

Moving from quality attribute requirements to architectural decisions1

Felix Bachmann, Len Bass, Mark Klein
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, Pa USA 15213
{fb,ljb,mk}@sei.cmu.edu

1 This work supported by the U.S. Department of Defense

Abstract

Quality attribute models are proposed as the linkage
between a specification of a quality attribute requirement
and a design fragment that is focused on achieving that
requirement. Each quality attribute model has a
collection of parameters that must be specified in order to
determine from the model whether a requirement will be
met. These parameters can be bound through design
decisions, through values given from a quality
requirement, or through knowledge of the designer.
Architectural tactics are designed to relate design
decisions to control of a quality attribute model
parameter in order to achieve particular responses.

In this paper, we present a series of steps that enable
moving from a single quality attribute requirement to a
design fragment focused on achieving that requirement.
We demonstrate these steps through application to an
embedded system.

1. Introduction

It is well accepted that the satisfaction of quality
attribute requirements for a software system depends
heavily on the design of the software architecture for that
system. From this a plausible design approach is to use the
quality attribute requirements as primary when designing
the software architecture. In order for this approach to be
successful, four pieces must be in place: precise
specification of quality attribute requirements,
enumeration of fundamental design approaches to achieve
various quality attributes, a linkage between the
specification of the requirements and the appropriate
design approaches that yields a design fragment focused
on achieving the requirement, and a method for
composing the design fragments into an actual design.

In this paper, we focus on the third of these pieces: the
linkage between a specification of quality attribute

requirements and a design fragment focused on achieving
that requirement. We build on our prior work on quality
attribute scenarios and architectural tactics and propose
the use of quality attribute models as the linkage
mechanism. We demonstrate the linkage through deriving
a design fragment based on a performance requirement.
An application of these steps to an additional modifiability
scenario is precluded by space limitations but is available
in [2].

We begin by briefly summarizing our prior work in
quality attribute scenarios and architectural tactics. We
then discuss why quality attribute models are the missing
link and how they can be exploited to derive design
fragments from quality attribute requirements. We
illustrate the linkage through an example of a garage door
opener.

2. Quality attribute scenarios

Quality attributes as defined in standards such as ISO
9126 [7] are not adequate for design. This is because the
definitions do not reflect the context in which they are
applied. For example, all systems are modifiable for some
set of changes and not modifiable for others. The key for
design is characterizing the set of changes that a particular
system will be subjected to. Similar comments hold for
other attributes.

We characterize quality attributes through quality
attribute scenarios and have used this characterization in
the ATAMsm [5] evaluation method as well as in other
methods. Our current definition of a quality attribute
scenario has 6 parts – stimulus, source of stimulus,
environment, artifact being stimulated, response, and
response measure. Quality requirements for a particular
system can be cast in terms of these six parts.

In Chapter 4 of [3], we present scenario generation
tables for the quality attributes of availability,
modifiability, performance, security, testability, and

usability. Table 1 gives the scenario generation tables for
performance – the attribute we use for our illustration.
The scenarios generated by the tables in [3] cover most of
the common meanings of these attributes [4].

The scenarios generated by these tables are “general”
in that they are system independent. In order to make them
act as requirements for a particular system, they must be
instantiated for that system and made “concrete”.

Portion of
scenario

Possible Values

Source − one of a number of
independent sources

− possibly from within the
system

Stimulus − periodic events arrive
− sporadic events arrive
− stochastic events arrive

Environment − normal conditions
− overload conditions

Artifact − System
− Process

Response − processes stimuli
− changes level of service

Response
measure

− latency
− deadline
− throughput
− jitter
− miss rate
− data loss

Table 1: performance scenario generation table

3. Architectural tactics

Experienced architects have a collection of techniques
that they use to improve a system response with respect to
a particular quality attribute. Some of these techniques are
captured in patterns of various sorts but others, such as
“reduce computational overhead” or “limit options the
system will support”, are not.

We have coined the term “architectural tactic” to
describe these techniques and define an architectural tactic
as a means of controlling a quality attribute measure by
manipulating some aspect of a quality attribute model
through architectural design decisions. In Chapter 5 of [3],
we provide an enumeration of architectural tactics, albeit
with a different definition.

 Observe that an architectural tactic is concerned with
the relationship between design decisions and a quality-
attribute response. This response is usually something that
would be specified as a requirement (e.g., an average

latency requirement). Therefore architectural tactics (by
definition) are points of leverage for achieving quality-
attribute requirements even though, as yet, no guidance is
provided as to how to choose appropriate tactics in
particular situations.

Table 2 enumerates the architectural tactics used to
achieve performance. See [2] for a description of the
meaning of each tactic.

Category of
tactic

Architectural tactic name

Manage
Demand

− manage event rate
− control frequency of

sampling external events
− reduce computational

overhead
− bound execution times
− bound queue sizes
− increase computational

efficiency of algorithms
Arbitrate
Demand

− increase logical
concurrency

− determine appropriate
scheduling policy

− use synchronization
protocols

Manage
Multiple
Resources

− increase physical
concurrency

− balance resource
allocation

− increase locality of data
Table 2: performance architectural tactics

4. Quality attribute models

Associated with every quality attribute are one or more
“reasoning frameworks” that allow prediction of the
response of a system with respect to particular attributes.
Performance frameworks such as queuing theory or
scheduling theory are the best known and studied and they
are very quantitative in nature. Frameworks for
modifiability include those based on coupling and
cohesion [6] and those based on dependency analysis [1].
These are much more qualitative but still allow prediction
of the difficulty of a modification. Other frameworks exist
for other attributes. Each framework has uncertainty in
terms of the accuracy of its predictions but these
frameworks have proven useful in assisting designers.

It is these quality attribute reasoning frameworks and
their associated models that we exploit to link quality

attribute requirements (specified as concrete quality
scenarios) and architectural design decisions (as embodied
in architectural tactics).

Every quality attribute reasoning framework has a
collection of types of entities that are included in the
framework. Performance models, for example, have units
of concurrency such as threads or processes, dependency
among these units of concurrency, and resources. There is
some collection of inputs (arrival rates, resource
requirements) that drives the model. We call all of these
“parameters” of the models. These are the items that a
designer may potentially control to enable the
achievement of a desired response.

5. Linking concrete scenarios to architectural
tactics

Our goal in this section is to describe how to derive a
set of tactics that are relevant for achieving a particular
concrete scenario and then use this to derive candidate
design fragments. This carried out using the following set
of steps. We assume that input to the set of steps is a
concrete scenario and some set of already made design
decisions exists.
1. Identify candidate modeling frameworks. It may be

that some of the information from the concrete
scenarios will eliminate possible modeling
frameworks. For example, if we know that arrivals
are periodic then the queuing modeling framework is
eliminated from considerations. Each reasoning
framework has a collection of parameters that must be
set before the reasoning framework can be applied.

2. Determine bound and free parameters. The candidate
modeling framework has a number of parameters.
Some of these may be given by the concrete scenarios
and some may be given by elements of the existing
design that are not changeable. For example, a
concrete scenario may specify “events arrive
periodically”. This may require a specific scheduling
model. Another element of the existing design might
be that a particular operating system is to be used.
This determines the execution time associated with
processing one event. This is a parameter of the
model that is bound. All parameters not bound are
considered free.

3. Enumerate tactics associated with the free
parameters. Because a tactic controls one of the
parameters of a model in the reasoning framework,
we can list the tactics associated with the free
parameters, which we use as candidate tactics for the
next steps.

4. Assign free parameters an initial set of values. The
designer makes an estimate for each free parameter
based on intuition or knowledge. If the designer has
no intuition or knowledge for a particular parameter

then an arbitrary value might be chosen. If this
parameter is important to the system, an
implementation of a prototype might be appropriate
to get an estimate.

5. Use tactics to develop satisfactory bindings for all
free parameters. This step has two degrees of
freedom – the list of candidate tactics and the set of
free parameters. We begin our description by
considering the situation where there is only one free
parameter.
Each of the candidate tactics for this free parameter
controls its value – that is, it allows the adjustment of
the free parameter. For each candidate tactic,
determine whether it can adjust the value of the free
parameter to a new value where the solution of the
resulting model satisfies the response measure of the
concrete parameter. If it can, then it becomes a
relevant tactic. If it cannot, then it is discarded.
Now consider multiple free parameters. In this
situation, we need to consider simultaneously
adjusting all free parameters. That is, if tactic one
controls parameter 1 and tactic two controls
parameter two, we need to determine whether we can
move the value for parameter 1 through tactic 1 and
the value for parameter 2 through tactic 2 until the
dependent variable for a resulting model satisfies the
response measure given by the concrete scenario. If
we can then we add both tactics to our list of relevant
tactics, if we cannot then we discard both tactics. If
we have more than one tactic for each parameter, we
need to consider all possible combinations of tactics
for the parameters.

6. Allocate responsibilities to architectural elements.
Every tactic enumerated in table 2 has a design
fragment assigned, if appropriate. For example one
performance tactic suggests using a certain type of
scheduler, or a modifiability tactic recommends the
use of an intermediary. Applying those fragments to
an existing design moves the architecture to a state
that supports the scenario, as demonstrated by the
modeling framework.

Design fragments come with their own
responsibilities and a set of rules that help to:

• Create/delete/refine design elements
• Add responsibilities to existing design

elements
• Reallocate responsibilities of already

existing design elements
• Refine responsibilities and allocate them to

design elements
For example using the tactic semantic-importance-
based scheduling includes applying the following
rules:

• Create a design element “scheduler”

• Allocate the responsibilities with higher
importance to units of concurrency with
higher priority

or using the tactic break the dependency chain
includes applying the following rules:

• Create a design element “intermediary”
• Add responsibilities to the intermediary that

translate from the more abstract interface
provided to the secondary modules to the
concrete interface provided by the primary
module

• Refine the responsibilities of the secondary
modules to use the services of the
intermediary

6. Garage door example
Our sample design problem is that of a garage door

opener. The controller for a garage door opener is an
embedded real-time system that reacts to open and close
commands from several buttons installed in the house and
from a remote control unit, usually located in a car. The
controller then controls the speed and direction of the
motor, which opens and closes the garage door. The
controller also reacts to signals from several sensors
attached to the garage door. One of the sensors detects
resistance to the movement of the door. If the amount of
resistance measured by this sensor is above a certain limit,
then the controller interprets this as an obstacle between
the garage door and the floor. As a reaction, the motor
closing the garage door is stopped.

There are many scenarios that specify the requirements
for the controller software. In [2] we present both a
performance and a modifiability scenario. Here space
limits us to just discussing the performance scenario.

If an obstacle (person or object) is detected by the
garage door during descent, it must halt within 0.1
seconds.
We now exemplify our steps for this scenario.

1. Identify candidate reasoning frameworks

There are two performance reasoning frameworks that
might be applicable to a performance scenario: queuing
theory and scheduling theory. We know from looking at
our concrete scenario that we have sporadic event arrivals
and a hard deadline requirement. The hard deadline
requirement suggests that the applicable reasoning
framework is scheduling theory. Sporadic arrivals are
arrivals that cannot occur arbitrarily often. This is an
indicator that there is a bound on the arrival rate
variability, again indicating that scheduling theory is
relevant. The other relevant parameters are: execution
time, number of units of concurrency, and number of
processors.

2. Determine bound and free parameters

In this step the scenario is recast in terms of the bound
and free parameters of the applicable reasoning
frameworks. Scheduling theory is concerned with
calculating worst case latency associated with carrying out
each scenario, given the execution time, arrival period
associated with each unit of concurrency, the number of
units of concurrency and how each unit is allocated to one
or more processors. Worst-case latency can then be
compared with the hard deadline to determine if the
requirement is satisfied or not.

For these parameters we first determine which ones our
concrete scenario binds. One parameter is the arrival
distribution. In this case the arrival distribution describes
how often an obstacle is detected. We assume this
happens infrequently and there is a bound on how
frequently it occurs (known as a sporadic arrival
distribution). We assume from the business context of the
garage door opener that a single processor will always be
adequate.

Since this is the one performance scenario considered
in this example we do not yet have any bound parameters
in the selected reasoning framework from previously
made decisions.

To summarize:

• Bound parameters: arrival distribution and
number of processors

• Free parameters: number of units of concurrency
and execution time of responsibilities

3. Enumerate tactics associated with the free parameters

This is where we start to employ our “decision
procedures”, which are really a loosely structured set of
rules for which tactics to try (see Table 3). In this step the
decisions are based strictly on what parameters are
considered fixed and which are considered free.

1) Which parameters are fixed?

• Arrival distribution – arrivals are infrequent.

• Number of processors – we will assume that our
platform constrains us to a single processor

From the first rule in Table 3 we conclude that the
fixed arrival distribution rules out the following tactics:
Manage event rate and Control the frequency of sampling
external events

The architect constrains the solution to a single
processor because of the business context and this rules
out the following tactics: Increase physical concurrency,
balance resource allocation.

2) Which parameters are free?

• Execution time – The responsibilities will
suggest a likely range, but this is not yet fixed.

• Number of units of concurrency – This is free
and will be determined later in design

The following tactics are concerned with manipulating
execution time: Reduce computational overhead, Increase
computation efficiency, Control the demand for resources
and Bound execution time

Some of rules of our performance decision procedure
that are applicable for this step are shown in Table 3.

Table3 Example rules of our
performance decision procedure

• If the arrival distribution is fixed then Manage
event rate and Control the frequency of sampling
external events are not tactics that can be used to
control worst-case latency.

• If execution time is a free parameter then
consider using the following tactics: Reduce
computational overhead, Increase computation
efficiency, Control the demand for resources and
Bound execution time

• If the number of processors is bound then
eliminate the following tactics as candidates: Increase
physical concurrency and balance resource
allocation.

4. Assign free parameters an initial set of values

Two things occur at this step. First, the architect offers
his/her best guess for values for the free parameters. The
list of applicable tactics suggests factors that impact the
setting of these values. Secondly, rules of the decision
procedure call attention to possibly problematic situations.

From the previous steps we know that two of the tactics
are relevant to estimating execution time: Reduce
computational overhead and Bound execution time. The
architect might guess that the sum of the execution time of
the 3 responsibilities is about 5 msec. Bound execution
time calls our attention to the effects of execution time
variability, however the architect predicts that these
responsibilities have very little variability. Reduce
computational overhead calls attention to various sources
of overhead that represent extra execution time. It is
conceivable that each one of the responsibilities involved
in obstacle detecting - “detect obstacle”, “determine that
garage door is descending”, and “halt garage door “ -
incur some OS overhead for some pre-selected real-time
operating system. Consequently the architect estimates

that the operating system adds an addition 1 msec of
overhead. The architect also assumes that all of this
scenario’s responsibilities are allocated to a single unit of
concurrency. This last assumption is possible because this
is the sole scenario considered. We discuss some of the
issues involved in multiple scenarios in a further section.

While the architect does not yet know all of the details
of the other responsibilities in the system, he or she does
know that there will be other responsibilities with
associated execution times and these other responsibilities
hold potential for adversely affecting the ability of this
scenario to be realized. The architect is not yet ready to
assign values to the execution times associated with these
other responsibilities.

The second consideration at this stage is to examine the
scenario to determine if it is unreasonable or problematic.
For example, if execution times or arrival rates vary
considerably, but deadlines can never be missed, this
might be problematic. Examples of rules that call attention
such potentially problematic situations are in the table
below. However, for the current scenario none of these
situations apply.

Some of rules of our performance decision procedure
that are applicable for this step are shown in Table 4.

Table 4 More example rules of our
performance decision procedure

• If the scenario has a hard deadline response
requirement that cannot be and if arrivals can occur
arbitrarily close to one another then use one of the
following tactics to ensure a lower bound for the
inter-arrival interval: Manage event rate and Control
sampling frequency.

• If the scenario has a hard deadline response
requirement that cannot be relaxed and if execution
times vary considerably to the point that they can
approach or exceed the hard deadline then consider
applying the following tactic: Bound execution time.

• If either of the above “unbounded” conditions
apply, but arrival rate and execution time are bound
parameters then declare the requirement untenable

5. Use tactics to develop satisfactory bindings for all free
parameters

At this point all of the parameters have values and
there is a candidate list of applicable tactics. The first
thing is to look at one or more of the applicable tactics
and apply the reasoning framework (in this case
scheduling theory) to determine if the current concrete
scenario is satisfied without “violating” any of the
scenarios that have already been satisfied.

The relevant tactics entering into this step are:

• Controlling resource demand through Reduce
computational overhead, Increase computation
efficiency, Control the demand for resources and
Bound execution time have a bearing on how
execution time affects worst case latency.

• Increase logical concurrency and determine
scheduling policy both have a bearing on
understanding how this scenario’s responsibilities
affect and/or are affected by the other responsibilities
in the system

Without considering the effects of other
responsibilities, the model is fairly simple. The only
contributors to latency are execution time and overhead, 5
msec and 1 msec respectively. Their sum is well under the
deadline of 100 msec (that is, .1seconds), leaving 94 msec
to spare.

On the other hand it is very conceivable that the other
responsibilities in the system take more than 94 msec.
Using the last rule in the table below suggests that the
design decisions made in the next step be consistent with
our simple model, that is, they ensure that the latency
associated with this scenario’s responsibilities is not
affected by any of the other responsibilities.

Some of rules of our performance decision procedure
that are applicable so far for this step are shown in Table
5.

Table 5 More example rules of our
performance decision procedure

• If the execution time associated with the arrival
is close to the deadline consider reducing execution
time by using the following tactics: Reduce overhead,
Bound execution time, and/or Increase computation
efficiency.

• If the difference between the worst and best case
is significant then review the following tactics and
apply their modeling techniques to assess miss rates
and average latency respectively: Bound execution
times and/or Bound queue sizes

• If the response requirement for all scenarios can
be achieved even with the worst-case delay due to all
of the other responsibilities of all of the other
scenarios, then use any the following tactics:

− Allocate responsibilities to one of the
existing units of concurrency

• Offline scheduling

− Or allocate responsibilities to a new unit

of concurrency
• Increase logical concurrency
• Time-based scheduling

If the current scenario cannot suffer the worst-case
delay due to some or all of the other responsibilities then
consider them to be time-sensitive and use the following
tactics to create an appropriate scheduling policy: Offline
scheduling, Time-based scheduling (such as deadline
monotonic scheduling), and/or Increase logical
concurrency.

Up to now in this step tactics have been used to set
and/or adjust model parameters to satisfy the current
concrete scenario’s response measure. However, it might
be the case that either the scenario poses an untenable
requirement or the collection of scenarios considered up
to this point are untenable in aggregate. If this is the case,
tactics should offer some ideas for how to relax
requirements or design constraints.

Some of rules of our performance decision procedure
that are useful for identify and relaxing requirements
and/or design constraints are shown in Table 6.

Table 6 Some of rules for relaxing
requirements and/or design constraints

• If the response requirement is specified as a hard
but limited misses can actually be tolerated then re-
characterize deadlines as follows:

− Firm deadlines: Completing before the
deadline is very important. Missing occasionally
can be tolerated. A specific bound on miss rate
needs to be specified.

− Soft deadlines: In this case the term
“deadline” is a misnomer. A specification of an
average latency requirement is what is needed.

• If the time-sensitive set of responsibilities is not
schedulable then incorporate a notion of importance-
based scheduling to handle overload situations using
Semantic-importance-based scheduling or add more
resource using Increase physical concurrency.

6. Allocate responsibilities to architectural elements

Each tactic will suggest associated design fragments.
The tactics of primary concern so far in this example are:

• Controlling resource demand through Reduce
computational overhead, Increase computation
efficiency, Control the demand for resources and
Bound execution time have a bearing on how
execution time affects worst case latency.

• Increase logical concurrency and determine
scheduling policy both have a bearing on

understanding how this scenario’s responsibilities
affect and/or are affected by the other responsibilities
in the system

Reducing computational overhead can map to many
design decisions such as:

• choice of operating system

• choice of operating system services used in
implementing responsibilities

• choice of communication mechanisms, …

We have accounted for OS responsibilities by
assuming 1 msec overhead. We have also assumed that all
of the scenario’s responsibilities have been allocated to a
single unit of concurrency that we will assume is a thread.

The responsibilities for this scenario are pretty
straightforward;

Tactics of Increase computation efficiency, Control the
demand for resources and Bound execution time are likely
not relevant whereas tactics of Increase logical
concurrency and determine scheduling policy are
relevant. They suggest allocating the obstacle detection
responsibilities to a particular module under one thread of
control and assigning this thread a suitably high
scheduling priority. This results in an design fragment
with two threads: the one containing the obstacle detection
responsibilities and the one containing other
responsibilities. We do not show the scheduler (which is
part of the OS) although that also is a portion of the
design fragment. We show a component and connector
view of this fragment in Figure 1.

Figure 1: Design fragment

In an ideal world obstacle detection will take only as
long as it takes to execute the obstacle detection

responsibilities plus a little overhead. However, the
possibility exists that properties of the Other
responsibilities, such as non-preemptability or execution
within an interrupt handler might not have been accounted
for. Therefore these potentially problematic properties
need to be discovered and/or ruled out. We expect that
rules in the time-based scheduling tactics would cause us
to look for and/or ensure against such properties

Observe the relationship between the design fragment
and the associated analysis model. The model states that
obstacle detection responsibilities must be scheduled with
a priority high than other responsibilities. The design
fragment captures this by placing these responsibilities
into separate threads and showing the priority
relationships of those threads.
7. Composition

We have shown how to use the tactics to link one
quality attribute performance requirement to a design
fragment with active assistance from an architect. The
gaping open issue is what happens with multiple scenarios
involving multiple quality requirements, especially for
other attributes. How to compose the design fragments
into a design is the fourth step of moving from quality
requirements to design and it must clearly be solved for
this approach to be successful.

Some of the problems that must be solved to achieve
the composition of design fragments into designs are:

• How to consider the impact of design
decisions already made.

• How to choose among the myriad of
possibilities of composing design fragments.
In [2] we identified a design fragment for
modifiability as well as one for performance
and there were multiple composition
possibilities

• How to maintain view consistency. Each
quality attribute framework has a vocabulary
that maps into one or more software
architecture views. Maintaining consistency
between fragments that come from one
reasoning framework with those that come
from another is a problem that must be
solved.

8. Other open issues and conclusions
In addition to the composition problems there are two

other problems that must be overcome.
1. What is the availability and utility of the various

reasoning frameworks for other quality
attributes? Involving the architect, as we did, in
the design process allows judgment to be used in
application of the reasoning frameworks. We can
predict that, over time, reasoning frameworks for
various quality attributes will improve.

Is higher
priority than

 Obstacle detection
responsibilities

Other application
responsibilities

Key

Thread

Relation

2. How do the steps we have presented here become
embedded into a design method? Once quality
requirements become recognized as important to
design they will begin to be specified in the
1000s as are functional requirements. This leads
to over specification of the requirements. A
design method must be sensitive to this over
specification.

Regardless of the problems, focusing on quality

attribute requirements and using them to drive towards an
appropriate architectural design must be a useful
approach. The utilization of quality attribute models and
tactics in this process is our attempt to move design
toward a more scientific basis.
9. References
[1]Bachmann, F., Bass, L., and Klein, M. Illuminating the
fundamental contributors to Software Architecture
Quality. CMU/SEI-2002-TR-025

[2] Bachmann, F., Bass, L., and Klein, M. Deriving
Architectural Tactics – A Step toward Methodical
Architectural Design CMU/SEI-2003-TR-004

[3] Bass, L., Clements, P. and Kazman, R. Software
Architecture in Practice, 2nd edition. 2003, Addison-Wesley.

 [4]Bass, L., Klein, M., Moreno, G., Applicability of General
Scenarios to the Architecture Tradeoff Analysis Method.
CMU/SEI-2001-TR-014

[5] Clements, P., Kazman, R., and Klein, M., Evaluating
Software Architectures. Addison Wesley, 2002

[6]Henry, S. and Kafura, D. Software Metrics Based on
Information Flow. IEEE Transactions on Software
Engineering. SE-7(5), Sept. 1981

[7] . International Standard ISO/IEC 9126. Information
technology -- Software product evaluation -- Quality
characteristics and guidelines for their use, International
Organization for Standardization, International Electrotechnical
Commission, Geneva.

