
MINIX.XINIM,
Towards a Bi-Directional, Bi-Lingual

UNIX Operating System

Gil Allon
Daniel M. Berry

Faculty of Computer Science
Technion

Haifa 32000
Israel

Abstract

This paper describes the design and construction of MINIX.XINIM, a bi-directional, bi-lingual version of
MINIX, a mini-UNIX operating system. MINIX.XINIM is constructed from MINIX by modifying some of MINIX’s
device drivers so that they reverse all right-to-left text that passes through them. From this simple change, the entire
kernel and all line-mode applications become bi-directional. While the version of MINIX.XINIM described here is
for English and Hebrew, it can be easily used for any pair of left-to-right and right-to-left languages supported by
the local input-output devices.

,MINIX.XINIM
מערכת לקראת
UNIX הפעלה

ודו-שפתית דו-כיוונית

oאלו גיל
ברי דניאל

המחשב למדעי הפקולטה
oהטכניו

32000 חיפה
ישראל

תקvיר

מערכת ,MINIX של ודו-שפתית דו-כיוונית גירסה שהיא ,MINIX.XINIM ובנית oתכנו את מתואר זה מאמר
mשה oבאופ oלהתק הממשק מתוכנות כמה של שינוי באמvעות MINIX-מ נבנה MINIX.XINIM .UNIX-מיני הפעלה
שורה במודת mהישומי וכל mהשל oהגרעי הזה, הפשוט מהשינוי .mדרכ שעובר לשמאל oמימי הנכתב טקסט כל mהופכי
בה להשתמש oנית לאנגלית-עברית, מיועדת פה המתוארת MINIX.XINIM-ה שגירסת למרת -כיוונית. דו mנעשי
קלט-פלט התקני על-ידי ושנתמכות לשמאל oמימי והאחרת oלימי משמאל האחת הנכתבות שפות זוג כל עבור בפשטות

.mמקומי

1



MINIX.XINIM,
K ecuoaפracmfoook ecu�i}yook oפfraxiooook

sistfnf UNIX

Cim~ Amoo
Daoiem~ M. Aeri

Ualum~tft lonפ~�tfro}w oaul
Sfwoioo

Vakva 32000
Iiraim~

Aoootaxi�

Nasto�{a� stat~� oפis}caft rofltirocaoifפ i ostrofoifפ MINIX.XINIM,
ecuoaפracmfoook i ecu�i}yook cfrsii MINIX’a (nioi-UNIX’a). MINIX.XINIM ostrofoפ ii
MINIX’a utgnפ noeivilaxii erakcfroc r�ea ustrokstc MINIX’a tal, yto ooi obra{a�t
m�bok tflst, rowoe�{ikפ yfrfi oiw. B rfium~tatf etodo rostodoפ �rfobraiocaoiפ �ero c
xfmon i csf efkstci� c strolocon rfhinf staooc�ts� ecustoroooini. Vot� oפisaooa�
iefs~ cfrsi� MINIX.XINIM rfeoaioayfoaפ em� {arפ aodmikslodo �i}la-icrita, fg mfdlo
nohoo isפom~iocat~ em� m�bok {arפ �i}loc, oeefrhicafn}wפ molam~o}ni ustrokstcani
ccoea-c}coea, oeio ii lotor}w isפom~iuft iaפis~ sפraca oamfco, a ctorok – smfca
oaפraco.

2



1 INTRODUCTION

Computers, operating systems, and applications were developed primarily in English speaking countries.
Hence the computers, the operating systems, and the applications were all geared to English; the alphabet supported
by the machines is that used for English, the commands of the operating systems are English words, and e.g., appli-
cations dealing with names alphabetize them according to English rules. In the word processing area in particular,
the first programs knew about English hyphenation rules, spelling rules, and punctuation rules.

As computing spreads throughout the world, the need for multi-lingual machines, operating systems, and
applications grows. The problems begin as heavily accented Latin alphabets, with possibly additional letters are
needed for many European countries. The problems grow as non-Latin alphabets are needed for countries in Eastern
Europe, around the Mediterranean, and in Asia. This problem is compounded as the alphabets for countries in the
Far East prove too big for one byte to uniquely encode each letter. The problems increase as it is observed that some
of the Mediterranean and Asian languages are not written from left to right; some are written from right to left and
others are written from top to bottom.

The focus of this work is on computers, operating systems and applications for English-Hebrew work.
English is written from left to right with the Latin alphabet, for which there is a seven-bit standard encoding, called
ASCII. Hebrew is written from right to left with the Hebrew alphabet, for which there is a seven-bit standard encod-
ing. The encodings for each alphabet assign consecutive numbers to letters in alphabetical order. While this paper is
focused on English-Hebrew work, many of its principles apply to the general multi-lingual situation and many of its
details apply to any pair of languages with alphabets small enough for seven-bit encodings and whose writing direc-
tions oppose, e.g., French or Russian and Arabic or Farsi.

This paper first describes the requirements for a bi-directional, bi-lingual, English-Hebrew UNIX system.
Then the lessons that were learned from past related work on formatters, editors, and other applications are exam-
ined in order to obtain a strategy for building this system. Based on this strategy, the goals of this work are stated,
first in the most ambitious form, and then scaled down to be completable by one person as a prototype for the ambi-
tious goals. The steps of the construction of the prototype are recounted with an emphasis on lessons learned and
minds changed during the construction. Outputs from acutal sessions with the running prototype are exhibited to
demonstrate that the prototype is behaving the way intended. Finally plans for a full bi-directional, multi-lingual
UNIX system and for a bi-directional, multi-lingual X-windows system are described; these build on work being
done at AT&T on a multi-lingual System V.

It must be noted that the paper describes an implemented, running prototype, and not just a proposal.

This paper is derived from the M.Sc. thesis of the first author, written in Hebrew [Allon1989].

2 REQUIREMENTS FOR ENGLISH-HEBREW OPERATING SYSTEM

A single code is needed for representing all required characters. There is already such a code, a standard
called ESCII in Israel. It is the standard Latin ASCII code in the first 128 codes and it is the seven-bit Hebrew code
with the eighth bit turned on in the second 128 codes. Thus, there is a simple way to tell from each character in
which language it is; look at its eighth bit. If it is 0, the character is Latin, and if it is 1, then the character is Hebrew.
Many hardware devices made or adapted in Israel, especially terminals and line printers, accept this code.

It is necessary to add to the English-based operating system and the applications that run on top of it the
ability to have

1. Hebrew text in files,

2. Hebrew file names,

3



3. Hebrew command names,

4. Hebrew error messages,

5. Hebrew prompts,

6. Hebrew input accepted,

7. Hebrew output generated, and

8. bi-directional output.

Moreover, all of the above should co-exist with the extant English version. Having a character code that supports
Hebrew takes care of Requirement 1 and 2 if the operating system does not balk at having characters with the eighth
bit on in file names. If Requirement 2 is met, then Requirement 3 is met, because command names are interpreted as
the name of the file that contains the program that does the command. Requirements 4, 5, 6, and 7 require changing
the contents of string constants used by programs, in addition to, in the case of Requirement 6, not balking at input
with the eighth bit on. Recall that accepting input may require the program to match possible input strings and gen-
erating output may require copying constant strings.

There are two methods of changing the contents of string constants within the program.

1. If the string constants are hard-wired into the code, then the contents of the strings must be translated into
Hebrew and the program must be recompiled with the new strings.

2. If the strings are all stored in external files, and are read in by the program at start up or when they are
needed, then only the strings in the files must be changed. The programs do not need to be changed.

The latter solution means only one copy of each program and one copy of the strings file for each program and each
language, while the former solution means one copy of each program for each language. If the latter solution is
adopted, to have language-independent programs, then the ability to link a file to several names, one in English and
one in Hebrew, allows the same program to be invoked with either an English or a Hebrew name.

The remaining requirement is Number 8. Arranging that an operating system and its applications meet
Requirement 8 is the subject of this paper. Note that Requirement 8 is really language independent in that no partic-
ular knowledge of Hebrew is needed to implement it and it is needed for languages other than Hebrew. Even the
other requirements, aside from the fact that one needs to know enough Hebrew to write good file names, command
names, error messages, prompts, possible matches to inputs, and output messages in Hebrew, are also language
independent. The needed changes to the software have nothing to do with Hebrew, and these changes are needed for
other languages as well.

3 LESSONS LEARNED FROM PAST WORK

The brute force way to adapt computer systems and software to a multi-lingual environment is to change
each program individually. Students and system programmers at the Technion and the Hebrew University have
started to do this with some more popular programs and have developed hcat, hmail, hmore, htroff, and vi.iv as
bi-directional versions of cat, mail, more, the original troff, and vi, respectively, and ded, a bi-directional full
screen editor for the DEC Hebrew vt100 terminals. They have also developed troffh and vih, as uni-directional
Hebrew versions of the original troff and vi. However, the effort seems to have lost steam, as there remain many
other applications for which it would be useful to have bi-directional or Hebrew versions, e.g., grep, gres, and sort,
as well as databases. Examination of what happened shows that similar changes were being made to all the pro-
grams. These changes were not quite similar enough to be automatable, but similar enough to become a tedium for

4



those starting the project. Basically, the project failed from boredom and the realization that the changes would have
to be made to every program.

The good software engineer, who is of course lazy, begins to wonder if there is a better way, say to do
these changes once in such a way that all programs can share the effects.

3.1 Universal Lessons

Lessons can be learned from the published literature about the adaptation of word-processing software to
the bi-horizontal-direction environment, in general, and to the English-Hebrew environment, in particular.

Becker’s multi-lingual Xerox ViewPoint system [Becker1987], Buchman and Berry’s ffortid [Buch-
man1985], using ideas from Gonczarowski’s htroff [Gonczarowski1980], Knuth and MacKay’s TEX/XET
[Knuth1987], Tayli and Al-Salamah’s Intelligent Arabic Workstation [Tayli1990], Habusha and Berry’s vi.iv
[Habusha1990] all have the following properties in common despite that the first is a WYSIWYG word-processor,
the next two are batch formatters, and the third is a full-screen editor, all for handling bi-horizontal-direction text.

1. The storage of all files is in what is called time, logical, or input order, that is, the characters are stored in
the order in which they are pronounced by a person reading the text.

2. Text is rearranged so that each language is printed in its own direction only at the time of output, whether
on a screen or on some hard-copy printing device. The order of the text after layout, as seen on, e.g., a
screen, is called visual order.

3. There are two independent directions involved in layout, the direction of the individual character and the
direction of the document. A Latin character is generally considered a left-to-right character while a
Hebrew or Arabic character is generally considered a right-to-left character. Occasionally a character is
considered to be in an unusual direction for demonstration purposes. In a left-to-right document, the begin-
ning of a printed line is its leftmost character and the end is its rightmost character. Paragraphs, for exam-
ple, are indented from the left. In a right-to-left document, the beginning of a printed line is its rightmost
character and the end is its leftmost character. Paragraphs are indented from the right. This paper, in
English, is a left-to-right document, and its Hebrew version is a right-to-left document. In this context, a
document may actually be a portion of another. For example, In an Arabic book about the works of Wil-
liam Shakespeare, along passage of quoted text from a play may be treated as a left-to-right document
sandwiched in between two right-to-left documents so that the paragraphs of the passage are indented from
the left. Thus the concept of document has a temporal nature; one speaks of the current document direction.
Note that while the character direction is implicit in the character and is therefore encoded in the file, the
current document direction is a function of the application and is not encoded in the file. To see this,
observe that the quoted passage of Shakespeare’s work may be considered a right-to-left document, con-
taining left-to-right characters, if one does not mind that the paragraphs are indented from the right.

4. The algorithm to rearrange the text upon output, called the layout algorithm works on a line-by-line basis
and can be applied locally to each line. The layout algorithm assumes a device that prints from left to right.
The left-to-right language is called LR and the right-to-left language is called RL.

for each line in the file do
if the current document direction is left-to-right then

reverse each contiguous sequence of RL characters in the line
else (the current document direction is right-to-left)

reverse the whole line about;
reverse each contiguous sequence of LR characters in the line

fi

5



od

The algorithm must or can be varied if the device prints from right to left or in both directions. If there
exists a line whose length is longer than the physical line length, then the time-ordered line is folded into
pieces that fit the physical line length first, and then the pieces are subjected to layout as if each were a line
itself; the pieces are interpreted in the same document direction as the original line. Since many of these
programs were written without knowledge of the others, these conclusions have the force of independently
drawn conclusions.

As an example of the above concepts, consider the two lines in time order:

Hi_רמא_אוה Gil
and Dan_דו_ליגלo.

The underscored spaces and the period are Hebrew and the blank spaces are Latin. The two lines mean “He said
Hi Gil and Dan to Gil and Dan. In a left-to-right document, these lines in visual order are:

Hiהוא_אמר_ Gil
and Dan.oלגיל_וד_

In a right-to-left document, these lines in visual order are:

Hi Gil_הוא_אמר
.oלגיל_וד_and Dan

Storing the text in time order and reversing the right-to-left text only upon output flies in the face of the
more common approach of reversing right-to-left text upon input and storing the file in visual order. Layout upon
input is followed by alef-bet [Alef-Bet19??], Einstein [Einstein19??], MacInHebrew [Weinstein1986], Multi-
Lingual Scribe [Gamma1984], vih [David19??], and WORDMILL [Intersoft1984]. However, layout upon output
is more general because it allows changes to line lengths without having to reconstruct the input order first.

3.2 Formatters

In the case of the formatters, the layout algorithm is applied to an intermediate representation produced by
the underlying left-to-right formatter after all line-breaking decisions have been made. The intermediate representa-
tion thus shows exactly what text is on what line based on a standard left-to-right formatting of text in time order. It
is as though all languages were written from left to right. It is also required that the intermediate representation
show where the line boundaries are.

In the case of ditroff/ffortid, the standard device-independent output of the left-to-right formatter ditroff is a
suitable intermediate representation, and the layout algorithm is embodied in a separate program, ffortid. The visual
order output of ffortid is in the language of the intermediate representation. Thus the composition ditroff | ffortid is
indistinguishable on both ends from ditroff. Thus, all ditroff pre- and post-processors work without change with
ditroff|ffortid. In particular, one post-processor called a device-driver, whose job it is to print the formatted output on
one particular device, works none the wiser of the true source of its input.

In the case of TEX, the standard device-independent output, dvi, is not a suitable intermediate representa-
tion, because it lacks an end-of-line marker. Hence, some representation inside TEX must be used. Accordingly,
TEX/XET is a single program with the layout algorithm incorporated into a program obtained by modifying TEX
itself. The new program TEX/XET is indistinguishable on both ends from TEX and uses the same device drivers, i.e.,
dvi interpreters.

6



3.3 Editors

Most full-screen editors these days are divided into two parts, the command processor and the screen
manager. The command processor obeys the commands and updates the file or the internal representation of the file.
The screen manager keeps the screen up to date as an accurate depiction of one or more portions of the edited file. If
the editor, e.g. vi, is divided this way, then the layout algorithm can be applied by the screen manager line-for-line
on all lines affected by any change. Since the file is in time order, apart from a few new commands necessary to
change language and document direction, no change is needed to the command processor. All that is required for the
layout algorithm to be able to display each language in its own direction is that it can distinguish right-to-left text
from left-to-right text in the file. This can be done by having special, non-printing, escape characters marking
language changes, or by having the eighth bit off for one direction and the eighth bit on for the other direction. The
former is more general, but requires minor changes to the command processor to treat the escape character properly.
The latter requires no change to the command processor, other than to be eighth-bit clean, i.e., to leave the eighth bit
alone, but is limited to handling only two directions of text with languages each of whose alphabets is smaller than
127 characters. Moreover, the solution adopted by one editor on a system must really be adopted by all other editors
and applications. A file produced by one editor may be edited with another, and it may be submitted to applications.
Input files for applications are generally produced with the help of editors. It seems easier to make all applications
eighth-bit clean than to make them all ignore language identifying escape characters. Finally, there is the problem of
choosing an escape character that does not already have a meaning.

To be able to handle more than two alphabets or alphabets with more than 127 characters requires moving
to 16 or more bit characters [Becker1984, Beebe1990]. With such large characters there is room in the character for
the language code and thus no need for language-identifying escape characters

As mentioned, after the command processor executes each user-visible step of any command, the layout
algorithm is applied by the screen manager to each line that is changed by the step just executed. Obviously, the
screen manager is invited to use the terminal capabilities data base in order to find a minimal sequence of terminal
commands that will cause the terminal to update itself to the correct appearance. If the screen manager is successful
in this venture, it can avoid having to send over the full text of all lines that were modified by the step. However,
logically it has applied the layout algorithm to each modified line and has sent these lines over to the screen.

3.4 Line Mode

The common denominator running through all of this software is that the layout algorithm is applied line-
by-line to time-ordered text already broken into lines and for which it is possible to determine for each character its
direction of printing. If the eighth bit method is used to mark the direction of printing for each character, and all pro-
grams are eighth-bit clean, then the only remaining requirement for applicability of the layout algorithm is that the
text be broken into lines. The standard conventions of using the new-line character, the carriage-return character, or
both to mark line boundaries can be followed. We call all software whose output is a sequence of lines so marked
line-mode software. Many programs, e.g., compilers, filters, stream editors, etc., in general, cat, more, sort, etc. in
specific, are line-mode. On the other hand, many programs are not. The most common classes of non-line mode pro-
grams are full-screen editors and windowing systems. They output commands that address specific points on the
screen. The layout algorithm can be applied externally to the output of any line-mode program without change to the
program. The layout algorithm cannot be applied externally to the output of non-line-mode programs. Instead, the
layout algorithm must be incorporated internally, as was done to the vi full-screen editor to make vi.iv.

Therefore, it should be possible to change a whole operating system and any line-mode software that runs
on top of it to be bi-directional simply by rewriting output device drivers to reorganize each output line as it is out-
put using the layout algorithm. Of course, any programs that affect the behavior of these drivers, e.g., stty, will have
to be changed. Figure 1 illustrates the structure of such a system. For any program that requires no new features as
a result of being applied in a bi-directional situation, then there is no more to do. If a program does require new
features, then these must be implemented specifically. For example, if users are happy with the collating sequence

7



Output

Algorithm

Layout

Device Drivers

Kernel

Unchanged Applications

Figure 1: System Structure

of the new alphabets both internally and with respect to the Latin alphabet, then sort does not require any new
features; if not, then sort requires new features to implement the desired ordering. Regardless of whether or not the
new collation order options are added to sort, relative to the collation order, sort works correctly on multi-lingual
lines because all lines are in time order. The most significant character of all lines is at the same end of the line.
After correct sorting, the external layout algorithm takes care of displaying each output line correctly in visual
order.

3.5 What is Left?

Even if this proposal works, there is still a lot to be done to make an entire system fully bi-lingual and bi-
directional. First, from the original requirements, it is clear that the various string constants used for prompts, input
comparison, output messages, error messages, etc. have be available in Hebrew. The proposal to put these strings in
a file and make the program select strings from language-selected files solves this problem. Secondly, the non-line-
mode programs have to be made bi-directional by brute force. Fortunately, nowadays, many programs outputting to
full or partial screens of either terminal, 24 × 80 character, or work station, high bitmap resolution, do so via
abstract data types that hide the peculiarities of the particular device being used. These abstract data types include
curses, X-windows, SunView, and NeWS. It should be possible to incorporate versions of the layout algo-
rithm into these to create curses.sesruc, X-windows.swodniw-X, SunView.weiVnuS, and NeWS.SWeN. In the
case of curses, derived from the screen manager of vi and using the same terminal capabilities database, termcap,
it should be possible to lift portions of the screen manager of vi.iv to build curses.sesruc in the same manner. Sec-
tion 7.3 describes another project that has been initiated to build one of these systems.

8



4 GOALS

4.1 Ultimate Goal

The ultimate goal of the research reported herein is to build a UNIX.XINU (no connection either to Mt.
Xinu or to Comer’s Xinu), a bi-directional, full-function UNIX system with the property that the kernel and all line-
mode applications running on top of it are bi-directional with no change to the application software. It is assumed
that all files, input, and output are in a code that permits the distinction between the languages of the two directions,
with the right-to-left language having codes with the eighth bit on. Moreover, it is assumed that all files and input
are in time order, and human-readable output is to be in visual order. If the terminals attached to the system handle
Hebrew, then the system should support Hebrew input and output with no change to any application software,
except if it should be desired that command names, prompts, acceptable input, output and error messages be in
Hebrew as well!

Of course, it is assumed that the hardware and the software handles extended character sets without break-
ing. Given present hardware exigencies, being able to handle the extended character sets required in a bi-directional
situation, Latin with either Arabic or Hebrew, means being able to handle eight-bit character sets.

The approach will be to re-write the output device drivers to apply the layout algorithm to each line of out-
put that passes through them. Should this be done to all device drivers? The answer is, “No!”. Only the drivers for
devices producing output for human consumption need and should be modified. In particular, device drivers for disk
drives, tapes, diskettes, etc. should not be modified, because these devices are used for storage of files, which must
be kept in time-order!

4.2 Realities

While the idea is nice and sounds like it should work, harsh experience has taught us that these sorts of
things never work quite the way they are intended.

1. There are things that could have been overlooked in getting the abstraction of the kernel and application
software that was used to decide the validity of the approach.

2. The use of the layout algorithm on every line of output could affect the performance of the system so much
as to make the approach useless.

Therefore, the first build of the system will be an experiment to find the corners in the reasoning, to evaluate the per-
formance of the system, and, in general, to verify the useability of the resulting system.

UNIX systems, at least the ones for which we have the sources, are too big and too messy to expect that this
modification will go without a hitch. Therefore, it would be useful to build a first version using a mini-UNIX system,
which is both small enough and clean enough to work with easily and large enough to be a faithful model of UNIX,
in terms of having at least a representative of everything that may cause a problem. In other words, build a prototype
first. If the prototype works as expected, then it is justified to begin a project to build a production quality, full
UNIX.XINU.

There are a number of mini-UNIX systems available, but not all are suitable. In particular, Comer’s Xinu
[Comer1984], for which sources are easily available, is not suitable despite its name! It comes with no shell and
therefore cannot easily be tested by users. None of the XENIX systems are really that small; moreover, as com-
mercial products, their sources are not easily available.

MINIX is just right! It has a kernel fully compatible with the Version 7 UNIX system that used to be avail-
able from AT&T and from which System V and Berkeley variants were derived. It has a full complement of all the

9



usual applications including a shell. The applications include both line-mode programs and interactive programs.
Finally, the sources are available. A plus is the fact that MINIX runs on PCs. Thus, we can afford to dedicate an
entire computer to the project without affecting a user population; indeed, a machine with no user population at all
except the authors can be chosen.

4.3 Limited Goal

Therefore, the first sentence of the ultimate goal was modified into something more limited. The more lim-
ited goal for the project reported herein was to build MINIX.XINIM, a bi-directional, full-function MINIX system
with the property that the kernel and all line-mode applications running on top of it are bi-directional with no
change to the application software. The rest of the goals concerning files, input, and output, and not handling
Hebrew text stand.

5 CONSTRUCTION

This section describes the steps followed to build MINIX.XINIM and the problems encountered. The topics
are covered in the order that we encountered them to allow the reader to participate in our discovery of these prob-
lems and their solutions. In particular, the reader will see how goals were modified as a result of what we learned
trying to meet the goals.

Before jumping in, it is necessary to point out that we were using an IBM PC-AT to which a Hebrew
character generator chip was added. This chip causes Hebrew characters to be generated on the screen in place of
the funny faces in response to character codes greater than 127.

5.1 Laziness

In order not to have to write any more than was absolutely necessary to prove the point, it was decided that
the only device driver that would have the layout algorithm added was the screen device drivers. We simply would
not attempt to demonstrate the system using any other human-readable device.

5.2 Making Code Eighth-Bit Clean

The first problem encountered was one encountered in the building of vi.iv. Hebrew uses character codes
with eighth bit on so that it is possible to distinguish Hebrew characters from Latin characters, whose character
codes have the eighth bit off. Many Latin-Hebrew terminals are built with this assumption, especially the newer
ones that can display both lower-case Latin and Hebrew at the same time. (The older Latin-Hebrew terminals used
7-bit codes in which Hebrew characters had the same codes as the lower case Latin characters. The result was that
lower-case Latin characters and Hebrew characters could not be displayed at the same time, and there was a switch,
either hardware or software, to tell the terminal which of the two character sets to display at any one time.)

Many programs in and on UNIX and MINIX systems use the eighth bit of a character to keep Boolean flags
associated with individual characters, and many programs destroy or erase the eighth bit even if they do not use it.
Therefore, it was necessary to change a number of programs supplied with MINIX. These include grep, od, and sh.
Among those that did not clobber the eighth bit were cat, cd, cp, gres (interestingly even though grep does clobber
the eighth bit!), head, ls, mkdir, more, mv, pwd, rm, and tail.

It is easy to find any program that destroys or uses the eighth bit for nefarious purposes. Just run the pro-
gram with Hebrew input and examine the output! Once an eighth-bit mangling program is identified, it is easy to
find the code that clobbers the eighth bit. Just search for the shift operators, << and >>. For programs that use the
eighth bit as a flag, it is necessary to rewrite the logic of the program. This kind of change was necessary in building
vi.iv. For all other programs, that just destroy or erase the eighth bit, it is necessary only to remove the destroying or
erasing code, usually to set the mask to leave the eighth bit alone. This process is called making the software

10



eighth-bit clean.

Note that AT&T started doing this with System V [AT&T1986] some time ago, SCO [SCO1988] now
offers eighth-bit clean XENIX. Sun Microsystems’ SunOS systems are all eighth-bit clean. In fact, these and all
systems based on the X/Open Portability Guide [X/OPEN1987] and on the POSIX standard [POSIX1988] are all
required to be eighth-bit clean specifically to allow international use.

5.3 Terminal Incompatibilities

The second problem is that not all Latin-Hebrew terminal generate and accept the standard ESCII code.
Not all keyboards generate ESCII code. Some generate the old code, which is ESCII with eighth bit off; thus
Hebrew letters have the same codes as the character ‘ and the Latin lower case letters a through z. Not all screens
accept ESCII to cause display of Hebrew letters. Some accept the old code. These terminals, however, usually
display the right Hebrew letters when ESCII codes for Hebrew arrive because they ignore the eighth bit. As a result
they cannot display lower case Latin and Hebrew at the same time; they have a hardware switch selecting which
character set is used for the codes. Other screens use completely different codes to display Hebrew letters. Thus, if
internal storage of file should be ESCII, device drivers will have to translate to ESCII from keyboard code and from
ESCII to screen codes. It turns out that this chaos exists for pure Latin terminals as well, the console for the IBM PC
being a prime offender. The key for a does not send the ASCII code for a. Rather it sends a key number when it is
pressed and that number plus 128 when the key is released. Therefore, MINIX is already set up to translate terminal
key codes into ASCII input codes and to translate ASCII output codes into screen codes. It is, therefore, a trivial
exercise to extend the tables for these translations to properly deal with ESCII codes both on input and output. In
addition, since the same keyboard is used to input both languages, which tables are in effect has to be governed by
the setting of some current-language variable, perhaps in the shell’s environment or in the tables used by the stty
program. This same variable can be made available system wide to any program that needs to know which language
is current.

5.4 Modifying the Shell

After having written one draft of the new device drivers, it became clear to the authors that it does not
suffice to just rewrite output device drivers, because then only line-mode programs are affected. There are a few
interactive programs that are very difficult to live without, e.g., editors and the shell. Without an editor, it is very
difficult, but not impossible, to prepare files to test the main functions of MINIX.XINIM. One is reduced to doing

cat < > newfile
This is text that is going into
newfile. The only editing function
available is backspacing WITHIN the
current line.
ˆD

Without a shell it is almost impossible to run programs to test whether or not they continue to work. Since a col-
league of ours, Uri Habusha has developed vi.iv, a bi-directional version of the vi full-screen editor, we accepted the
limitation of no editor on MINIX (with the intention of using vi.iv via the network to prepare really big test files),
but working without a full shell is well nigh impossible! So we had to produce a bi-directional version of the
MINIX shell.

5.5 New Features

When designing the bi-directional shell, it behooves us to put as much of the new functionality that the new
shell might need into the device drivers for no other reason to make these features available to other programs.

11



Once it is decided to modify shell to be bi-directional, many concepts from vi.iv find their way into the
shell, because what is a shell other than an editor of commands? Thus, there are the concepts of sessions, the anal-
ogy of documents in an editing situation, and current input language, identifying the language of the next input char-
acter.

As with vi.iv, it should be possible to set the session direction to be either left-to-right or right-to-left.
Currently all screen properties of command editing sessions are set by the stty program, which sets flags and other
data that are used by the screen device driver. All such features become available to any program writing to the
screen. Thus, setting session direction should be done using the stty program. Therefore, two new mutually
exclusive command line options were added to the stty program, lr and rl, with the former being the default. Say-
ing

stty rl

makes the current session right-to-left, and saying

stty lr

makes the current session left-to-right.

Again, as with vi.iv, it should be possible to indicate in which language or direction is the next character.
We adopted the vi.iv solution of having a global switchable setting that indicates the direction of all incoming char-
acters until further notice. Once in, the direction of a character is encoded in the character and cannot be changed.
The current input direction is changed by hitting the three keys, ALT, CTRL, and x simultaneously, denoted as alt-
ctrl-x. The character x is used in this three-key code in order to be similar to vi.iv’s use of simultaneous hitting of
CTRL and x for the same purpose. As in vi.iv it is possible to request to use a character, c, other than x in the
three-key code by saying:

stty language c

5.6 Echoing

We discovered that if the device-driver layout routines written for line-mode software are used during the
operation of the shell, then the echoing behavior is not what is expected. When inputting text in the language whose
direction opposes that of the current session, the text does not show up on the screen until either the end of the line
is reached, by typing CR or LF, or the language is changed to agree with the direction of the current session. For
example if the user is in a left-to-right session, and he or she switches to Hebrew from English, then the Hebrew
input is not echoed to the screen until the end of the line or until he or she switches back to English. Obviously, the
user would prefer to see each character as it is being typed, to avoid typing blindly. Upon careful reflection, we
realized that the shell is not a line-mode program as the term was originally defined. It echoes as it receives input.
Thus, it is outputting individual characters rather than whole lines. However, its outputting of individual characters
is rather controlled compared to, say, a full-screen editor, which is outputting characters anywhere on the screen. A
program that echoes input continues to output on the same line until the user hits CR or LF. As each character is
input, the echoed output grows only by one new character. Unlike in an editor, in which editing commands can be
applied to anywhere on the screen, an echoing program has a very limited repertoire of editing commands, i.e.,
backspace one character, backspace one word, and erase the whole line. Even with these commands, the echoing
output stays within the current line. The editing commands do not allow backspacing through the beginning of the
current line to the previous line. Given this very controlled flexibility that keeps the echoing on one line until the
next CR or LF is given, it is not hard to conceive of applying the layout algorithm to the current state of the input
line after each and every character of input, even if that input is an editing command that shrinks the input. It is also
not hard to conceive of an incremental version of the layout algorithm that adjusts the echoed line after each input

12



character according to what the character was, always able to fall back on building the whole current line if things
get too complicated to construct incrementally.

A whole new class of application programs for which an external layout algorithm works has been found.
The layout algorithm is made incremental so that it works for echoing programs, and the class of programs called
line-mode include any whose output do not erase any character other than those, in reverse order of generation,
between the last issued character and the last issued CR or LF. To handle this new class of line-mode programs, it is
necessary to modify treatment of echo mode in device drivers so that as each character is printed the appearance of
the line is calculated and if necessary redrawn in its entirety. Normally, it is necessary only to add the latest charac-
ter to one side of the cursor, but then either the cursor moves or the line moves under the cursor. If the terminal has
hardware commands to do these movements, then these commands should be issued by the device driver. The ter-
minal capabilities data base, or termcap file, can be used to tell the device driver what commands the current termi-
nal has. If such commands are not available, then it may be necessary for the device driver to redraw the entire line.
However, at 9600 baud and more, this redrawing is just not noticeable by the human user.

5.7 Turning Layout On and Off

Finally, we observed in our own work with MINIX.XINIM, that the user may not wish to see the output in
visual order. There are occasions, especially to answer picky questions about file contents, in which it is useful to be
able to see files in time order. Therefore it was decided to be able to request that the layout algorithm not be invoked
at all. One says

stty -lrrl-flip

to turn off layout, to see files in time order, and one says

stty lrrl-flip

to turn layout back on in order to see files in visual order.

5.8 Printing the Screen

Originally, from laziness, only the screen device driver was modified to do layout. However, in order to
print out samples for inclusion in this paper, it was then necessary to write a program printscreen that prints the
visual-ordered contents of the screen to the line printer.

5.9 Changed MINIX Modules

The number of modules of MINIX that had to be changed was surprisingly small, only four! The list below
indicates the modules and the routines within them that had to be changed to make MINIX.XINIM as described in
this paper.

tty.c
declaring variables for session state
scancodes
cooked mode controller
echo mode controller
echo
do cancel
setting session variables
cursor control
shift line back

13



output character
output conversion
input conversion
scroll screen
flush

klib88.s
assembly routines for
working with screen

stty.c
sgtty.c

It is a remarkably small list and gives hope that it will be quite easy to build a UNIX.XINU. With permission from
Andrew Tanenbaum, the author of MINIX, the modified modules, instructions and diffs for eighth-bit cleaning, and
instructions for builing MINIX.XINIM are available from the second author.

6 RESULTS

This section shows the outputs of several sequences of commands on files with mixed language contents.
The outputs in earlier drafts of this paper were obtained by executing printscreen so that they would be identical in
appearance to what is on the screen after executing the given commands. However, these line-printed outputs are
not of sufficient quality for this typeset paper. Therefore, in this typeset copy of the paper, the outputs are typeset by
using the bi-directional formatter, ditroff/ffortid to produce visual-ordered output from time-ordered input with
exactly the same layout algorithm used by the MINIX.XINIM screen device drivers. The fact that this paper has been
accepted for publication by referees and an editor who saw both versions of the output is testimony to the claim that
the typeset outputs are identical to the low quality, cut out, line-printed outputs.

6.1 more and cat

The first examples show two files, lr1 and rl1, in various configurations. The contents of lr1 are (with
translations from Hebrew indicated by oblique font text):

This paragraph is written in LR session.

This paragraph is written in- LR session.

This sentence begins with English, continues in Hebrew and ends with English.

This sentence begins in Hebrew continues with English and ends in Hebrew.
This sentence begins with English and ends in Hebrew.
This sentence begins in Hebrew and ends with English.

The punctuation and spaces are all in English. The contents of rl1 are:

This paragraph is written in- RL session.

This paragraph is written in RL session.

This sentence begins in Hebrew continues with English and ends in Hebrew.
This sentence begins with English, continues in Hebrew and ends with English.

This sentence begins in Hebrew and ends with English.

This sentence begins with English and ends in Hebrew.

The punctuation and spaces are all in Hebrew. The files are shown first in time-order and then in visual order. For
each order, both session directions are illustrated. Both more and cat are used for these demonstrations. Figure 2
shows the time-ordered contents of lr1 using more in a left-to-right session.

# more lr1

14



This paragraph is written in LR session.
הwסיפ וז תבתכנ -ב LR session.
This sentence begins with English, jישממ תירבעב and ends with English.
טפשמ הז ליחתמ תירבעב continues with English mייתסמו .תירבעב
This sentence begins with English mייתסמו .תירבעב
טפשמ הז ליחתמ תירבעב and ends with English.

Figure 2: File lr1 in time order
under left-to-right session with more

When MINIX.XINIM is booted, it comes up with the session left-to-right, the language English, and layout in effect.
Thus, to get Figure 2, it is first necessary to execute:

stty -lrrl_flip

Then

more lr1

yields the figure. The words flow in a left-to-right order. The letters of the English words are printed in the correct
order, but the letters of the Hebrew words are printed backwards.

Figure 3 shows the time-ordered contents of rl1 using more in a right-to-left session.

1lr erom #
.noisses LR ב- נכתבת זו פיסwה

.noisses LR ni nettirw si hpargarap sihT
בעברית. mומסתיי hsilgnE htiw seunitnoc בעברית מתחיל זה משפט

.hsilgnE htiw sdne dna בעברית jממשי ,hsilgnE htiw snigeb ecnetnes sihT
.hsilgnE htiw sdne dna בעברית מתחיל זה משפט

בעברית. mומסתיי hsilgnE htiw snigeb ecnetnes sihT

Figure 3: File rl1 in time order
under right-to-left session with more

From the current state of MINIX.XINIM, it is necessary to change the session direction with

stty rl

Then

more rl1

yields the figure. The words flow in a right-to-left order. The letters of the Hebrew words are printed in the correct
order, but the letters of the English words, including those of the command, are printed backwards.

To show files in visual order, it is then necessary to execute

stty lrrl_flip

Then same two files under the same session directions with the same command are shown in Figures 4 and 5.

15



# more lr1
This paragraph is written in LR session.
ב- נכתבת זו פיסwה LR session.
This sentence begins with English, בעברית jממשי and ends with English.
בעברית מתחיל זה משפט continues with English בעברית mומסתיי.
This sentence begins with English בעברית mומסתיי.
בעברית מתחיל זה משפט and ends with English.

Figure 4: File lr1 in visual order
under left-to-right session with more

# more rl1
.RL session ב- נכתבת זו פיסwה

.This paragraph is written in RL session
בעברית. mומסתיי continues with English בעברית מתחיל זה משפט

.and ends with English בעברית jממשי This sentence begins with English,
.and ends with English בעברית מתחיל זה משפט

בעברית. mומסתיי This sentence begins with English

Figure 5: File rl1 in visual order
under right-to-left session with more

In all of these figures, the words flow in the session’s order and each word is printed in the correct direction for its
language.

Figures 6 and 7 show the same two files printed in visual order with cat, lr1 printed once in an left-to-right
session and rl1 printed once in a right-to-left session.

# cat lr1
This paragraph is written in LR session.
ב- נכתבת זו פיסwה LR session.
This sentence begins with English, בעברית jממשי and ends with English.
בעברית מתחיל זה משפט continues with English בעברית mומסתיי.
This sentence begins with English בעברית mומסתיי.
בעברית מתחיל זה משפט and ends with English.

Figure 6: File lr1 in visual order
under left-to-right session with cat

# cat rl1
.RL session ב- נכתבת זו פיסwה

.This paragraph is written in RL session
בעברית. mומסתיי continues with English בעברית מתחיל זה משפט

.and ends with English בעברית jממשי This sentence begins with English,
.and ends with English בעברית מתחיל זה משפט

בעברית. mומסתיי This sentence begins with English

Figure 7: File rl1 in visual order

16



under right-to-left session with cat

The only difference between these and Figures 4 and 5 are in the command names. As a matter of fact, as programs
more and cat were completely unchanged.

6.2 grep and gres

The next batch of figures show what happens when using completely unchanged gres and eighth-bit
cleaned grep. Suppose that layout is still in effect, and the session is left-to-right. Then,

grep English lr1

yields Figure 8, showing all lines of lr1 that have the word “English”.

# grep English lr1
This sentence begins with English, בעברית jממשי and ends with English.
בעברית מתחיל זה משפט continues with English בעברית mומסתיי.
This sentence begins with English בעברית mומסתיי.
בעברית מתחיל זה משפט and ends with English.

Figure 8: Lines of lr1 containing English
in visual order, under left-to-right session

Under the same conditions, the time-ordered command

grep תירבע lr1

(grep Hebrew lr1) in which alt-ctrl-x was issued immediately before typing the first Hebrew letter ע and again
immediately after typing the last Hebrew letter ת (thus the spaces are in English), appears on the screen as:

grep עברית lr1

It yields Figure 9.

# grep עברית lr1
This sentence begins with English, בעברית jממשי and ends with English.
בעברית מתחיל זה משפט continues with English בעברית mומסתיי.
This sentence begins with English בעברית mומסתיי.
בעברית מתחיל זה משפט and ends with English.

Figure 9: Lines of lr1 containing עברית
in visual order, under left-to-right session

The figure shows all lines containing the word .”עברית“ If the session is changed to be right-to-left, the time-
ordered command

grep תירבע rl1

(grep Hebrew rl1) yields Figure 10.

 rl1עברית# grep 

17



בעברית. mומסתיי continues with English בעברית מתחיל זה משפט
.and ends with English בעברית jממשי This sentence begins with English,

.and ends with English בעברית מתחיל זה משפט
בעברית. mומסתיי This sentence begins with English

Figure 10: Lines of rl1 containing עברית
in visual order, under right-to-left session

Observe the strange appearance of the command line. The reason for this is the fact that the spaces and the prompt
are in English while the session direction is right-to-left. The command line in time order is (with the English
spaces represented by underscores):

#_grep_תירבע_rl1

When this is printed in a right-to-left session, first comes on the far right:

#_grep_

Then immediately to the left of that comes:

עברית

Finally, immediately to the left of that comes

_rl1

Thus, the command line appears as

_rl1עברית#_grep_

Now with unchanged gres is used to change the Hebrew word for Hebrew (עברית) to the Hebrew word
for Arabic (ערבית) in each line that contains the Hebrew word for Hebrew. First, under a right-to-left session, the
command, in time order,

gres תירבע תיברע lr1

in which the language change is issued just before and just after the Hebrew phrase, and which appears as

gres ערבית עברית lr1

on the screen, yields Figure 11.

# gres ערבית עברית lr1
This paragraph is written in LR session.
ב- נכתבת זו פיסwה LR session.
This sentence begins with English, בערבית jממשי and ends with English.
בערבית מתחיל זה משפט continues with English בערבית mומסתיי.
This sentence begins with English בערבית mומסתיי.
בערבית מתחיל זה משפט and ends with English.

18



Figure 11: Lines of lr1 containing ,עברית with עברית changed to ערבית
in visual order, under left-to-right session

If the session is switched to right-to-left then the time-ordered command

gres תירבע תיברע rl1

which, including the prompt, appears on the screen as

 rl1ערבית  gres #עברית

gives Figure 12 as output.

 rl1ערבית  gres #עברית
.RL session ב- נכתבת זו פיסwה

.This paragraph is written in RL session
בערבית. mומסתיי continues with English בערבית מתחיל זה משפט

.and ends with English בערבית jממשי This sentence begins with English,
.and ends with English בערבית מתחיל זה משפט

בערבית. mומסתיי This sentence begins with English

Figure 12: Lines of rl1 containing ,עברית with עברית changed to ערבית
in visual order, under right-to-left session

6.3 sort

The next set of examples illustrate the use of a totally unchanged sort program. It is able to sort files that
contain mixed English and Hebrew. Because all Hebrew characters have the eighth bit set to 1 and English charac-
ters have the eighth bit set to 0, Hebrew characters appear negative to sort. As a consequence Hebrew sorts lower
than English! Figure 13 shows the result of

sort lr1

in a left-to-right session.

# sort lr1
בעברית מתחיל זה משפט and ends with English.
בעברית מתחיל זה משפט continues with English בעברית mומסתיי.
ב- נכתבת זו פיסwה LR session.
This paragraph is written in LR session.
This sentence begins with English בעברית mומסתיי.
This sentence begins with English, בעברית jממשי and ends with English.

Figure 13: Lines of lr1 sorted
in visual order, under left-to-right session

Figure 14 shows the result of

sort rl1

19



in a right-to-left session.

# sort rl1
.and ends with English בעברית מתחיל זה משפט

בעברית. mומסתיי continues with English בעברית מתחיל זה משפט
.RL session ב- נכתבת זו פיסwה

.This paragraph is written in RL session
בעברית. mומסתיי This sentence begins with English

.and ends with English בעברית jממשי This sentence begins with English,

Figure 14: Lines of rl1 sorted
in visual order, under right-to-left session

To understand how the lines ended up the way they are, recall the time-ordered view of these files from Figures 2
and 3. The sort is applied to these lines to obtain the new ordering. Then each line is laid out according to the
languages of its text and the current session direction. It help to find the beginning of each line in the figures. Tables
1 and 2 indicate the starting character and approximate location of the starting character of the lines of Figures 13
and 14 respectively.

Output Line Number Starting Character of Word Approximate Positioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 מ משפט middle
2 מ משפט middle
3 פ פיסwה middle
4 T This left end
5 T This left end
6 T This left endiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Table 1: Starting characters of output lines of Figure 13

Output Line Number Starting Character of Word Approximate Positioniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 מ משפט right end
2 מ משפט right end
3 פ פיסwה right end
4 T This near left end
5 T This middle
6 T This middleiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Table 2: Starting characters of output lines of Figure 14

The beginning of line 4 of Figure 14 is one character to the right of the left end because the session is right-to-left
and the last character in the line, the leftmost character is a Hebrew period!

6.4 Hebrew File Names

Hebrew file names happen! They are available with no special treatment. MINIX allows any character to be
in a file name. Sometimes that can be a problem as if one of the characters in a file name has special meaning to the
shell, it becomes very hard to get rid of the file! In the present case, this flexibility is useful. So, the command
sequence, in visual order in a left-to-right session

mkdir 1jמדרי
cd 1jמדרי

20



cat > uובw
This is בעברית mרשו ששמו uובw.
ˆD
ls
ls -la
ls w*
pwd
od -cx uובw

which corresponds to the following lines in time order

mkdir j1ירדמ
cd j1ירדמ
cat > wבוu
This is wבוu ומשש mושר .תירבעב
ˆD
ls
ls -la
ls w*
pwd
od -cx wבוu

and which translates to the following

mkdir directory1
cd directory1
cat > file
This is file whose name is in Hebrew
ˆD
ls
ls -la
ls f*
pwd
od -cx file

gives rise to the output shown in Figure 15.

# mkdir 1jמדרי
# cd 1jמדרי
# ../cat > uובw
This is בעברית mרשו ששמו uובw.
ˆD

# ../ls
uובw
file

# ../ls -la
total 3
-rw-rw-rw- 1 root 31 Jan 1 00:41 uובw
drwxrwxrwx 2 root 64 Jan 1 00:41 .
drwxrwxrwx 4 root 496 Jan 1 00:40 ..

21



-rw-rw-rw- 1 root 0 Jan 1 00:40 file

# ../ls w*
uובw

# ../pwd
/user/1jמדרי

# ../od -cx uובw
0000000 6854 7369 6920 2073 e5f7 f5e1 f9a0 eef9
0000000 T h i s i s w ו ב u ש ש מ
0000020 a0e5 f9f8 ede5 e1a0 e1f2 e9f8 2efa 000a
0000020 ו ר ש ו m ב ע ב ר י ת . \n
0000037

Figure 15: Working with Hebrew file names

The output of od shows that the contents of the file named uובw is in time order and that the codes for the Hebrew
letters have the eighth bits on. Note that the unchanged mkdir, cd, and ls are painlessly shown to have no problems
with Hebrew and bi-directional text.

7 FUTURE WORK

7.1 General Plans

The next step, of course, is to build UNIX.XINU. The steps to be followed are the following.

1. Get the sources of a UNIX system that meets the POSIX standard for nation independence. That is, all of its
software is eighth-bit clean and uses external files to contain string constants.

2. Put a team of linguists to work to create versions of the string constants files in all languages to be sup-
ported by the system.

3. Modify the device drivers of all hard and soft copy, human readable output devices in the manner
described in this paper. This involves adding various variants of the layout algorithm and dealing with
echoing when the device supports it.

4. Add variants of the layout algorithm to all other screen output packages, e.g., curses, X-windows, Sun-
View, NeWS, etc.

5. Modify any non line-mode, non interactive line-mode program that is deemed important enough to have a
bi-directional version of it. We have already done this for the Berkeley version of vi.

6. Add Arabic as an alternative to Hebrew. This would mean altering the layout algorithm to determine the
form of the letters based on their positions in the word, as is described by Becker, Mahjoub and Mandurah,
and Tayli and Al-Salameh [Becker1987, Mahjoub19??, Tayli1990].

The next two subsections details current ideas about specifics of this plan

7.2 Multi-Lingual UNIX Systems

22



As we finished this project and distributed drafts of this paper we received copies of papers describing the
Multi-National Language Supplement (MNLS) of UNIX System V produced by AT&T UNIX Software Operation
Pacific in Tokyo with the help of AT&T UNIX Software Operation U.S. and AT&T UNIX Software Operation
Europe in London [AT&T1987, Kogure1987]. It appears that their work completely complements ours. They have
developed a nation-independent System V UNIX that follows the POSIX and X/Open standards. In particular, their
UNIX system

1. is eighth-bit clean and

2. supports alternative date and time formats, something that we entirely ignored.

The MNLS adds

1. facilities for supporting use of the Extended UNIX Code (EUC),

2. facilities for handling multi-lingual messages for application programs,

3. STREAMS-based TTY drivers and line disciplines for handling single- and multiple-byte character input
and output, and

4. the ability to set environment variables to localize programs to any natural language domain.

With the EUC, a program may use strings encoded in up to four different code sets, The default, primary
code set, indicated in the character by a 0 eighth bit and called code set 0, is always assigned the 7-bit U.S. ASCII
code. Code sets 1, 2, and 3 are optional, and are indicated in the character by a 1 eighth bit. Each can be a different
single- or multiple-byte character code. Among the optional code sets, code set 1 is the default and two different
escape characters are used to signal that the next character is in one of the two other codes. The size of a character
in any of the optional code sets is determined by which code is assigned to the code. A program can choose which
codes, if any, are assigned to the optional code sets, and which code set among the four is in use at any time.

In the MNLS, all the message strings of a program can be stored in catalogues, i.e., files separate from the
program, one per program and one per natural language. At run time, a message key is used as an index into the
catalogue for the current program in the current local language. Object programs may contain English language
message string constants which are used as the default if no catalogue is available in the current local language.

The conventional UNIX TTY subsystem, such as is in MINIX, is replaced by a STREAMS-based TTY sub-
system. As illustrated in Figure 16, a stream is a full-duplex data path between a user process and a device driver in
the kernel. The head of a stream is a line discipline module that assumes that data come from and go to the device in
EUC and presents the abstract device, e.g., a terminal, to the user. It is in this module that, e.g., backspacing is
obeyed. For a terminal stream, the stty program affects data in the line discipline module. The device driver deals
with the raw device that is used to implement the line discipline that the user sees. If the device emits and accepts
data in EUC, then no other modules are needed. Otherwise, additional stream modules may be pushed in between
the line discipline and the device driver to do one or more translations of character code.

The localization support is in the form of C libraries which define categories (environment variables) of
locales which can be set and interrogated by any program to determine the current natural language, the code sets
available, the codes assigned to each code set, the character width for these code sets, the current date, time, and
numeric representations, and the current collating sequence. (The current monetary information is not implemented
yet.)

To go along with the MNLS, AT&T Japan has developed or are developing a number of add-on packages
which localize System V with MNLS for Japanese, Chinese, and Korean. These include code sets, message

23



userwriteread

device driver

line discipline

pushed module  

pushed module 1

kernel

stream head

user process

optional translation
stream modules

n

full duplex

Figure 16: Stream

catalogues, and STREAMS translator modules that use dictionaries to provide the popular phonetic input of Kana
and Kanji characters.

There were a number of things that we chose to ignore for this prototype because we were convinced that
they were straightforward to implement or not needed for dealing with Hebrew. Moreover, we wanted to focus on
what we considered the difficult problem, that of making a bi-directional UNIX system. In their attempt to solve the
hard problems of dealing with Japanese, it appears that they have done all the things that we chose to ignore. In
terms of our future work, they have done all of our step 1 and step 2 for Japanese. Moreover, according to elec-
tronic communications with Kogure, a possible next step for AT&T is to add bi-directional capabilities in order to
permit localization in Arabic, Farsi, and Hebrew speaking countries. In effect, we have done some of the things that
they have yet to do.

It is clear then that our desired UNIX.XINU system can be obtained by inserting our layout algorithms into
their STREAMS line discipline modules and their curses module. Moreover, the new stty settings that we have
identified can easily be added to their stty program. We will then need to translate all the messages catalogues into
Hebrew.

24



Sun Microsystems has developed a system similar to AT&T’s MNLS in the form of an addition to the Sun
Operating System called HLE [SUN1990]. It is localized for and supports the version of Mandarin Chinese spoken
and written in Taiwan.

7.3 Bi-Directional X-Windows

Another student at the Technion, named Gilad Granot, is beginning a project to build a bi-directional ver-
sion of X-windows [Scheifler1986], called X-windows.swodniw-X. He is applying the lessons learned in building
MINIX.XINIM to minimize changes that must be made to existing software and to minimize the new software that
he and application developers must write.

X-windows, as illustrated in Figure 17, is built in four levels. The lowest level is the X server, implemented
by a library for each programming language used to build the rest of the structure; for C, the library is xlib. Above
xlib is the X toolkit, xt, which provides a higher level interface to xlib, in the form of procedures called intrinsics.
On top of that comes a variety of widgets that provide useful user-visible graphic elements that can be composed to
build windows and their contents. The Athena Widget set comes with the X-windows distributed by the X Consor-
tium, and other organizations provide other widgets, such as Stanford’s InterViews. Each widget may be imple-
mented using routines of xlib or intrinsics of xt. The highest level is the application level. An application is built
using procedures of widgets, intrinsics of xt, and routines of xlib. In implementing an application it pays to use the
facilities offered by the widgets, xt, and xlib to do as much of the work as possible, so that as X-windows is
changed, it is less likely that the application itself has to be changed. Conversely, the lesson from the work with
MINIX.XINIM is that the code to effect bi-directionality should be put as low as possible in this structure to allow as
many levels as possible to assume bi-directionality as given.

Sometime ago, one of the system managers at the Technion, Haim Roman, put together a Hebrew-English
terminal emulator called hvt100. The main purpose of hvt100 is to allow the use of the locally popular vi.iv under
X windows. hvt100 consists of an xterm window running a modified version of vtem inside of it. The originial
vtem emulates Digital Equipment Corporation’s VT100 terminal; the modified version, developed by Moty Cory
under the supervision of Ilana David at the Technion, emulates DEC’s Hebrew VT100. The Hebrew VT100 is, in
turn, a VT100 to which chips have been added for generating Hebrew characters on the screen in response to char-
acter codes greater than 127, for making the keyboard a standard Hebrew keyboard which emits these codes greater
than 127, and for changing the cursor direction, all under control of escape sequences. The mechanism used to get
the Hebrew characters displayed was to install a bitmapped Hebrew font in the standard directory assumed by all
software on X-windows. Interestingly, vi.iv does not assume any hardware bi-directional capability; it merely simu-
lates bi-directionality by exercizing the operations presented by the terminal’s termcap. It does use the ability to
change the keyboard mapping and to change the character set displayed on the screen. The right-hand portion of
Figure 17 shows where hvt100 fits in the X-window structure. The implementation techniques used to build hvt100
are not general enough for our purposes since the changes were done at the application level rather than in any
lower level.

A group of students, Eliad Klein, Amit Reisman, and Amijai Shulman, implemented a bi-directional ver-
sion of the InterViews widget, whose structure is illustrated in the left-hand portion of Figure 17. They assume that
all text is in time order and Hebrew characters have the eighth bit on. The changes were quite small. Painter was
changed to apply the layout algorithm to all drawn text lines. TextDisplay had to use TextLines and a TextBuffer
to manage the text displayed on the screen in a manner not unlike the screen manager of vi.iv. Once the modified
InterViews was available it was easy to modify the simple text editor, sted, to work bi-directionally with Hebrew,
with only the addition of a command to change the language direction. Because of time limitations, they did not yet
implement the notion of session direction; as far as sted and InterViews are concerned, all documents and sessions
are left-to-right.

In addition, by providing bitmapped proportional spaced Hebrew fonts in the standard directories, the exist-
ing formatter previewers can be used to preview the output of the bi-directional formatters, ditroff/ffortid and

25



. . .
Widgets

X toolkit intrinsics

X server routines

hvt100

. . .

Widget SetAthena

InterViews

Applications
sted

TextEditorSrtingEditor

TextBuffer TextDisplay

TextLineTextLine

Painter

xlib

xt

Figure 17: X-windows

26



TEX/XET, This simple fix works because these formatters think that they are writing to uni-directional printing dev-
ices and generate output in visual order.

These three interim solutions in fact cover a vast majority of all bi-directional applications at the Technion,
preparing scientific documents in Hebrew for student papers and theses. However, they do not make a full bi-
directional, bi-lingual X-windows.

The most desirable solution to building a bi-directional, bi-lingual X-windows is to put all the changes in
xlib [Nye1990] so that they are available to xt and any widget built on top of xlib. This means that Xlib and all other
language interfaces to the server must be changed. Examination of the X font mechanism of xlib shows that the
XFontStruct structure for each font has a field called direction that specifies the direction in which the font is
painted as text using the font is drawn in a graphic context. There is, however, no concept of document, session, or
in this case, context direction, defining whether the whole graphic context is to be considered right-to-left or left-to-
right.

On the assumption that sufficient Hebrew fonts are available, and the underlying operating system and its
kernel are bi-directional as suggested in the body of this paper, it appears that all that is necessary make X-windows
bi-directional is to modify the text-drawing routines in Xlib to apply the layout algorithm to all drawn text. The con-
cept of context direction, the analog of session direction in the tty drivers, has to be added. Clearly there will need to
be instructions to set the current context direction. It will also be useful to be able to turn the application of the lay-
out algorithm off entirely, particularly to aid in debugging.

If these changes to the server are constructed correctly, it may be possible to throw out hvt100 entirely. Its
functionality should be obtainable simply by running xterm on top of the bi-directional xlib.

It is clear that only text-processing routines have to be modified. General bitmaps, that is, pictures, are not
affected by bi-directionality. A bitmapped representation of a picture is just moved, copied, and subjected to pic-
torial transformations, even if it happens to look to the human viewer as if it contains text. Should a user take the
bitmap of a text object and include it in a picture independently of the text object, then all ability to subject it to lay-
out has been lost. It is permanently in visual order relative to the context direction at the time of separation of the
bitmap from the text object.

8 CONCLUSION

If one is willing to accept the changes that make software eighth-bit clean as nonsignificant changes, then
the goal of

building MINIX.XINIM as a bi-directional, full-function MINIX system so that the kernel and all
line-mode applications running on top of it are bi-directional with no significant change to the
applications

has been achieved. This is not quite the goal that we started with; it specified no change to the applications. How-
ever, we went a bit beyond the goal in a significant way. More than just the line-mode programs are made bi-
directional. By carefully dealing with echoing, also interactive line-mode programs were made bi-directional with
no significant change to the application.

A natural question to ask is whether the performance of the system and the applications suffers. After all,
now every line of output is subject to the overhead of layout. However, the fact is that we simply did not feel any
difference. Probably the time to wait until the device is ready for the next character so dominates the time spent in
the device driver that the layout overhead is just not observable.

On the other hand, note that we worked with an IBM PC clone, which has a memory-mapped terminal. A
memory-mapped terminal is about a thousand times faster than a serial terminal. Note also that there is a

27



considerable difference between line-mode output and interactive output. The first will be fast on almost any kind of
terminal, but the latter may be slowed down on serial terminals, especially ones that do not have the ability to shift
lines. Still one the other, other hand, note that in another project, we used the same layout algorithm in the screen
manager of vi to make vi.iv. When vi.iv is used on DEC VT220 Hebrew terminals operating at 9600 baud, it feels
no slower than vi itself. There too, the time to send the characters of a line to the terminal completely dominates the
time to compute the view order appearance of the line.

The testing of MINIX.XINIM was a pleasant surprise! After thoroughly testing the changes to the device
drivers through the first applications and the shell, we slowly began to test and use other applications. In the first few
of these test uses we were apprehensive; would the application work correctly? Usually they did, and they worked
the first time. We began to notice that in setting up for one test we inadvertently tested other programs, e.g,. after
making a directory or a file, we did ls from habit. Only after seeing the results did we realize that we had just tested
ls. We finally arrived at the point that we were just doing commands and expecting them to work. It is really a pleas-
ure when a nice, theoretically sound idea really works when put to practice on real software!

Acknowledgements

The authors thank Gilad Granot, Eliad Klein, Amit Reisman, Haim Roman, and Amijai Shulman for their
information about X-windows and Lev Finkelshtein for the translation of the abstract into Russian.

ffortid is a trademark of Berry Computer Scientists. NeWS, Sun, SunOS, and SunView are trademarks of
Sun Microsystems, Inc. PC-AT is a trademark of IBM Corporation. TEX is a trademark of the American
Mathematical Society. UNIX is a trademark of AT&T Bell Laboratories. ViewPoint is a trademark of Xerox Cor-
poration. X-windows is a trademark of the X Consortium. XENIX is a trademark of Microsoft Corporation.

References

[Alef-Bet19??] Alef-Bet Manual, 19??.

[Allon1989] G. Allon, Towards a Bi-Directional Operating System, Haifa, Israel: M.Sc. Thesis, Technion,
1989.

[AT&T1986] System V Interface Definition, Indianapolis, IN: Volume I, Issue 2, AT&T Customer Informa-
tion Center, 1986.

[AT&T1987] UNIX System V Multi-National Language Supplement, Tokyo, Japan: Release 3.2, Product
Overview, AT&T UNIX Software Operation Pacific, 1987.

[Becker1984] J.D. Becker, Multilingual Word Processing, Scientific American, 251(1): 96–107, July, 1984.

[Becker1987] J.D. Becker, Arabic Word Processing, Communications of the ACM, 30(7): 600–611, July,
1987.

[Beebe1990] N.H.F. Beebe, Character Set Encoding, TUGboat, 11(2): 171–175, 1990.

[Buchman1985] C. Buchman, D.M. Berry, and J. Gonczarowski, DITROFF/FFORTID, An Adaptation of the
UNIX DITROFF for Formatting Bi-Directional Text, ACM Transactions on Office Informa-
tion Systems, 3(4): 380–397, October, 1985.

28



[Comer1984] D. Comer, Operating System Design: the Xinu Approach, Englewood-Cliffs, NJ: Prentice-
Hall, 1984.

[David19??] I. David, Vih Manual Page, Haifa, Israel: Technion, 19??.

[Einstein19??] Einstein Manual, 19??.

[Gamma1984] Multi-Lingual Scribe, Santa Monica, CA: Gamma Productions, 1984.

[Gonczarowski1980] J. Gonczarowski, HNROFF/HTROFF Hebrew Formatters based on NROFF/TROFF,
Jerusalem, Israel: Computer Science Department, Hebrew University, 1980.

[Habusha1990] U. Habusha and D.M. Berry, vi.iv, a Bi-Directional Version of the vi Full-Screen Editor,
Electronic Publishing, 3(2): 3–29, 1990.

[Intersoft1984] WORDMILL User’s Guide, Jerusalem, Israel: Intersoft Software Engineering, Ltd., 1984.

[Knuth1987] D.E. Knuth and P. MacKay, Mixing Right-to-left Texts with Left-to-right Texts, TUGboat,
8(1): 14–25, 1987.

[Kogure1987] H. Kogure and R. McGowan, A UNIX System V STREAMS TTY Implementation for
Multiple Language Processing, Proceedings of the Summer 1987 USENIX Conference:
323–336, June, 1987.

[Mahjoub19??] A.H. Mahjoub and M.M. Mandurah, Current Issues and Future Directions in Computer Arab-
ization, Technical Report, College of Computer and Information Science, King Saud Univer-
sity, 19??.

[Nye1990] A. Nye, Xlib Programming Manual for X Version 11, Volume 1, Sebastapol, CA: O’Reilly &
Associates, Inc., 1990.

[POSIX1988] IEEE Standard Portable Operating System Interface for Computer Environments, IEEE Std
1003.1-1988, Technical Committee on Operating Systems of the IEEE Computer Society,
1988.

[Scheifler1986] R.W. Scheifler and J. Gettys, The X Window System, ACM Transactions on Computer
Graphics, 5(2): 110–141, 1986.

[SCO1988] 8-bit Compatible Updates, Discover—The Technical Bulletin of Santa Cruz Operation, Inc.:
11, Santa Cruz Operation, November/December, 1988.

[SUN1990] HLE 1.0 Product Description, Mountain View, CA: Sun Microsystems, 1990.

[Tayli1990] M. Tayli and A.I. Al-Salamah, Building Bilingual Microcomputer Systems, Communications
of the ACM, 33(5): 495–504, May, 1990.

[Weinstein1986] J. Weinstein, MacInHebrew, Cambridge, MA: MIT Hillel House, 1986.

[X/OPEN1987] X/OPEN Portability Guide, Amsterdam: Elsevier Science, January, 1987.

29


