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Abstract 
 

Quality attribute models are proposed as the linkage 
between a specification of a quality attribute requirement 
and a design fragment that is focused on achieving that 
requirement. Each quality attribute model has a 
collection of parameters that must be specified in order to 
determine from the model whether a requirement will be 
met. These parameters can be bound through design 
decisions, through values given from a quality 
requirement, or through knowledge of the designer. 
Architectural tactics are designed to relate design 
decisions to control of a quality attribute model 
parameter in order to achieve particular responses. 

In this paper, we present a series of steps that enable 
moving from a single quality attribute requirement to a 
design fragment focused on achieving that requirement. 
We demonstrate these steps through application to an 
embedded system.  
 

1. Introduction 
 

It is well accepted that the satisfaction of quality 
attribute requirements for a software system depends 
heavily on the design of the software architecture for that 
system. From this a plausible design approach is to use the 
quality attribute requirements as primary when designing 
the software architecture. In order for this approach to be 
successful, four pieces must be in place: precise 
specification of quality attribute requirements, 
enumeration of fundamental design approaches to achieve 
various quality attributes, a linkage between the 
specification of the requirements and the appropriate 
design approaches that yields a design fragment focused 
on achieving the requirement, and a method for 
composing the design fragments into an actual design. 

In this paper, we focus on the third of these pieces: the 
linkage between a specification of quality attribute 

requirements and a design fragment focused on achieving 
that requirement. We build on our prior work on quality 
attribute scenarios and architectural tactics and propose 
the use of quality attribute models as the linkage 
mechanism. We demonstrate the linkage through deriving 
a design fragment based on a performance requirement. 
An application of these steps to an additional modifiability 
scenario is precluded by space limitations but is available 
in [2]. 

We begin by briefly summarizing our prior work in 
quality attribute scenarios and architectural tactics. We 
then discuss why quality attribute models are the missing 
link and how they can be exploited to derive design 
fragments from quality attribute requirements. We 
illustrate the linkage through an example of a garage door 
opener. 
 

2. Quality attribute scenarios 
 

Quality attributes as defined in standards such as ISO 
9126 [7] are not adequate for design. This is because the 
definitions do not reflect the context in which they are 
applied. For example, all systems are modifiable for some 
set of changes and not modifiable for others. The key for 
design is characterizing the set of changes that a particular 
system will be subjected to. Similar comments hold for 
other attributes. 

We characterize quality attributes through quality 
attribute scenarios and have used this characterization in 
the ATAMsm [5] evaluation method as well as in other 
methods.  Our current definition of a quality attribute 
scenario has 6 parts – stimulus, source of stimulus, 
environment, artifact being stimulated, response, and 
response measure. Quality requirements for a particular 
system can be cast in terms of these six parts. 

In Chapter 4 of [3], we present scenario generation 
tables for the quality attributes of availability, 
modifiability, performance, security, testability, and 



usability. Table 1 gives the scenario generation tables for 
performance – the attribute we use for our illustration. 
The scenarios generated by the tables in [3] cover most of 
the common meanings of these attributes [4]. 

The scenarios generated by these tables are “general” 
in that they are system independent. In order to make them 
act as requirements for a particular system, they must be 
instantiated for that system and made “concrete”. 

 

Portion of 
scenario 

Possible Values 

Source − one of a number of 
independent sources 

− possibly from within the 
system 

Stimulus − periodic events arrive 
− sporadic events arrive 
− stochastic events arrive 

Environment − normal conditions 
− overload conditions 

Artifact − System 
− Process 

Response − processes stimuli 
− changes level of service 

Response 
measure 

− latency 
− deadline 
− throughput 
− jitter 
− miss rate 
− data loss 

Table 1: performance scenario generation table 

3. Architectural tactics 
 

Experienced architects have a collection of techniques 
that they use to improve a system response with respect to 
a particular quality attribute. Some of these techniques are 
captured in patterns of various sorts but others, such as 
“reduce computational overhead” or “limit options the 
system will support”, are not.  

We have coined the term “architectural tactic” to 
describe these techniques and define an architectural tactic 
as a means of controlling a quality attribute measure by 
manipulating some aspect of a quality attribute model 
through architectural design decisions. In Chapter 5 of [3], 
we provide an enumeration of architectural tactics, albeit 
with a different definition.  

  Observe that an architectural tactic is concerned with 
the relationship between design decisions and a quality-
attribute response. This response is usually something that 
would be specified as a requirement (e.g., an average 

latency requirement). Therefore architectural tactics (by 
definition) are points of leverage for achieving quality-
attribute requirements even though, as yet, no guidance is 
provided as to how to choose appropriate tactics in 
particular situations. 

Table 2 enumerates the architectural tactics used to 
achieve performance. See [2] for a description of the 
meaning of each tactic. 

 

Category of 
tactic 

Architectural tactic name 

Manage 
Demand 

− manage event rate 
− control frequency of 

sampling external events 
− reduce computational 

overhead 
− bound execution times 
− bound queue sizes 
− increase computational 

efficiency of algorithms 
Arbitrate 
Demand 

− increase logical 
concurrency 

− determine appropriate 
scheduling policy 

− use synchronization 
protocols 

Manage 
Multiple 
Resources 

− increase physical 
concurrency 

− balance resource 
allocation 

− increase locality of data 
Table 2: performance architectural tactics 

 

4. Quality attribute models 
 

Associated with every quality attribute are one or more 
“reasoning frameworks” that allow prediction of the 
response of a system with respect to particular attributes. 
Performance frameworks such as queuing theory or 
scheduling theory are the best known and studied and they 
are very quantitative in nature. Frameworks for 
modifiability include those based on coupling and 
cohesion [6] and those based on dependency analysis [1]. 
These are much more qualitative but still allow prediction 
of the difficulty of a modification. Other frameworks exist 
for other attributes. Each framework has uncertainty in 
terms of the accuracy of its predictions but these 
frameworks have proven useful in assisting designers. 

It is these quality attribute reasoning frameworks and 
their associated models that we exploit to link quality 



attribute requirements (specified as concrete quality 
scenarios) and architectural design decisions (as embodied 
in architectural tactics). 

Every quality attribute reasoning framework has a 
collection of types of entities that are included in the 
framework. Performance models, for example, have units 
of concurrency such as threads or processes, dependency 
among these units of concurrency, and resources. There is 
some collection of inputs (arrival rates, resource 
requirements) that drives the model. We call all of these 
“parameters” of the models. These are the items that a 
designer may potentially control to enable the 
achievement of a desired response. 
 

5. Linking concrete scenarios to architectural 
tactics 

Our goal in this section is to describe how to derive a 
set of tactics that are relevant for achieving a particular  
concrete scenario and then use this to derive candidate 
design fragments.  This carried out using the following set 
of steps. We assume that input to the set of steps is a 
concrete scenario and some set of already made design 
decisions exists. 
1. Identify candidate modeling frameworks. It may be 

that some of the information from the concrete 
scenarios will eliminate possible modeling 
frameworks. For example, if we know that arrivals 
are periodic then the queuing modeling framework is 
eliminated from considerations. Each reasoning 
framework has a collection of parameters that must be 
set before the reasoning framework can be applied. 

2. Determine bound and free parameters. The candidate 
modeling framework has a number of parameters. 
Some of these may be given by the concrete scenarios 
and some may be given by elements of the existing 
design that are not changeable. For example, a 
concrete scenario may specify “events arrive 
periodically”. This may require a specific scheduling 
model. Another element of the existing design might 
be that a particular operating system is to be used. 
This determines the execution time associated with 
processing one event. This is a parameter of the 
model that is bound. All parameters not bound are 
considered free.  

3. Enumerate tactics associated with the free 
parameters. Because a tactic controls one of the 
parameters of a model in the reasoning framework, 
we can list the tactics associated with the free 
parameters, which we use as candidate tactics for the 
next steps.  

4. Assign free parameters an initial set of values. The 
designer makes an estimate for each free parameter 
based on intuition or knowledge. If the designer has 
no intuition or knowledge for a particular parameter 

then an arbitrary value might be chosen. If this 
parameter is important to the system, an 
implementation of a prototype might be appropriate 
to get an estimate. 

5. Use tactics to develop satisfactory bindings for all 
free parameters. This step has two degrees of 
freedom – the list of candidate tactics and the set of 
free parameters. We begin our description by 
considering the situation where there is only one free 
parameter. 
Each of the candidate tactics for this free parameter 
controls its value – that is, it allows the adjustment of 
the free parameter. For each candidate tactic, 
determine whether it can adjust the value of the free 
parameter to a new value where the solution of the 
resulting model satisfies the response measure of the 
concrete parameter. If it can, then it becomes a 
relevant tactic. If it cannot, then it is discarded. 
Now consider multiple free parameters. In this 
situation, we need to consider simultaneously 
adjusting all free parameters. That is, if tactic one 
controls parameter 1 and tactic two controls 
parameter two, we need to determine whether we can 
move the value for parameter 1 through tactic 1 and 
the value for parameter 2 through tactic 2 until the 
dependent variable for a resulting model satisfies the 
response measure given by the concrete scenario. If 
we can then we add both tactics to our list of relevant 
tactics, if we cannot then we discard both tactics. If 
we have more than one tactic for each parameter, we 
need to consider all possible combinations of tactics 
for the parameters. 

6. Allocate responsibilities to architectural elements. 
Every tactic enumerated in table 2 has a design 
fragment assigned, if appropriate. For example one 
performance tactic suggests using a certain type of 
scheduler, or a modifiability tactic recommends the 
use of an intermediary. Applying those fragments to 
an existing design moves the architecture to a state 
that supports the scenario, as demonstrated by the 
modeling framework. 

Design fragments come with their own 
responsibilities and a set of rules that help to: 

•  Create/delete/refine design elements 
•  Add responsibilities to existing design 

elements 
•  Reallocate responsibilities of already 

existing design elements  
•  Refine responsibilities and allocate them to 

design elements 
For example using the tactic semantic-importance-
based scheduling includes applying the following 
rules: 

•  Create a design element “scheduler” 



•  Allocate the responsibilities with higher 
importance to units of concurrency with 
higher priority 

or using the tactic break the dependency chain  
includes applying the following rules: 

•  Create a design element “intermediary” 
•  Add responsibilities to the intermediary that 

translate from the more abstract interface 
provided to the secondary modules to the 
concrete interface provided by the primary 
module 

•  Refine the responsibilities of the secondary 
modules to use the services of the 
intermediary 

6. Garage door example 
Our sample design problem is that of a garage door 

opener. The controller for a garage door opener is an 
embedded real-time system that reacts to open and close 
commands from several buttons installed in the house and 
from a remote control unit, usually located in a car. The 
controller then controls the speed and direction of the 
motor, which opens and closes the garage door. The 
controller also reacts to signals from several sensors 
attached to the garage door. One of the sensors detects 
resistance to the movement of the door. If the amount of 
resistance measured by this sensor is above a certain limit, 
then the controller interprets this as an obstacle between 
the garage door and the floor. As a reaction, the motor 
closing the garage door is stopped. 

There are many scenarios that specify the requirements 
for the controller software. In [2] we present both a 
performance and a modifiability scenario. Here space 
limits us to just discussing the performance scenario. 

If an obstacle (person or object) is detected by the 
garage door during descent, it must halt within 0.1 
seconds. 
We now exemplify our steps for this scenario. 

1. Identify candidate reasoning frameworks 

There are two performance reasoning frameworks that 
might be applicable to a performance scenario: queuing 
theory and scheduling theory. We know from looking at 
our concrete scenario that we have sporadic event arrivals 
and a hard deadline requirement. The hard deadline 
requirement suggests that the applicable reasoning 
framework is scheduling theory. Sporadic arrivals are 
arrivals that cannot occur arbitrarily often. This is an 
indicator that there is a bound on the arrival rate 
variability, again indicating that scheduling theory is 
relevant. The other relevant parameters are: execution 
time, number of units of concurrency, and number of 
processors. 

2. Determine bound and free parameters 

In this step the scenario is recast in terms of the bound 
and free parameters of the applicable reasoning 
frameworks. Scheduling theory is concerned with 
calculating worst case latency associated with carrying out 
each scenario, given the execution time, arrival period 
associated with each unit of concurrency, the number of 
units of concurrency and how each unit is allocated to one 
or more processors. Worst-case latency can then be 
compared with the hard deadline to determine if the 
requirement is satisfied or not. 

For these parameters we first determine which ones our 
concrete scenario binds. One parameter is the arrival 
distribution. In this case the arrival distribution describes 
how often an obstacle is detected. We assume this 
happens infrequently and there is a bound on how 
frequently it occurs (known as a sporadic arrival 
distribution). We assume from the business context of the 
garage door opener that a single processor will always be 
adequate. 

Since this is the one performance scenario considered 
in this example we do not yet have any bound parameters 
in the selected reasoning framework from previously 
made decisions.  

To summarize: 

•  Bound parameters: arrival distribution and 
number of processors 

•  Free parameters: number of units of concurrency 
and execution time of responsibilities 

3. Enumerate tactics associated with the free parameters 

This is where we start to employ our “decision 
procedures”, which are really a loosely structured set of 
rules for which tactics to try (see Table 3). In this step the 
decisions are based strictly on what parameters are 
considered fixed and which are considered free. 

1) Which parameters are fixed?  

•  Arrival distribution – arrivals are infrequent.  

•  Number of processors – we will assume that our 
platform constrains us to a single processor 

From the first rule in Table 3 we conclude that the 
fixed arrival distribution rules out the following tactics: 
Manage event rate and Control the frequency of sampling 
external events 

The architect constrains the solution to a single 
processor because of the business context and this rules 
out the following tactics: Increase physical concurrency, 
balance resource allocation. 



2) Which parameters are free? 

•  Execution time – The responsibilities will 
suggest a likely range, but this is not yet fixed. 

•  Number of units of concurrency – This is free 
and will be determined later in design 

The following tactics are concerned with manipulating 
execution time: Reduce computational overhead, Increase 
computation efficiency, Control the demand for resources 
and Bound execution time 

Some of rules of our performance decision procedure 
that are applicable for this step are shown in Table 3. 

Table3 Example rules of our 
performance decision procedure 

•  If the arrival distribution is fixed then Manage 
event rate and Control the frequency of sampling 
external events are not tactics that can be used to 
control worst-case latency. 

•  If execution time is a free parameter then 
consider using the following tactics: Reduce 
computational overhead, Increase computation 
efficiency, Control the demand for resources and 
Bound execution time 

•  If the number of processors is bound then 
eliminate the following tactics as candidates: Increase 
physical concurrency and balance resource 
allocation. 

4. Assign free parameters an initial set of values 

Two things occur at this step. First, the architect offers 
his/her best guess for values for the free parameters. The 
list of applicable tactics suggests factors that impact the 
setting of these values. Secondly, rules of the decision 
procedure call attention to possibly problematic situations. 

From the previous steps we know that two of the tactics 
are relevant to estimating execution time: Reduce 
computational overhead and Bound execution time. The 
architect might guess that the sum of the execution time of 
the 3 responsibilities is about 5 msec. Bound execution 
time calls our attention to the effects of execution time 
variability, however the architect predicts that these 
responsibilities have very little variability.  Reduce 
computational overhead calls attention to various sources 
of overhead that represent extra execution time. It is 
conceivable that each one of the responsibilities involved 
in obstacle detecting -  “detect obstacle”, “determine that 
garage door is descending”, and “halt garage door “ - 
incur some OS overhead for some pre-selected real-time 
operating system. Consequently the architect estimates 

that the operating system adds an addition 1 msec of 
overhead. The architect also assumes that all of this 
scenario’s responsibilities are allocated to a single unit of 
concurrency. This last assumption is possible because this 
is the sole scenario considered. We discuss some of the 
issues involved in multiple scenarios in a further section. 

While the architect does not yet know all of the details 
of the other responsibilities in the system, he or she does 
know that there will be other responsibilities with 
associated execution times and these other responsibilities 
hold potential for adversely affecting the ability of this 
scenario to be realized. The architect is not yet ready to 
assign values to the execution times associated with these 
other responsibilities. 

The second consideration at this stage is to examine the 
scenario to determine if it is unreasonable or problematic. 
For example, if execution times or arrival rates vary 
considerably, but deadlines can never be missed, this 
might be problematic. Examples of rules that call attention 
such potentially problematic situations are in the table 
below. However, for the current scenario none of these 
situations apply. 

Some of rules of our performance decision procedure 
that are applicable for this step are shown in Table 4. 

Table 4  More example rules of our 
performance decision procedure 

•  If the scenario has a hard deadline response 
requirement that cannot be and if arrivals can occur 
arbitrarily close to one another then use one of the 
following tactics to ensure a lower bound for the 
inter-arrival interval: Manage event rate and Control 
sampling frequency. 

•  If the scenario has a hard deadline response 
requirement that cannot be relaxed and if execution 
times vary considerably to the point that they can 
approach or exceed the hard deadline then consider 
applying the following tactic: Bound execution time. 

•  If either of the above “unbounded” conditions 
apply, but arrival rate and execution time are bound 
parameters then declare the requirement untenable 

5. Use tactics to develop satisfactory bindings for all free 
parameters  

At this point all of the parameters have values and 
there is a candidate list of applicable tactics. The first 
thing is to look at one or more of the applicable tactics 
and apply the reasoning framework (in this case 
scheduling theory) to determine if the current concrete 
scenario is satisfied without “violating” any of the 
scenarios that have already been satisfied. 



The relevant tactics entering into this step are: 

•  Controlling resource demand through Reduce 
computational overhead, Increase computation 
efficiency, Control the demand for resources and 
Bound execution time have a bearing on how 
execution time affects worst case latency. 

•  Increase logical concurrency and determine 
scheduling policy both  have a bearing on 
understanding how this scenario’s responsibilities 
affect and/or are affected by the other responsibilities 
in the system 

Without considering the effects of other 
responsibilities, the model is fairly simple. The only 
contributors to latency are execution time and overhead, 5 
msec and 1 msec respectively. Their sum is well under the 
deadline of 100 msec (that is, .1seconds), leaving 94 msec 
to spare. 

On the other hand it is very conceivable that the other 
responsibilities in the system take more than 94 msec. 
Using the last rule in the table below suggests that the 
design decisions made in the next step be consistent with 
our simple model, that is, they ensure that the latency 
associated with this scenario’s responsibilities is not 
affected by any of the other responsibilities. 

Some of rules of our performance decision procedure 
that are applicable so far for this step are shown in Table 
5. 

Table 5 More example rules of our 
performance decision procedure 

•  If the execution time associated with the arrival 
is close to the deadline consider reducing execution 
time by using the following tactics: Reduce overhead, 
Bound execution time, and/or Increase computation 
efficiency. 

•  If the difference between the worst and best case 
is significant then review the following tactics and 
apply their modeling techniques to assess miss rates 
and average latency respectively: Bound execution 
times and/or Bound queue sizes 

•  If the response requirement for all scenarios can 
be achieved even with the worst-case delay due to all 
of the other responsibilities of all of the other 
scenarios, then use any the following tactics: 

− Allocate responsibilities to one of the 
existing units of concurrency 

•  Offline scheduling 

− Or allocate responsibilities to a new unit 

of concurrency  
•  Increase logical concurrency 
•  Time-based scheduling 

If the current scenario cannot suffer the worst-case 
delay due to some or all of the other responsibilities then 
consider them to be time-sensitive and use the following 
tactics to create an appropriate scheduling policy: Offline 
scheduling, Time-based scheduling (such as deadline 
monotonic scheduling), and/or Increase logical 
concurrency. 

Up to now in this step tactics have been used to set 
and/or adjust model parameters to satisfy the current 
concrete scenario’s response measure. However, it might 
be the case that either the scenario poses an untenable 
requirement or the collection of scenarios considered up 
to this point are untenable in aggregate. If this is the case, 
tactics should offer some ideas for how to relax 
requirements or design constraints. 

Some of rules of our performance decision procedure 
that are useful for identify and relaxing requirements 
and/or design constraints are shown in Table 6. 

Table 6 Some of rules for relaxing 
requirements and/or design constraints 

•  If the response requirement is specified as a hard 
but limited misses can actually be tolerated then re-
characterize deadlines as follows: 

− Firm deadlines: Completing before the 
deadline is very important. Missing occasionally 
can be tolerated. A specific bound on miss rate 
needs to be specified. 

− Soft deadlines: In this case the term 
“deadline” is a misnomer. A specification of an 
average latency requirement is what is needed. 

•  If the time-sensitive set of responsibilities is not 
schedulable then incorporate a notion of importance-
based scheduling to handle overload situations using 
Semantic-importance-based scheduling or add more 
resource using Increase physical concurrency. 

6. Allocate responsibilities to architectural elements 

Each tactic will suggest associated design fragments. 
The tactics of primary concern so far in this example are: 

•  Controlling resource demand through Reduce 
computational overhead, Increase computation 
efficiency, Control the demand for resources and 
Bound execution time have a bearing on how 
execution time affects worst case latency. 

•  Increase logical concurrency and determine 
scheduling policy both  have a bearing on 



understanding how this scenario’s responsibilities 
affect and/or are affected by the other responsibilities 
in the system 

Reducing computational overhead can map to many 
design decisions such as:  

•  choice of operating system 

•  choice of operating system services used in 
implementing responsibilities 

•  choice of communication mechanisms, … 

We have accounted for OS responsibilities by 
assuming 1 msec overhead. We have also assumed that all 
of the scenario’s responsibilities have been allocated to a 
single unit of concurrency that we will assume is a thread.   

The responsibilities for this scenario are pretty 
straightforward;  

Tactics of Increase computation efficiency, Control the 
demand for resources and Bound execution time are likely 
not relevant whereas tactics of Increase logical 
concurrency and determine scheduling policy are 
relevant. They suggest allocating the obstacle detection 
responsibilities to a particular module under one thread of 
control and assigning this thread a suitably high 
scheduling priority. This results in an design fragment 
with two threads: the one containing the obstacle detection 
responsibilities and the one containing other 
responsibilities. We do not show the scheduler (which is 
part of the OS) although that also is a portion of the 
design fragment. We show a component and connector 
view of this fragment in Figure 1.  

 

Figure 1: Design fragment 

 

 

 

 

 

 

 

 

 

 

In an ideal world obstacle detection will take only as 
long as it takes to execute the obstacle detection 

responsibilities plus a little overhead. However, the 
possibility exists that properties of the Other 
responsibilities, such as non-preemptability or execution 
within an interrupt handler might not have been accounted 
for. Therefore these potentially problematic properties 
need to be discovered and/or ruled out. We expect that 
rules in the time-based scheduling tactics would cause us 
to look for and/or ensure against such properties 

Observe the relationship between the design fragment 
and the associated analysis model. The model states that 
obstacle detection responsibilities must be scheduled with 
a priority high than other responsibilities. The design 
fragment captures this by placing these responsibilities 
into separate threads and showing the priority 
relationships of those threads. 
7. Composition 

We have shown how to use the tactics to link one 
quality attribute performance requirement to a design 
fragment with active assistance from an architect. The 
gaping open issue is what happens with multiple scenarios 
involving multiple quality requirements, especially for 
other attributes. How to compose the design fragments 
into a design is the fourth step of moving from quality 
requirements to design and it must clearly be solved for 
this approach to be successful. 

Some of the problems that must be solved to achieve 
the composition of design fragments into designs are: 

•  How to consider the impact of design 
decisions already made. 

•  How to choose among the myriad of 
possibilities of composing design fragments. 
In [2] we identified a design fragment for 
modifiability as well as one for performance 
and there were multiple composition 
possibilities 

•  How to maintain view consistency. Each 
quality attribute framework has a vocabulary 
that maps into one or more software 
architecture views. Maintaining consistency 
between fragments that come from one 
reasoning framework with those that come 
from another is a problem that must be 
solved.  

8. Other open issues and conclusions 
In addition to the composition problems there are two 

other problems that must be overcome. 
1. What is the availability and utility of the various 

reasoning frameworks for other quality 
attributes? Involving the architect, as we did, in 
the design process allows judgment to be used in 
application of the reasoning frameworks. We can 
predict that, over time, reasoning frameworks for 
various quality attributes will improve. 

Is higher 
priority than 

 Obstacle detection 
responsibilities 

 

Other application 
responsibilities 

 

Key 

Thread 

Relation 



2. How do the steps we have presented here become 
embedded into a design method? Once quality 
requirements become recognized as important to 
design they will begin to be specified in the 
1000s as are functional requirements. This leads 
to over specification of the requirements. A 
design method must be sensitive to this over 
specification. 

 
Regardless of the problems, focusing on quality 

attribute requirements and using them to drive towards an 
appropriate architectural design must be a useful 
approach. The utilization of quality attribute models and 
tactics in this process is our attempt to move design 
toward a more scientific basis. 
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