 2001, Proceedings,
volume2185of Lecture Notesin ComputerScience, pages
149–165.Springer, 2001.

[20] M. Weber and J. Weisbrod. RequirementsEngineering
in Automotive Development:ExperiencesandChallenges.
IEEE Software, pages16–24,January2003.

[21] WolfgangPree. DesignPatternsfor Object-OrientedSoft-
ware Development. AddisonWesley, 1995.

7


