
Domain System StateCharts:
The Good, the Bad, and the Ugly

Davor Svetinovic, Daniel M. Berry, Nancy A. Day, Michael W. Godfrey
David R. Cheriton School of Computer Science

University of Waterloo
Waterloo, Ontario, Canada

{dsvetino,dberry,nday,migod}@uwaterloo.ca

Abstract

This paper presents the results of case studies evaluating
our method of unifying use cases (UCs) to derive a unified
StateChart (SC) model of the behavior of the domain system
(DS) of a proposed computer-based system. An evaluation
of the unification method, the obtained SC model of the DS,
the method’s and model’s feedback on the UCs themselves,
and how the method is used in requirements engineering
practice was carried out by examining 46 software require-
ments specifications produced by 149 upper-year under-
graduate and graduate students. The results of our stud-
ies independently confirm some of the benefits of building
a unified SC mentioned in the works of Glinz; Whittle and
Schumann; and Harel, Kugler, and Pnueli, who have devel-
oped formal treatments of unifying UCs using SCs and, in
two cases, have built tools implementing their treatments.

1. Introduction

Analyzing and specifying the behavior of a computer
based system (CBS) to be built is a very hard requirements
engineering (RE) task. Teaching people to do this task is
even harder. In use-case-driven requirements analysis meth-
ods [12, e.g.,], the first task an analyst performs in modeling
the behavior of the CBS being built is to write use cases that
describe the CBS’s intended behavior. From these use cases
(UCs), he or she begins to model the entire CBS with the
goal of eventually writing a software requirements specifi-
cation (SRS) describing the CBS.

During the last six years, we have observed the produc-
tion of and have evaluated SRSs, including UC specifica-
tions, produced by over 1000 students analyzing and spec-
ifying a large voice-over-IP (VoIP) telephony system and
its related account-management system [16]. Each of these
CBSs was specified using an iterative, UC-driven method.

The problems we saw students having motivated the work
described in this paper. Also, any statement in this paper
about methods comes from these observations.

UCs describe uses of a CBS from the users’ perspectives.
Domain experts and analysts together typically capture UCs
during and after requirements elicitation from many stake-
holders, each with a different perspective. We have seen
that the typical result of this UC capture is a set of UCs with
missing functionality, unrelated functionality across multi-
ple abstraction levels, inconsistent amounts of detail in the
form of over and under specification, and problems arising
due to the difficulty of abstracting from multiple UCs to the
big pictureof the domain system. These observations are
consistent with those of other authors [13, e.g.,]. In short,
the set of UCs is notgood. Thus, specifyinggoodUCs is
hard.

SpecifyinggoodUCs is alsonecessarybecause of their
central role in UC-driven requirements analysis methods. In
these methods, UCs drive all subsequent analysis, design,
and coding. Any problem with the UCs propagates through
the analysis, design, and code. Therefore, it is essential to
expose problems with UCs as early as possible.

We now establish the vocabulary for the rest of the pa-
per: The goal of any RE effort is to elicit and analyze re-
quirements, and eventually, to specify in asoftware require-
ments specification (SRS)the requirements for the CBS be-
ing built. The portion of the real world that a CBS is sup-
posed to automate is the CBS’sdomain system (DS). During
RE analysis for a CBS, the analysts typically develop the
domain system model (DSM), which is a model of the CBS’s
DS. A UC of a CBS is one particular way a user of the CBS
uses the CBS to achieve a user’s goal. The description of a
UC is typically given at the shared-interface level, showing
the CBS as a monolithic black-box. A popular notation for
modeling behavior isStateCharts (SC)[8], and among the
artifacts we suggest to be included in the SRS for a CBS,
are aUC SC (UCSC), a SC representation of each UC of



the CBS and aDS SC (DSSC), a SC representation of the
CBS’s DSM.

Each of the authors has been involved in teaching
a course entitled “Software Requirements Specifications”
(CS445) [16] at the University of Waterloo for at least six
years. The term-long group project for this course is to de-
termine the requirements and to write an SRS for a large
VoIP telephony system and its related account-management
system. The course teaches UC-driven requirements anal-
ysis methods, and the groups are expected to apply them
to complete their projects. Svetinovicet al. [19] describe
the difficulties many of the problems groups were having,
which were shown to be independent of the size of the CBS
being specified. One of us, Berry, has taught a graduate
course entitled “Advanced Topics in Requirements Engi-
neering” (CS846) [2] once at the University of Waterloo.
One of the goals of this course was to explore the impact
of method modifications in a more controlled environment
than possible in CS445 course. The students were asked
to apply the methods of CS445 on a smaller problem, the
controller for a two-elevator system in a low-rise building.

After first noticing the problems with the SRSs in
CS445, we began to search for a way to teach the students to
do a better job in their projects. We have been exploring the
literature on UC-driven analysis methods [3, 7, 12, e.g.,].
We have been examining different variations of these meth-
ods on our own CBS modeling problems. We have been ex-
perimenting with advice to give to the students about these
methods. With the students’ help and feedback, we have
slowly iterated to the method that our students have been
able to apply and with which the quality of the resulting
SRSs has been noticeably improved. The method, which
builds on using SCs to model UCs and then unifying the
UCSCs into a DSSC [4, 23, 10], is called “SUM (StateChart
Unifying Method)”.1 This paper describes the thinking that
led to DSSCs and to SUM. The usefulness of DSSCs and
the effectiveness of SUM were validated through evaluation
of 46 SRSs specified by 149 upper-year software engineer-
ing, electrical and computer engineering, and computer sci-
ence undergraduate and graduate students, each with none
to several years of software development experience.

Section 2 reviews the problems with UC-driven require-
ments analysis methods as we saw it. Section 3 explains
our research method and its limitations. Section 4 describes
DSSCs, the main artifact produced in SUM. Section 5 de-
scribes the good, bad, and ugly effects of carrying out SUM.
Section 6 compares our work to related work, and Section
7 concludes the paper.

1We name the method only to make it easier to distinguish it from the
other methods we mention in this paper. We did not set out to create a new
method, and we created a descriptive name for it only during the writing
of this paper.

2. The Problem

A typical non-UC-driven RE method focuses on elicit-
ing and specifying functional, data, and non-functional re-
quirements as distinct entities, without really considering
their context. Such a method often results in an SRS that
is difficult for both customers and designers to understand.
The lack of obvious connections among the different kinds
of requirements makes it difficult to determine if the SRS
is complete, consistent, and correct. UCs [1, e.g.,] have
helped solve some of these problems, at least for functional
requirements.

The ability to integrate and present functional require-
ments from the users’ perspectives in UCs has made UCs
particularly useful for customers. Because UCs present
functional requirements as observed by a user, it is easier
to identify missing functions, and makes it possible to write
a more consistent and complete SRS that is understood by
both the customer and the analyst [1, e.g.,].

Prior to starting our case studies, we hoped that some
new artifact based on the UCs would allow analysts to pro-
duce even more complete, consistent, and correct SRSs.
Perhaps, the same way that UCs help put functional require-
ments into context, this new artifact based on the UCs would
help an analyst to

• detect and fix missing functionality,

• detect and fix functionality across multiple abstraction
levels,

• detect and refine inconsistent amounts of detail, i.e.,
over and under specification,

• discover relationships, e.g., concurrency among UCs
and functional requirements, and

• find thebig pictureDSM.

In the typical UC-driven requirements analysis method,
UC discovery is followed by drawing sequence diagrams
for the UCs and breaking down the CBS’s side of the UCs
into the CBS’s components, to yield a conceptual decom-
position of the CBS [12, e.g.,]. This kind of approach was
taught to our students for several years. A less common al-
ternative method is to follow UC discovery by writing UC-
SCs [3, 12, 7]. Nevertheless, in each method, a UC is an
artifact at the widestscope. Scope refers to the number of
functional requirements specified using the artifact. A se-
quence diagram, a SC, or any other description of a UC is
at a scope equal to or less than that of the UC. To arrive
at the big picture DSM, it was necessary to proceed in the
opposite direction. Rather than decomposing the UCs, as
suggested in many UC-driven requirements analysis meth-
ods, we discovered that it is better to unify the UCs into a
DSM, as suggested in other methods [4, 23, 10].

2



3. Research Method

Once we decided to use SCs as the notation in which
to unify the UCs, what remained was to develop a unifi-
cation method and to apply it in practice. The method is
derived from several sources. Our method is primarily Lar-
man’s UC-driven iterative method [12]. The principles of
constructing a SC of a DSM are based on Douglass’s and
Gomaa’s principles of UCSC construction [3, 7]. The un-
derlying DSM semantics is based on Glinz’s [5, 6].

As mentioned, our method was arrived at iteratively,
specifically taking into account what we learned in the first
case study described in this paper. In that study, how to
perform the unification of UCs into a DSM was left as part
of the engineering problem that analysts are supposed to
solve. Prior to beginning the first study, we were aware of
the related work of Glinz; Whittle and Schumann (W+S);
and Harel, Kugler, and Pnueli (H+K+P) [4, 23, 10], but we
explicitly decided not to incorporate any of the related work
into ours in order to not to constrain the students on the
approach and to be able to perform an independent feasi-
bility evaluation. We wanted students to tackle building
DSSCs as an engineering problem that they had to solve.
In fact, the goal of the first case study was that the students
find their own methods. Only after coming to our own con-
clusions, we compared our results with those of the related
work. This comparison is presented in Section 6.

The first case study involved one specification of the
Turnstile CBS [18], produced collaboratively by Svetinovic
and the students attending tutorial sessions of the CS445
and the CS846 classes. The second set of case studies in-
volved 12 medium-sized specifications of the controller for
a two-elevator system in a low-rise building, produced as
individual long-term projects in the CS846 class. The third
set of case studies involved 34 large-sized specifications of a
VoIP system and its account management system, produced
as group long-term projects in the CS445 class.

3.1. Threats to Validity

The main focus of this research was not to perform a
controlled experiment, but rather to perform case studies
under as realistic conditions as possible and to uncover the
strengths and weaknesses of a proposed method. To achieve
this realism, we did not exercise any of the following usual
experimental controls:

• enforcing a particular method upon the subjects,
• enforcing a particular group organization or division

of work,
• having each subject work only on the one artifact that

we wished to evaluate, and
• limiting the size of the CBS and DS being specified.

With regard to the first missing control, not only did we
not enforce any particular method, we simply described the
SRS to produce and left the method up to each subject or
group of subjects. Clearly, the lack of these four controls
yields too much variability for these case studies to be con-
sidered a controlled experiment. Thus, the threats to valid-
ity of this case study are exactly the same as to any other
uncontrolled software engineering study.

Nevertheless, the large number of subjects and the high
consistency of the results despite all the variability provides
strong support for accepting the usefulness of DSSCs and
the potential effectiveness of SUM. The case for the effec-
tiveness of DSSCs is stronger than for the effectiveness of
SUM, because we did not force subjects to use SUM, but
we did require each team to produce and present a DSSC in
their SRS. In fact, the DSSCs proved to be useful no matter
how they were produced!

4. Domain System StateCharts

The method that we arrived at, SUM, is based on a very
simple idea inspired by observing practice: an effective way
to unify a complete set of UCs into a DSM for the CBS is to
perform the unification in the SC notation. That is, if each
UC in the set can described with a UCSC [3, 7, e.g.,], then it
should be possible to unify these UCSCs into a DSSC that
describes a high quality DSM [4, 23, 10]. The method de-
pends on the analysts’ having specified the UCs’ behaviors
in UCSCs. However, after practice, an analyst can learn to
proceed directly from UCs to a DSSC without having given
UCSCs for the UCs. Indeed, we found many a student skip-
ping the production of UCSCs and still producing a good
DSSC. Douglass [3] summarizes the advantages of specify-
ing a UC’s behavior using a UCSC in a single paragraph:

Another means by which use case behavior can
be captured is via statecharts. These have the ad-
vantage of being more formal and rigorous. How-
ever, they are beyond the ken of many, if not most,
domain experts. Statecharts also have the ad-
vantage that they are fully constructive—a single
statechart represents the full scope of the use case
behavior.

We have recognized an additional advantage of SCs, that
of being able to help an analyst to unify a set of UCSCs
into a single DSSC. As mentioned, unifying UCs using SCs
widens rather than narrows scope. Widening scope leads
to exposing problems that might still exist in the individ-
ual UCs in the same way that the widening scope during
the unification of functional requirements leads to expos-
ing problems that exist in the individual functional require-
ments.

3



The rest of this section discusses the semantics of DSSCs
and then describes the process of SUM.

4.1. DSSC Semantics

A SC is ahigraph[9]. It can be used to model just about
anything. Thus the first, and most important, step in using
SCs is to clearly state what is being modeled. An explicit
agreement is needed on what a state represents. There are
various definitions of “state”. The most common is some-
thing like “A state is an ontological condition that persists
for a significant period of time.” [3] In practice, states are
used to capture, for example, any configuration of the ob-
ject’s variables or any activity occurring within the system
[3, e.g.,].

For our work, the most appropriate semantics for DSSCs
can be described in terms of goals. Note that we defined
these semanticsafter the case studies were finished. We
startedwith a simple semantics in which a state is either
(1) any configuration of variable values or (2) an activity of
interest.

Goal-driven RE [14, 21, e.g.,] is a method that focuses on
identification of the goals, as a prerequisite for requirements
specification. Goal-driven RE focuses on ensuring that the
CBS being built actually fulfills business goals. This focus
requires shifting away from consideringwhata CBS should
do to consideringwhy the CBS should do what it does. In
other words, the main focus is onrequirements rationale.

Although a goal-driven RE method focuses on deter-
mining CBS requirements through analysis ofpersonaland
businessgoals, the method has been used to enhance tradi-
tional RE methods, among which are use-case-driven re-
quirements analysis methods [1, e.g.,]. In our case, we
started by determining the UCs for a CBS being built by
considering the goals for the CBS. It was natural to preserve
the goals as part of the DSSC.

Goals capture theintentionand thetarget conditionfor
the entity under analysis. For example, in the case of an el-
evator system, a goal for an elevator is todeliver passen-
gers to their requested floors. This goal captures both
theintentionof delivering passengers and thetarget con-
dition of arriving at the passengers’ requested floors.
This particular goal captures the rationale for an elevator’s
responsibilityfor carrying each passenger from a floor
to a floor.

In other words, a UC’s goals are achieved through a se-
quence of activities each of which is described by a func-
tional requirement. Each goal can exist at an abstraction
level different from those of other goals. For example, con-
tinuing with the elevator system example of the previous
paragraph, the decomposition of the goaldeliver passen-
gers to their requested floors might include such low-
er-level goals asmove elevator cab, stop elevator cab,

pick up a passenger, etc. That is, the higher-level goal
of delivering passengers to their requested floors be-
comes a functional requirement for the lower-level goals in
its goal decomposition. Thus, the goal decomposition hier-
archy provides traceability among the goals.

Therefore, a state in a DSSC for a CBS is more general
than the traditional state, which is only a configuration of
values of CBS variables, and can be very tedious to specify
when there are many variables in a CBS. A state in a DSSC
can be either (1) an activity of the CBS or (2) a goal that cap-
tures the target condition of a part of or of the entire CBS.
In the latter case, the goal represents thepostconditionthat
describes the impact that the activity in the previous node
or on the incoming transition of the DSSC has on the CBS.
While the semantics of DSSC nodes is different from that in
traditional SC semantics, the semantics of DSSC transitions
is consistent with that in traditional SC semantics.

“Why not use UML activity diagrams [15] instead of
SCs?” was asked many times because of the presence of
states representing activities in our DSSCs. There are sev-
eral reasons:

• The activity diagram notation is harder to use because
of its different interpretations; e.g., an activity diagram
can be viewed as a SC, as a Petri net, or as a flowchart
[3].

• Laying out and managing a large activity diagram is
more difficult, in our experience, than laying out and
managing a large SC.

• By definition, it is harder to show, usingactivity
nodes, anything but activities in an activity diagram
[3]. This also implies that it is harder to show different
abstraction levels in an activity diagram for anything
but activities.

• For any interactive system, there can be many external
asynchronous and internal synchronous events, in ad-
dition to the implicit activity-completion events that an
activity diagram is tailored for, and these are all easier
to represent using SCs.

Moreover, we did not find any features provided by activity
diagrams that are not provided by SCs.

4.2. Process

The SUM process emerged from the initial case studies
and we recommended its steps to the students in the later
case studies. The sequential ordering of steps is only for the
presentation in this paper. The students were taught both
sequential and iterative processes, and each unit, individual
or group, was allowed to use whatever it thought would be
more effective.

4



For the CBSS to be built:

Step 1: Specify UCs forS:

• Identify S’s mainbusiness goalsandUCs.

• For each ofS’s UCs,U , write a clear description of
U with indications ofU ’s actors; thedataexchanged
in U betweenS and S’s environment; andU ’s
preconditions, postconditions, andinvariants.

• Draw a UML UC diagramshowing all ofS’s UCs, to
emphasize the relationships that exist among the UCs.

Step 2: Group UCs into functional subsystems.

• Group UCs into business function groups. This
grouping yields the first level of the decomposition of
S’s DS D into groups of related business functions,
i.e., the first-level subsystems ofD.

• Show the decomposition of the UC diagram using
UML package notation.

• Repeat Step 2 for any subsystem of any level ofD that
can be further decomposed.

Step 3: Draw UMLsystem sequence diagrams[12] for
the UCs ofS, in order to be able to identifyD’s external
interface. In each of these system sequence diagrams,S is
considered as a black box.

• For each UCU , drawU ’s UML system sequence dia-
gram, in order to be able to identifyU ’s contributions
toD’s external interface.

Step 4: DrawD’s DSSC.

• Merge the activities of all UCs ofS to build a DSSC
for S’s DS,D, either (1) directly or (2) by drawing a
UCSC for each UC ofS and then merging all these
UCSCs into a single DSSC.

• If any problem is detected in any UC during the
building of the DSSC forD, then fix the UC. These
problems can include, but are not limited to, abstrac-
tion level clashes, missing steps, redundant steps,
inconsistent terminology and improper ordering of
steps.

• Simplify the DSSC using concurrent and sub-machine
states.

In addition, we gave the students the following guideline
for reducing DSSC rework due to activity refinements: If an
activity clearly needs no further decomposition then model
it as a transition action, a state’s internal action, or a state’s
internal activity; otherwise model it as a sub-machine state.

The next section shows an example of an application of
SUM.

5. Evaluation

The first case study was the collaborative production of 3
DSSCs during 3 tutorial sessions of the CS445 and CS846
courses. In each session, the first author, Svetinovic, facili-
tated the collaboration but tried his best not to influence the
solution, which was the responsibility of the students par-
ticipating in the session. The first DSSC was produced by
12 CS846 students, the second by about 80 CS445 students,
and the third by about 50 CS445 students.

The goal of this case study was to practice applying the
ideas of Section 4 and to observe building a DSSC for a
very small CBS. We chose the Turnstile CBS SRS [20] and
used its UCs as the starting point.

The primary value of the first case study was observing
(1) three different groups of about 140 students total thor-
oughly analyzing a small system to produce three DSSCs
and (2) the feedback the production of these DSSCs had on
the UCs in the earlier, Website-published, and supposedly
polished UCs [20]. It was valuable also to see the quality
of DSSCs produced by undergraduate students who were
novices at SC modeling. The case study showed the amount
of improvement in the quality of modeling that can be ex-
pected when a lot of people are attacking a small problem,
allowing us to estimate the improvement that could be ex-
pected when a normal sized workforce attacks a larger, in-
dustrial sized problem. A full specification derived from the
results of the case study is available at our OODA Website
[18].

The second case study yielded 12 SRSs for the controller
for a two-elevator system in a low-rise building, a medium-
sized CBS. Each SRS was produced by one CS846 gradu-
ate student working independently. Each student handed in
two preliminary draft SRSs before handing in his final SRS.
Each successive draft SRS was required to show a growing
set of specific artifacts; in particular, the first draft had to
show the owner’s complete set of UCs for the CBS. Each
student was allowed to see all students’ sets of UCs before
handing in his second draft so that each student could have
as good a set of UCs as possible before constructing his
DSSC. However, thereafter, no student was allowed to see
any more of each other’s work. The complete set of draft
and final SRSs can be found at the CS846 Website [2].

The third case study yielded 34 SRSs for a VoIP sys-
tem and its account management system, a large-sized CBS.
Each SRS was produced by a group of three or four pri-
marily undergraduate CS445 students working together; in
fact, 4-member groups were in the majority. Each group
handed in two preliminary draft SRSs before handing in
its final SRS. Each successive draft SRS was required to
show a growing set of specific artifacts. Each group worked
independently, and no group was allowed to see any other
group’s work. Each group worked with its own teaching

5



resetting

off

setting up

controlling access

waiting for 

payment

processing 

payment

unlocking 

barrier

[payment OK]

barrier 

unlocked

tracking 

barrier 

rotation
rotate barrier

noting visit

rotation over

locking 

barrier

returning 

money

[payment NOK]

insert payment

(payment)

Visitor.notifyToGo

turn off

turn on

Figure 1. DSSC for the Turnstile CBS

assistant (TA), who served as its customer in a simulated
customer–analysts relationship. We cannot make the SRSs
available publicly since each offering of the course uses ba-
sically the same problem [2], but the SRSs can be provided
for independent peer evaluation of our results.

The results of these case studies are mostly good, but
there are a few bad and even some ugly results. While posi-
tive results were observed in all three case studies, we have
chosen to present the examples from the smallest case study
in this paper as they require the least explanation. The neg-
ative results, which have mostly to do with working with
large CBSs, must be explained with examples from the third
case study. Thus, we note that the third case study served
as a real test for the usefulness of the DSSC and for the
effectiveness of SUM.

5.1. The Good

Figure 1 shows the final DSSC2 developed in the first
case study from the initial 3 UCs chosen from an earlier
SRS for the Turnstile CBS [20]. As mentioned, this DSSC
was developed collaboratively in each of three sessions with
a total of about 140 students.

The positive effects of building a DSSC by unifying the
UCs were apparent not only for the small CBS of the first
case study, but also for the larger CBSs for the other case
studies. This suggests that the usefulness of building a
DSSC from the CBS’s UCs does not depend on the size
of the CBS.

Each positive result comes from theprocessof unifying
the UCs into a DSSC. Furthermore, each positive result is
only thatwhenthe unifying was being done, it waseasier
than in the past for an analyst todo something beneficial.
It would not be proper to state the results more strongly.
Therefore, the statement of each positive result should begin
with “when unifying UCs of a CBS into a DSSC, it was

2The SC syntax conforms to the UML 2.0 standard.

Visitor

<<business system>>

Turnstile

Paybox

Barrier

<<system>>

Turnstile 

Controller

Switch

OperatorVisitor

<<system>>

Turnstile

Operator

Figure 2. CBS Boundary Change

easier than in the past for an analyst to”. Since this long
phrase would be repeated 7 times, to save some space, we
abbreviate it in the following as: “Unification helps to”.

The first positive result is that Unification helps toiden-
tify the boundary of the CBS. The set of actors and UCs
for a CBS both depends on and helps determine the CBS’s
boundary. Therefore, the full set of actors and UCs for a
CBS cannot be known until the CBS’s boundary is known.
Conversely, until all of a CBS’s actors and UCs are known,
it is hard to define the CBS’s exact boundary. Defining the
boundary is even harder when there are multiple analysts
and multiple stakeholders each with a different perception
of the CBS’s boundary. Even for the small Turnstile CBS,
the boundary established in the SRS [20] from which we
took the initial 3 UCs proved to be wrong. The correct
boundary is as shown in Figure 2.

Interestingly, for the elevator controller CBS, many a stu-
dent found that the CBS’s boundary should be around the
controller hardware and software, excluding other devices
with which the passenger interacts, e.g., elevator cab, but-
tons, etc. In other words, the actors implied by the tighter
boundary were the devices that serve as interfaces between
passengers and the controller. It is irrelevant to the con-
troller what or who causes a button to be pushed. Even after
learning about the tighter boundary, many a student made
a conscious decision to stick with the traditional bound-
ary around the passengers, even though a passengers never
touches the controller.

The second positive result is that Unification helps to
identify abstraction level clashes and redundant steps in
the UCs.Correcting the abstraction levels of UCs is neces-
sary to unify successfully the UCs of a CBS into a DSSC.
For example, in the original SRS for the Turnstile CBS, the
abstraction level of the UCTurn Off System was incon-
sistent with that of its opposite, the UCTurn On System.
Turn Off System’s definition gave low-level details, such
as resetting counters andTurn On System’s definition was
written at a higher abstraction level with no reference to
internals. The solution was to write both UCs with no ref-
erence to internals. Each decomposition was left to appear
in the DSSC.

The third positive result is that Unification helps toiden-
tify incorrect ordering of steps in a UC’s description. It
is often the case that a UC’s steps are out of order, because

6



of the scope of the UC or the informality of UC description.
For example, in the original SRS for the Turnstile CBS, in
Step 4 of the UCTurn Off System, the payment was be-
ing returnedafter the CBS was shut down. Moreover, it
was not even certain that the paymentshouldbe returned.
The problem was diagnosed as the analyst’s having detected
an exception and having inserted the exception too quickly
into a random step. Including this exception into the DSSC
proved to be awkward, if not impossible, and more analysis
was needed to find its rightful place.

The fourth positive result is that Unification helps tode-
tect missing functionality among the UCs.While the first
three results addressconsistencyof UCs, the fourth result
addressescompletenessof UCs from each actor’s perspec-
tive. Detecting missing functionality requires domain ex-
pertise, and even then it is hard. Any requirements anal-
ysis method can help but not guarantee that the SRS will
describe all needed functionality. Since one can never be
certain when the last function is found, it is hard to know
how complete an SRS is. Nevertheless, it appears that in
each of the case studies, unifying the UCs of the CBS of the
study into a DSSC did help expose functions of the CBS that
were missing in the UCs. The kind of rework appearing in
the middle column of Figure 3 is typical. The left column of
Figure 3 shows the original UCs of the Turnstile CBSbefore
specification of DSSC, the middle column shows modifica-
tions to the UCsduringspecification of DSSC, and the right
column shows UCsafter DSSC was completed. An ob-
servable weakness of the standard UC-driven requirements
analysis methods is the lack of a way detect functionality
needed to support concurrency among UCs. One way to
detect this kind of functionality is to attempt to integrate the
UCs, exactly what unification of the UCs into a DSSC is
doing, and is doing before coding begins.

The fifth positive result was that Unification helps to
simplify the descriptions of UCs. This result is a natural
follow on of the first four. Building a DSSC almost uni-
versally led to simplifying and clarifying the descriptions
of the UCs that were being unified. In many cases, a step
that was a full paragraph of text was replaced by a single
sentence. Clearly defining goals and activities during con-
struction of a DSSC exposed overly complex descriptions
of UCs. Simplifying UC descriptions in turn allowed easier
identification of goals, activities, inputs, outputs, and other
data.

Manifestations of each of these first five results can be
seen in the refinement, shown in Figure 3, of the three ini-
tial Turnstile CBS UCs. As much scrutiny as these UCs had
from us and about 140 students, there are still some unre-
solved problems. For example, it is not clear which actors’
goals are served by either theTurn On System or theTurn
Off System UC. Also, Step 3 of theTurn Off System UC
is a postcondition rather than the activity it should be. These

UC3: Enter Area

1. Visitor inserts 

payment

2. System processes 

payment

3. System unlocks 

barrier if payment OK 

and notifies Visitor, 

else system returns 

money to the Visitor

4. Visitor rotates 

barrier

5. System tracks 

barrier rotation

6. System notes visit

7. System locks 

barrier

UC1: Turn Off 

System

1. Operator turns off 

Turnstile

2. System resets itself

3. System is off

UC2: Turn On 

System

1. Operator turns on 

Turnstile

2. System sets up

3. System controls 

access to restricted 

area

UC2: Turn On System

1. Operator turns on 

Turnstile

2. System (again) accepts 

external events

UC3: Enter Area

1. Visitor inserts payment

2. System concludes 

payment can purchase one 

entry

3. System updates the 

number of available entries

4. System unlocks barrier

5. Visitor pushes barrier

6. System rotates barrier

7. System notes visit, 

increments visitor count

8. System locks barrier

UC1: Turn Off System

1. Operator turns off 

Turnstile

2. System resets counters 

for available entries and 

visitors

3. System locks barrier

4. System stops responding 

to events except “turn on”, 

shall return payment 

immediately if it was made 

at this point

UC1: Turn Off System

1. Operator turns off Turnstile

2. System resets counters for available 

entries and visitors

2. System resets itself

3. System locks barrier

3. System stops responding to events 

except “turn on”, shall return payment 

immediately if it was made at this point

3. System is off

UC2: Turn On System

1. Operator turns on Turnstile

2. System (again) accepts external events

2. System waits for payment

2. System controls access to restricted 

area

2. System sets up

3. System controls access to restricted 

area

UC3: Enter Area

1. Visitor inserts payment

2. System concludes payment can 

purchase one entry

3. System updates the number of 

available entries

2. System processes payment

3. System unlocks barrier

3. System unlocks barrier if payment OK 

and notifies Visitor

3. System unlocks barrier if payment OK 

and notifies Visitor, else system returns 

money to the Visitor

4. Visitor pushes barrier

4. Visitor rotates barrier

5. System rotates barrier

5. System tracks barrier rotation

6. System notes visit, increments visitor 

count

6. System notes visit

7. System locks barrier

Figure 3. Turnstile CBS UC Changes

two examples make it clear that (1) one can never be certain
about the quality of UCs and that (2) while unifying UCs
into a DSSC does help find problems in the UCs, it cannot
guarantee finding all of them. Even with a very small CBS
such as Turnstile CBS and even with about 300 eyes and
half that many brains, it was not possible to fix all problems
caused by the initial choice of UCs. Of course, abandoning
the initial choice of UCs might lead to better fixes, but in our
experience, justfindinga problem can beharderthan fixing
it. Fortunately, a benefit of unifying UCs into a DSSC is
that it helps the analyst toseeproblems.

The next four positive results were observable only in the
two case studies with the larger CBSs.

The sixth positive result was that Unification helps tosee
how to restructure the descriptions of the UCs.We saw
that many a student restructured the descriptions of his or
her UCs after finishing the DSSC. Typically, the student
used pseudocode to describe UC steps, particularly for it-
erative and alternative paths. We interpreted this restructur-
ing to be a positive result because the restructuring helped
the student to detect often-overlooked alternative paths. The
use of pseudocode might be considered a negative, but we
feel that the positive of finding more alternative paths out-
weighs this negative.

The seventh positive result was that Unification helps to
detect opportunities for concurrent UC execution. Re-
call that the fourth positive result is that unification allows

7



detection of missing functionality among the UCs and that
among the missing functions detected was support needed
for concurrent execution of UCs. Still it is necessary to
be able to detectopportunitiesfor concurrent execution of
UCs. The act of unifying UCs into a DSSC shows clearly
which UCs can be unified temporally, i.e., can be executed
concurrently.

The eighth positive result was thatthe benefits of uni-
fying UCs of a CBS into a DSSC are independent of the
exact method by which the unification is done.Each stu-
dent seemed to gain the benefit of the unification no mat-
ter which variation of SUM he or she used. Some wrote
UCSCs for the UCs before unifying the UCs into a DSSC,
and some unified directly from the original UC descriptions.
Regardless of how a student or group did the unification, the
resulting DSSCs and the resulting SRSs were significantly
better than past experience in the classes led us to expect.

The ninth positive result was that, on average, the CS445
group in the SUM-using term, which had higher evaluation
criteria and stricter marking, got a grade for the SRS that
was the same as that in previous terms when SUM was not
used. Thus, the SUM-assisted SRSs were of higher quality.

In summary, all the positive results and the deepened un-
derstanding of the DS can be attributed to the the ability of
a DSSC to provide a big picture of the DSM more system-
atically and more formally than is possible with only UCs.
Nevertheless, not all results were positive, as the next two
subsections show.

5.2. The Bad

This section discusses pernicious and persistent, i.e.,
bad, problems that remain despite all our best efforts. We
hope that they can be resolved by carrying out more studies
in the future.

The first bad problem that we observed is the difficulty
of determining what about a CBS should be modeled. We
explained that subsystems, devices, user interface screens,
and so on, should not be modeled in the states of a DSSC.
Nevertheless, an occasional student did include in his or
her DSSC what was not covered by agreed upon DSSC se-
mantics. Despite the grade penalty for inclusion of non-
conventional DSSC states, many of those penalized contin-
ued to do it. Therefore, it would be profitable to determine
whyanyone was getting bogged down in details that are ir-
relevant at the UC level.

The second bad problem that we observed is the lack of
direct support in DSSCs for representation of concepts and
objects. SUM is supposed to be a part of an object-ori-
ented domain analysis method for our course projects. As
such, conceptual decomposition is supposed to follow the
completion of the DSSC. One of the decomposition steps
is assigning to concepts the activities captured during uni-

fication to the DSSC. How to represent this assignment of
activities to concepts was left to the students to figure out.
Some used comments, some extended activity names to in-
clude responsible concepts, etc. In any case, none of these
representations is a part of the standard SC notation. We
did observe the tendency of a typical student to include in
his or her DSSC some high-level conceptual decomposition
constructs such as subsystems. This tendency suggests the
usefulness of extending SC notation with some structural
decomposition notation, as suggested by Glinz [6].

The third bad problem that we observed was method re-
lated. Many a student claimed that it was easier (1) to grasp
all UCs together and then to build the DSSC than (2) to
unify UCs one by one into a growing DSSC in either of
the two ways suggested by SUM. We suspect that this pref-
erence comes from the typical low quality of UC descrip-
tions. Many UC descriptions were poorly structured, with
ill-defined CBS boundaries, and with actors missing. Con-
sequently, it was very difficult to build SCs for the UCs.
It appears that many a student was simply discouraged by
the perceived effort to redo all the UC descriptions, and just
jumped directly to producing a DSSC, which turned out to
require lots of rework. We say “perceived effort”, because
in the end, the thinking needed to fix the poor DSSC was
the same as would be needed to redo the UC descriptions.
The typical directly produced DSSC had a large number of
inconsistencies with use cases, was more difficult to refine,
and was at much higher abstraction level than the typical
DSSC produced by unifying UCs one by one. Occasionally,
the directly produced DSSC was at such a high abstraction
level that its nodes represented use case names, and these
nodes were not decomposed any further. As a consequence,
we now strongly believe that UCs should be unified one by
one into a growing DSSC.

The fourth bad problem that we observed was that some
students could not fix all of their UCs due to time limi-
tations. This problem is related to the third, namely that
building a DSSC can require completely redoing all UC de-
scriptions. Many a student, who had written very poor UC
descriptions and postponed DSSC specification, simply did
not have the time to redo all his or her UC descriptions. To
solve this problem, we need give students a clear indication
on how much effort it takes to build a DSSC and what the
impact of poor UC specifications can be.

5.3. The Ugly

This section describes negative effects that are inherent
to the approach and therefore not fixable.

The main negative effect of unifying UCs of a CBS into
a DSSC for the CBS is the additional effort that has to be
invested as a result of thesteep learning curveand theinher-
ent difficulty of specifying behavior. We saw the additional

8



effort only with the VoIP CBS because we could compare
the effort spent by the students in the third Case Study, in
the SUM-using term, with that spent by students of previ-
ous terms who had specified the same VoIP CBS without
any unification.

Teaching students and TAs SUM required 4 hours that
were not originally allocated to the course. Of these 4 hours,
2 were spent teaching DSSC unification and 2 were spent
teaching how unification fits in the overall RE process. An
additional 1 hour was set aside for a question-and-answer
session about the material. The head TA, Svetinovic, re-
sponsible for answering students’ questions found his work-
load increased about 30% over that in previous terms, in
which SUM was not used.

Each term in CS445, we have each TA report his or her
actual workload for the course. As a result, we are able to
say that the average number of meetings in a term between a
group and its TA, as analysts and customer, increased from
about 6–8 in previous terms to about 10 in the SUM-using
term. That is, using any variant of SUM required about
25% more elicitation effort. Because we had anticipated
at the beginning of the SUM-using term that SUM might
require more work, we switched from encouraging 3-person
groups to encouraging 4-person groups. In retrospect, the
increased specification workload for SUM is proportional
to the increase in group size.

The drawback of increased workload was not without
benefit, namely in the observed increased overall quality of
the SRSs that the groups produced. In particular, the typical
group elicited more requirements along the way than in the
past.

The other negative result is the continued difficulty deal-
ing with multiple processes and object concurrency, a dif-
ficulty not really addressed by any method. That this dif-
ficulty remains with SUM is disappointing because DSSCs
are supposed to explicitly expose opportunities for concur-
rency [3], and indeed the seventh positive result was that
Unification helps to detect opportunities for concurrent UC
execution. However, the only concurrency that is detected
is among the UCs. More general concurrency, e.g., among
processes and objects, remains hidden. A possible approach
for more complete concurrency detection is merging the
SC notation with others to build more general models that
expose concurrency opportunities better, as suggested by
Glinz [6].

6. Related Work

This section compares the work of this paper to that of
the three papers whose work appears to be closest, namely
papers by Glinz, W+S, and H+K+P [4, 23, 10]. Each of
these papers describes one formal treatment of unification

of UCs into a SC similar in semantics to our DSSC3. Several
others, including Soḿe et al. [17], van Lamsweerdeet al.
[22], and Khrisset al. [11] have describe algorithms and
methods for synthesizing various DSMs, including one in
SC notation, from UCs.

Glinz presents a method, intended to be automated, of
constructing a SC expression of the DM of a CBS from a set
of SCs, one for each UC of the CBS. During the construc-
tion, whenever an inconsistency shows up, e.g., two transi-
tions from one state going to two different states under the
same event, the original UC SCs must be modified. Glinz’s
plan was to automate the construction so that analysis, in-
cluding checking for inconsistencies, can be automated as
well.

H+K+P describes an algorithmic method to synthesize a
SC expression of a DM of a CBS from a set of live sequence
charts (LSCs), one for each UC of the CBS. LSCs are for-
mally defined enhancements of sequence diagrams (SDs)
with precise semantics, the ability to define existential or
universal UCs, and specified preconditions. Their algorithm
has been implemented as part of a tool that animates LSCs.
When the algorithm fails, due to inconsistencies among in-
put LSCs, the user is expected to correct the problems in the
LSCs.

W+S describe an algorithmic method to generate a SC
expression of a DM of a CBS from a set of SDs, one for
each UC of the CBS. W+S have implemented the algorith-
mic method in a tool. The tool requires user assistance,
particularly when the tool detects an inconsistency among
the input SDs. The user’s response is to change one or more
SDs; to change parts of the SC expression of the DM that
are outside the SDs, e.g., data and preconditions; or both.

There are many analogies between the steps, restrictions,
and problems in the methods and algorithms of Glinz, W+S,
and H+K+P and those of SUM, not atypical of analogies
between other pairs of automated and manual processes.
Moreover, the benefits that they observe of their methods
and algorithms are consistent with the benefits we observed
of SUM. Thus, it can be said that our work and their work
constitute independent confirmations of each other.

Our case studies have demonstrated the usefulness and
practicality of SUM, a method similar to the UC unifica-
tion methods described by Glinz, W+S, and H+K+P. More-
over, SUM has been used on CBSs of significant size and
has been carried out by a large number of students lacking
expertise in SCs and domain modeling. Our studies have
shown SUM to provide specific practical benefits to the an-
alysts who apply it and have exposed the drawbacks of the
method. Unlike any formal treatment, a case study of actual
method use can measure the cost of applying the method.
In particular our studies have shown that adding to RE our

3All of the works described in this section use the term “scenario” for
what we call “UC”.

9



method of unifying UCs of a CBS into a DSSC for the CBS
increases the cost of requirements elicitation and the subse-
quent analysis by about 25%. Because the analysts in our
studies were students with no expertise in either SCs or do-
main modeling, this cost increase is probably a worst-case
upper bound.

It is true that performing a unification completely man-
ually forces continual reexamination of the UCs. However,
having a tool with picky restrictions on the expression of
the input UCs forces more precision in the descriptions of
UCs. Perhaps, it is the case that our students, having heavily
sweated manual unification would greatly appreciate both
either of the W+S or the H+K+P tool and the discipline re-
quired to prepare the input to the tool.

7. Conclusion

This paper describes the results of case studies that eval-
uate a practical method for unifying UCs of a CBS into a
DSSC for the CBS that can be used as part of RE to pro-
duce a SRS for the CBS. The method was iteratively pro-
totyped through in-course uses of variants of the method.
Thus, the case studies both (1) refined the method and (2)
validated the usefulness of the DSSC and the effectiveness
of the method both to improve the starting UCs and to yield
a quality DSSC that becomes part of a quality SRS.

References

[1] A. Cockburn.Writing Effective Use Cases. Addison-Wesley,
Reading, MA, 2000.

[2] CS846 course project.http://se.uwaterloo.ca/
˜dberry/ATRE/ElevatorSRSs/ ; accessed January
30, 2006.

[3] B. P. Douglass. Doing hard time: developing real-time
systems with UML, objects, frameworks, and patterns.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1999.

[4] M. Glinz. An integrated formal model of scenarios based
on statecharts. InProceedings of the 5th European Soft-
ware Engineering Conference, pages 254–271, London,
UK, 1995. Springer-Verlag.

[5] M. Glinz. Statecharts for requirements specification - as
simple as possible, as rich as needed. InProceedings of
the ICSE2002 Workshop on Scenarios and State Machines:
Models, Algorithms, and Tools, 2002.

[6] M. Glinz, S. Berner, and S. Joos. Object-oriented modeling
with ADORA. Information Systems, 27(6):425–444, 2002.

[7] H. Gomaa. Designing concurrent, distributed, and real-
time applications with UML. InICSE ’01: Proceedings of
the 23rd International Conference on Software Engineering,
pages 737–738, Washington, DC, USA, 2001. IEEE Com-
puter Society.

[8] D. Harel. Statecharts: A visual formalism for complex sys-
tems.Sci. Comput. Program., 8(3):231–274, 1987.

[9] D. Harel. On visual formalisms.Commun. ACM, 31(5):514–
530, 1988.

[10] D. Harel, H. Kugler, and A. Pnueli. Synthesis revisited:
Generating statechart models from scenario-based require-
ments. InLecture Notes in Computer Science, volume 3393
of LCNS, pages 309–324. Springer-Verlag, Jan 2005.

[11] I. Khriss, M. Elkoutbi, and R. K. Keller. Automating the
synthesis of UML statechart diagrams from multiple col-
laboration diagrams. InUML’98: Selected papers from
the First International Workshop on The Unified Modeling
Language UML’98, pages 132–147, London, UK, 1999.
Springer-Verlag.

[12] C. Larman.Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and the Unified Pro-
cess. Prentice Hall, Englewood Cliffs, NJ, second edition,
2001.

[13] S. Lilly. Use case pitfalls: Top 10 problems from real
projects using use cases. InProceedings Technology of
Object-Oriented Languages and Systems, pages 1974–183,
Washington, DC, USA, 1999. IEEE Computer Society.

[14] J. Mylopoulos, L. Chung, and E. Yu. From object-oriented
to goal-oriented requirements analysis.Communications of
the ACM, 42(1):31–37, 1999.

[15] J. Rumbaugh, I. Jacobson, and G. Booch.The Unified Mod-
eling Language Reference Manual. Addison-Wesley, Read-
ing, MA, second edition, 2004.

[16] SE463/CS445 course project.http://www.student.
cs.uwaterloo.ca/˜cs445/ ; accessed January 30,
2006.

[17] S. Soḿe, R. Dssouli, and J. Vaucher. From scenarios to
timed automata: Building specifications from users require-
ments. InAPSEC ’95: Proceedings of the Second Asia Pa-
cific Software Engineering Conference, pages 48–57, Wash-
ington, DC, USA, 1995. IEEE Computer Society.

[18] D. Svetinovic. Object-oriented domain analysis (ooda) ex-
ample: a turnstile system.http://reqs.org/ooda/
examples/ooda-turnstile-example.pdf ;
accessed January 30, 2006.

[19] D. Svetinovic, D. M. Berry, and M. Godfrey. Concept identi-
fication in object-oriented domain analysis: Why some stu-
dents just don’t get it. InProceedings of the IEEE Inter-
national Conference on Requirements Engineering RE’05,
pages 189–198, 2005.

[20] Turnstile system. http://swag.uwaterloo.ca/
˜dsvetinovic/turnstilesystem.pdf ; accessed
January 30, 2006.

[21] A. van Lamsweerde and E. Letier. Handling obstacles in
goal-oriented requirements engineering.IEEE Transactions
on Software Engineering, 26(10):978–1005, 2000.

[22] A. van Lamsweerde and L. Willemet. Inferring declara-
tive requirements specifications from operational scenarios.
IEEE Trans. Softw. Eng., 24(12):1089–1114, 1998.

[23] J. Whittle and J. Schumann. Generating statechart designs
from scenarios. InICSE ’00: Proceedings of the 22nd Inter-
national Conference on Software Engineering, pages 314–
323, New York, NY, USA, 2000. ACM Press.

10


