
Integrating Organizational Requirements and Socio-Intentional Architectural
Styles

Lúcia R. D. Bastos 1, Jaelson F. B. Castro 1, John Mylopoulos 2
1 Centro de Informática, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire S/N, Recife

PE, Brazil 50732-970, +1 5581
{lrdb, jbc}@cin.ufpe.br

2 Dept. of Computer Science University of Toronto, 10 King’s College Road Toronto M5S3G4,
Canada, +1 416 978 5180

jm@cs.toronto.edu

 Abstract

Software systems of today are characterized by in-
creasing size, complexity, distribution, heterogeneity,
and lifespan. Understanding and supporting the
interaction between software requirements and
architectures remains one of the challenging
problems in software engineering research. To
address these challenges we are proposing an
integration framework developed within the context
of the Tropos project. The proposal aims at
identifying the key architectural elements and the
dependencies among those elements, based on the
stated system requirements.

1. Introduction

Requirements Engineering and Software
Architecture have become established areas of
research, education and practice within the software
engineering community.

Evolving and elaborating system requirements into
a viable software architecture satisfying those
requirements is still a difficult task, mainly based on
intuition. It also remains a challenge to show that a
given software architecture satisfies a set of functional
and non-functional requirements. This is somewhat
surprising, as software architecture has long been
recognised to have a profound impact on the
achievement of non-functional goals ("ilities") such as
availability, reliability, maintainability, safety,
confidentiality, evolvability, and so forth.

In this work we show an approach for this
integration of systems requirements and software
architectures within the context of the Tropos project,
an information system development framework which

is requirements-driven in the sense that it adopts
concepts used during early requirements analysis. To
model and understand issues of the application
domain (the enterprise) we use the i* technique [2],[3],
which allows a better description of the organizational
relationships among the various agents of a system as
well as an understanding of the rationale of the
decisions taken. In the architectural design we use a
catalogue of socio-intentional structures adopting a
set of architectural styles for multi-agent systems
motivated in organization theory and strategic
alliances [4], [5], [6].

The paper is structured as follows. Section 2
presents the Tropos ontology, including a modeling
framework for requirements analysis namely the i*
technique, and the organizational-inspired
architectural styles. Section 3 emphasize the existence
of conceptual differences between requirements and
architecture. Section 4 introduces the baseline of our
proposal to integrating organizational requirements
and socio-intentional styles. Finally, Section 5
summarizes the related work, concludes the papers
with contributions and points to further work.

2. The Tropos Methodology

The Tropos methodology adopts the view of
information systems as social structures. By social
structures, we mean a collection of social actors,
human or software, which act as agents, positions, or
roles and have social dependencies among them.
Tropos is intended as a seamless methodology
tailored to describe both the organizational
environment of a system and the system itself in terms
of the same concepts.

The Tropos ontology is described at three levels of
granularity [1]. At the lowest (finest granularity) level,
Tropos adopts concepts offered by the i*
organizational modeling framework [2], [3], [4], such as
actor, agent, position, role, and social dependency.

At a second, coarser-grain level the ontology
includes possible social patterns, such as mediator,
broker and embassy. At a third, more macroscopic
level the ontology offers a set of organizational styles
inspired by organization theory and strategic alliances
literature. All three levels are defined in terms of the i*
concepts.

Tropos methodology spans four phases:
• Early requirements - concerned with the

understanding of a problem by studying an
organizational setting; the output is an
organizational model that includes relevant
actors, their goals and dependencies.

• Late requirements - the system-to-be is
described within its operational environment,
along with relevant functions and qualities.

• Architectural design - the system’s global
architecture is defined in terms of subsystems,
interconnected through data, control and
dependencies.

• Detailed design - behavior of each architectural
component is defined in further detail.

More details about Tropos Methodology can be

found in [1].

2.1 Requirements in the I* framework

This section will review the main concepts of the i*
technique [2], [4]. It is a framework, which focuses on
the modeling of strategic actor relationships of a richer
conceptual model of business processes in their
organizational settings. The ontology of the i*
technique [4] caters to some of these advanced
concepts. It can be used for: (i) obtaining a better
understanding of the Organizational relationships
among the various system agents; (ii) understanding
the rationale of the decisions taken; and (iii)
illustrating the various characteristics found in the
early phases of requirements specification. According
to this technique, the participants of the organizational
setting are actors with intentional properties, such as,
goals, beliefs, abilities and compromises. These actors
depend upon each other in order to fulfill their
objectives and have their tasks performed.

The i* technique consists of two models: The
Strategic Dependency Model (SD) and the Strategic
Rationale Model (SR).

The Strategic Dependency Model (SD) consists of
a set of nodes and links connecting them, where nodes
represent actors and each link indicates a dependency
between two actors. Hence, a model is described in

terms of network of dependency relationships among
various actors, capturing the motivation and why of
activities. We can distinguish, four types of
dependencies, three of them related to existing
intentions – goal dependency, resource dependency
and task dependency – while the fourth is associated
with the notion of non-functional requirements, the so
called soft-goal dependency. In the goal dependency,
an agent depends on another one to provide the
desired condition, and it does not worry about how
this condition is achieved. In the resource
dependency, the agent depends on the availability of
physical resource or information. In the task
dependency, the agent informs the other what (and
how) should be done. The soft-goal dependency is
similar to the goal dependency, except that the
condition is not precisely defined at the start of the
process, i.e., the goals in a sense involves subjective
aspects, that gradually are clarified during the
development process. This type of dependency
provides an important link connecting two important
aspects in software engineering: (i) the technical and
(ii) managerial side. We still can identify different
degrees of dependencies: open, committed and critical
[5]. We can distinguish actors as agents, roles and
positions. An agent is an actor with concrete physical
manifestations. It is a person or artificial agents
(hardware/software). A role is an abstract
characterization of the behavior of a social actor within
some specialized context, domain or endeavor. A
position is a set of roles typically played by one agent.
Moreover we can analyze opportunities and
vulnerabilities of the chain dependency [3].

Title:
mediasd.eps
Creator:
fig2dev Version 3.2 Patchlevel 1
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

Figure 1 – SD model for Media Shop

In the Figure 1, we have the Strategic Dependency

(SD) model of the e-commerce example. The Media
Shop is a store selling and shipping different kinds of
media items such as books, newspapers, magazines,
audio CDs, videotapes, and the like [1]. To increase

market share, Media Shop has decided to open up a
B2C retail sales front on the internet. With the new
setup, a customer can order Media Shop items in
person, by phone, or through the internet. The system
has been named Medi@ and is available on the world-
wide-web using communication facilities provided by
Telecom Cpy. It also uses financial services supplied
by Bank Cpy, which specializes on on-line
transactions. Medi@ system is introduced as an actor
in this strategic dependency model depicted.

Title:
mediasr.eps
Creator:
fig2dev Version 3.2 Patchlevel 1
Preview:
This EPS picture was not saved
with a preview included in it.
Comment:
This EPS picture will print to a
PostScript printer, but not to
other types of printers.

Figure 2 – SR model for Medi@

The second model of the technique i* is the

Strategic Rationale Model (SR). It is used to: (i)
describe the interests, concerns and motivations of
participants process; (ii) enable the assessment of the
possible alternatives in the definition of the process;
and (iii) research in more detail the existing reasons
behind the dependencies between the various actors.
Nodes and links also are part of this model. It includes
the previous four types of nodes (present in the SD
model): goal, task, resource and soft-goal. There are
two new types of relationship, means-end that
suggests that there may be other means of achieving
the objective (alternatives) and task-decomposition
that describes what should be done in order to perform
a certain task.

The analysis in Figure 2 focuses on the software
(Media), instead of an external stakeholder. The figure
postulates a root task Internet Shop Managed
providing sufficient support (++) [13] to the softgoal

Increase Market Share. That task is firstly refined
into goals Internet Order Handled and Item Searching
Handled, softgoals Attract New Customer, Secure and
Usable and tasks Produce Statistics and
Maintenance. Internet Order Handled is achieved
through the task Shopping Cart, which is
decomposed into subtasks : Select Item, Add Item,
Check Out, and Get Identification Detail. These are
the main process activities required to design an
operational on-line shopping cart. More details can be
founded in [1].

In next section we will detail the organizational-
inspired architectural styles Tropos, which consider
information systems as social structures all along the
development life cycle.

2.2. Socio-Intentional Architectural Styles

A system architecture constitutes a relatively small,
intellectually manageable model of system structure,
which describes how system components work
together. Unfortunately, traditional architectural styles
for e-business applications [12],[13] focus on web
concepts, protocols and underlying technologies but
not on business processes nor non functional
requirements of the application. As a result, the
organizational architecture styles are not described nor
the conceptual high-level perspective of the e-
business application.

Figure 3 – The joint venture pattern

Tropos has defined organizational architectural

styles [1],[5],[6],[7] for agent, cooperative, dynamic

and distributed applications to guide the design of the
system architecture. These architectural styles
(pyramid, joint venture (Figure 3), structure in 5,
takeover, arm’s length, vertical integration, co-
optation, bidding) are based on concepts and design
alternatives coming from research on organization
management. The proposal is to use human
organizations as a metaphor to suggest a set of
generic styles for agent systems, with a preference for
organizational design theories over social emergence
theories.

For example, the joint venture architectural style in
Figure 3. The joint venture style is a more
decentralized style based on an agreement between
two or more principal partners who benefit from
operating at a larger scale and reuse the experience
and knowledge of their partners. Each principal partner
is autonomous on a local dimension and interacts
directly with other principal partners to exchange
services, data and knowledge. However, the strategic
operation and coordination of the joint venture is
delegated to a Joint Management actor, who
coordinates tasks and manages the sharing of
knowledge and resources. Outside the joint venture,
secondary partners supply services or support tasks
for the organization core.

The organizational architectural styles have been
described in UML, in order to provide detailed
representation in architectural phase of Tropos
Methodology, as well as to represent the
organizational styles into a industrial notation [16].

3. The Gap Between Requirements and
Architectural Description

The inter-dependencies and constraints between
requirements elements and architectural elements are
thus not well-understood and subsequently only little
guidance is available in bridging requirements and
architecture. The semantic gap between requirements
and software design is substantial [12].

Requirements Engineering is concerned with
identifying the purpose of a software system, and the
contexts in which it will be used. Software architecture
is related to the principled study of large grained
software components, including their properties,
relationships, and pattern of combination [9]. In
addition to specifying the structure and topology of
the system, the architecture should show the intended
correspondence between the system requirements and
elements of the constructed system. It can additionally
address system-level properties such as capacity,
throughput, consistency, and component
compatibility [14].

The existence of conceptual differences between
what to do (requirements) versus how to do it

(architecture, design and code) constitutes a semantic
gap. Filling this gap requires better models and
notations for the intermediate step. There are some
critical challenges when trying to reconcile
requirements and architectures [8]:

− Requirements are frequently captured informally in

a natural language. On the other hand, entities in a
software architecture specification are usually
specified in a formal manner [11].

− System properties described in non-functional
requirements are commonly hard to specify in an
architectural model [11].

− Iterative, concurrent evolution of requirements and
architectures demands that the development of an
architecture be based on incomplete requirements.
Also, certain requirements can only be understood
after modeling and even partially implementing the
system architecture [12].

− Mapping requirements into architectures and
maintaining the consistency and traceability
between the two is complicated since a single
requirement may address multiple architectural
concerns and a single architectural element may
have numerous non-trivial relations to various
requirements.

− Real-world, large-scale systems have to satisfy
hundreds, possibly thousands of requirements. It is
difficult to identify and refine the architecturally
relevant information contained in the requirements
due to this scale.

− Requirements and the software architecture emerge
in a process involving heterogeneous stakeholders
with conflicting goals, expectations, and
terminology. Supporting the different stakeholders
demands finding the right balance across these
divergent interests.

The following section outlines the basis of our

approach.

4. The Integrating Framework Proposal

This section describes an informal four-steps

process to address the transition between
requirements and architectural design. This proposal is
a framework to identifying and mapping the
architectural decision from a requirements
specifications.

4.1. Mapping Architectural Elements from i*

This proposal focuses on finding a systematic

process to support the transition from requirements
specification to architectural design.

As showed in Figure 4 the proposal are composed
by two modules: i* Architectural Extension and

Integration Process. Our approach for integration
process takes as input a goal oriented requirements
specifications in i* technique and returns as output an
architectural model. The main concerns are related to
the identification, classification and support a variety
of architectural elements from system requirements.

Figure 4 – i* Architectural extension

This extension includes:

− Templates – To extend and refine the properties
from i* architectural elements (possibly actors,
goals, softgoals resource, task, dependency and
links). The identified architectural elements from i*
framework are:
1. Components - The computational elements

(possibly systems actors) of the architecture
bound together by connectors;

2. Connections - The relations between
components (possibly dependencies between
actors or relationships to archive goals, like
means-end or task decompositions);

3. Constraints – assertions and constraints that
apply to the entire system or components
(possibly extracted from the non-functional
requirements, goals, dependency sequences or
architectural patterns);

− Guidelines – To support the mapping from SR

description into organizational architectural styles
elements.

− Architectural Patterns – Compositions or styles in
which architectural elements are connected in a
particular way. In this work we are using the
architectural styles of the socio intentional
catalogue (e.g., Joint Venture style).
Figure 5 shows the four-steps Integration Process

to mapping and relating i* systems requirements and
organizational architectural elements:
− Step 1: Capturing the architectural requirements.

This step covers an analysis using as input the i*
requirements model and architectural guidelines to
identifying architectural elements and capture
additional architecture-relevant information. As
output we have some templates for architectural
elements;

− Step 2: Applying the NFR Framework to select
among the socio-intentional architectural style
using the non-functional requirements;

− Step 3: Relating i* architectural requirements with
the architectural elements from the socio-intentional
catalogue applying the guidelines;

− Step 4: Generating the i* architectural model.

Figure 5 – Integration process

Capture Architectural Requirements - The
primary activity is to identify an i* architectural
elements composed by requirements elements,
showing in Table 1, with complementary architectural
definitions.

Table 1 – Mapping the i* architectural elements
I* Elements Architectural Elements
Actor System component
Task Responsibility
Goal Responsibility/ constraint
Soft -goal Constraint
Dependency Connection/Relationship/constraints
Resource System entity
Link Connection

In the sequence we show an architectural template

example for the component Medi@ system showed in
Figure 2.

The Table 2 shows the partial template definition of
a component. The Name attribute is the i*
specification from which the element (actor) is derived.
In our example “Medi@” it is a system component.
The Responsibilities attribute is a list of assignment of
system responsibilities (tasks and goals), the sub-
components that implement the component. The
Interface attribute denotes the connectors
(dependencies) between others components or sub
components. The Constraints attribute denotes which

 i * Architectural Extension

Guidelines

 i * Framework
Templates

Integration Process Patterns

Socio Intentional
Architectural

Catalogue

Organizational
Archi tectural Model

Integration Process

2 - Apply NFR Framework

1 – Capture Architectural
requirements

4 - Generate Architectural
Model

i* Architectural
Extension

3 – Relate Architectural
requirements and
architectural elements

i * Framework

Organizational
Architectural Model

goals the sub-components satisfy, the soft-goals list
and architectural style selected.

Table 2 – Architectural templates

 Type: System Component
 Name: Medi@
 Responsibilities: {list of task and goal}
 Interface: {list of dependencies)
 Constraints: {Assertions in use, relationship};
 ……….
Architectural Pattern: {organizational style}
Composed of: {components}
 {responsibilities}
 ……..

The organizational architectures offer a set of

design parameters (such direct supervision,
standardization of skills, outputs and work processes)
that can influence the division of labor and the
coordination mechanisms. This design parameters,
include, among others task assignments. Tasks are
partially ordered sequences of steps intended to
accomplish some goal. Tasks can be decomposed into
goals and/or subtasks, whose collective fulfillment
completes the task. These decompositions also allow
to identify actors that can accomplish a goal, carry out
a task, or deliver some resource needed by another
actor. Fulfillment of an actor’s obligations can be
accomplished through delegation and through
decomposition of the actor into components actors.

To define the roles in the organizational
architectures we propose an initial classification of the
responsibilities (tasks and goals) as show in Table 3.

Table 3 – Task type
Basic The input, processing and output

associated with the running the
organization

Manager The coordination and managerial
activities

Controller Standardization of work process
Support The non-operational services that are

outside the basic flow of operational
tasks.

Applying NFR Framework - An important

task during architectural design is to select among
alternative architectural styles using as criteria the
desired qualities identified in the previous phase (Late
Requirements). They will guide the selection process
of the appropriate architectural style. The analysis
involves refining these qualities, represented as
softgoals, to sub-goals that are more specific and more
precise and then evaluating alternative architectural
styles against them, as showed in Figure 6.

The analysis resulting in a softgoal dependency
graph is intended to make explicit the space of
alternatives for fulfilling a top-level attribute. The
organizational patterns are represented as
operationalized attributes (saying, roughly, “fulfilled
by the pattern structure-in-5/joint-venture”) [7].

The evaluation results in contribution relationships
from the social structures to the quality attributes,
labeled “+”, “++”, “-”, “--” that mean respectively
partiallysatisfied, satisfied, partially denied and
denied. Design rationale is represented by claims
drawn as dashed clouds. They make it possible for
domain characteristics such as priorities to be
considered and properly reflected into the decision
making process. Exclamation marks are used to mark
priority attributes while a check-mark “ �� ” indicates
an accepted attribute and a cross “ÕÕ” labels a denied
attribute.

Figure 6 – Partial evaluation for selecting architectural

styles

More details about the selection and non-
functional requirements decomposition process can be
found in [6],[7].

Relating the i* architectural elements and
Socio Intentional elements - The architectural
level of design requires a different form of abstraction
to reveal high-level structure. In particular, should be
possible to represent as first class abstractions new
architectural patterns and new forms of interaction
between architectural requirements elements, so that
the distinct roles of each requirement elements in the
structure are clearer.

 The organizational pattern adopts the abstractions
offered by organizational theory. The structure of an
organization defines the roles of various intentional
components (actor), their responsibilities, defined in

Figure 7 – Medi@ system as joint venture architecture

terms of tasks and goals they have assigned and
resources they have been allocated.

A role is an abstract characterization of the
behaviour of an actor within some specialized context,
domain or endeavour. Its characteristics are easily
transferable to other actors. Dependencies are
associated with a role when these dependencies apply
regardless of who plays the role. In order to describing
this relationship it is necessary to analyse the
responsibilities and roles in the system requirements.

Our work consists of extending the i* with
guidelines to support the mapping of i* requirements
elements to i* architectural elements.

Guideline 1.1 : The i* systems (or i* roles) can be
mapped to a system component in architectural
model.

For instance, the Figure 7 suggest a possible
assignment of system responsibilities for the
business-to-consumer (B2C) part of Media System.
Following the joint venture style, the architecture is
decomposed into three principal partner actor (Store
Front, Billing Processor and Back Store) .

Guideline 1.2: The i* relationship between systems
(or roles) can be mapped as interface in architectural
model.

The partners control themselves on a local
dimension for exchanging, providing and receiving
services, data and resources with each other. For

instance, the Store Front interacts primarily with the
customers and provides them with a usable front-end
web application for consulting and shopping media
items. See Figure 7.

Guideline 1.3: The i* task (or goal decomposition
into task) can be mapped as responsibility in
architectural model.

For instance, some of the responsibilities (see table
1) in Medi@ system are “Internet Shop Managed”,
“Secure Form Order”, “Internet Orders Handled”,
“Maintenance”, as seen in Figure 2.

Guideline 1.4: The i* tasks-type (or goal-type)
defines the roles of various intentional architectural
components (actor) .

For instance, Billing Processor is in charge for the
secure management of orders and bills, and other
financial data. And the Joint Manager manages the
system on a global dimension. See Figure 7.

Further guidelines are required to describe a
complete mapping between requirements and
architecture. Of course not all concepts captured in the
requirements phase will correspond to architectural
system models. The models do not have a one-one
relationship; many elements of the organizational
requirements model are not part of the architectural
model, since not all of the organizational tasks require
a software system. Many tasks contain activities that
are performed outside the software system, and so do

not become part of the architectural system model.
Likewise, many elements in the architectural model
comprise detailed technical software solutions and
constructs that are not part of the organizational
model.

5. Conclusion

The relationship between requirements and

architectures has received increased attention recently
[15]. A number of goal-based requirements
approaches, most notably KAOS [9] [10] and the NFR
framework [13], have proposed the explicit use of the
notion of ‘goals’ to structure system requirements and
architecture. A proposal KAOS/APL presented in [15]
has suggested the use of intermediate descriptions
between requirements and architecture that they call
‘architectural prescriptions’, which describe the
mappings relationship between requirements and
architectures. The CBSP approach [8] explores the
relationships between software requirements and
architectures, and proposes a technique to reconciling
mismatches between requirements terminology and
concepts with those of architectures.

The purpose of this paper is to present our work
on the development of a framework to complement the
specification of architectural elements and mapping
the relationship between requirements and
architectural elements using a set of organizational
styles.

Future research directions will extend the
architectural catalogue with classical software pattern
proposed in the literature (piper-and-filters, layers,
event-based) .

6. References

[1] Castro, J., Kolp, M., Mylopoulos, J.: “Towards
Requirements Driven Information Systems
Engineering: The Tropos Project”. In Information
Systems, Vol. 27. Elsevier, Amsterdam, The
Netherlands (2002) 365–389.

[2] Yu, E.: “Modelling Strategic Relationships for
Process Reengineering”. Ph.D. thesis, Department of
Computer Science, University of Toronto, Canada
(1995).

[3] Yu, E., Liu, L.: “Modelling Trust in the i* Strategic
Actors Framework”. Proceedings of the 3rd Workshop
on Deception, Fraud and Trust in Agent Societies.
Barcelona, Spain (at Agents2000), June 3-4, 2000.

[4] Yu, E.: ‘Agent Orientation as a Modelling
Paradigm”. Wirtschaftsinformatik. 43(2) April 2001. pp.
123-132.

[5] Kolp, M., Castro, J., Mylopoulos, J.: “A social
organization perspective on software a rchitectures”. In

Proc. of the 1st Int. Workshop From Software
Requirements to Architectures. STRAW’01, Toronto,
Canada (2001) 5–12.

[6] Kolp, M. and Giorgini. P.: “Information Systems
Development through Social Structures”. Submitted to
the 14th International Conference on Advanced
Information Systems Engineering (CAiSE'02), Toronto,
Canada, May 2002.

[7] M. Kolp, P. Giorgini and J. Mylopoulos.
“Organizational Patterns for Early Requirements
Analysis”. 15th International Conference on
Advanced Information Systems Engineering
(CAiSE'03), Velden, Austria, June 2003.

[8] Grünbacher, P., Egyed, A. and Medvidovic, N.:
“Reconciling Software Requirements and Architecture:
The CBSP Approach”. Proceedings RE’01, 5th
International Symposium on Requirements
Engineering. Toronto, Canada. August 2001.

[9] Lamsweerde, A. van.: “Requirements Engineering in
the Year 00: A Research Perspective”. 22nd
Proceedings of International Conference on Software
Engineering, Limerick, Ireland. Jun. 2000.

[10] Lamsweerde, A. van.: “Goal-Oriented
Requirements Engineering: A Guided Tour”.
Proceedings RE’01, 5th International Symposium on
Requirements Engineering. Toronto, Canadá. August
2001, 249-263.

[11] Medvidovic N., Taylor R.N.: “A Classification and
Comparison Framework for Software Architecture
Description Languages”. IEEE Transactions on
Software Engineering, 26/1:70-93, 2000.

[12] Nuseibeh, B.: “Weaving the Software
Development Process between Requirements and
Architectures”. First International Workshop From
Software Requirements to Architectures (STRAW'01).
May, 2001.

[13] Chung, L., Nixon, B. A., Yu, E. and Mylopoulos, J.:
“Non-Functional Requirements in Software
Engineering”. Kluwer Publishing, 2000.

[14] Shaw, M.: “Abstraction for Software Architecture
and Tools to Support Them”. IEEE Transactions on
Software Engineering, 21(4): pp.314-335, April 1995.

[15] STRAW’01. Proceedings of First International
Workshop From Software Requirements to
Architectures (STRAW’01), 2001.
http://www.cin.ufpe.br/~straw01.

[16] Silva, C.T.L.L and Castro, J.F.B.: “Detailing
Architectural Design in the Tropos Methodology”.
Proceedings of the 15th Conference on Advanced
Information System Engineering – CAISE 03.
Klagenfurt, Velden, Austria, 2003.

