TECHNION TECHNICAL REPORT, JANUARY 1997)

Stretching letter and slanted-baseline formatting for
Arabic, Hebrew, and Persian with ditroff/ffortid and
Dynamic PostScripT Fonts

DANIEL BERRY (__ & JL:Q|J,~—|:EN~J1,/%JWIJ)

Computer Science Department
Technion

Haifa 32000

Israel

SUMMARY

This paper describes an extension to ditroff/ffortid, a system for formatting bi-directional
text in Arabic, Hebrew, and Persian. The previous version of the system is able to format
mixed left-to-right and right-to-left text using fonts with separated letters or with connecting
letters and only connection stretching, achieved by repeating fixed lenth baseline fillers. The
latest extension adds the abilities to stretch letters themselves, as is common in Arabic,
Hebrew, and Persian calligraphic printing, and to slant the baselines of words, asis common
in Persian calligraphic printing. The extension consists of modificationsin ffortid that allow it
to interface with (1) dynamic PosTtScriIPT fonts to which one can pass to the outline pro-
cedure for any stretchable and/or connected letter, parameters specifying the amounts of
stretch for the letter itself and/or for the connecting parts of the letter and (2) POSTSCRIPT
fonts whose char acters are slanted so that merely applying showto aword ends up printing
that entire word on a single danted baseline.

As a self-test, this paper was formatted using the described system, and it contains many
examples of text written in Arabic, Hebrew, and Persian.

—zpn

NPATPA N0—TM.N0EM N I, N°2Y3 13717 203 P 0197770 no-ya ditroff/ffortid Yw nan—rTxnn a1 —mRn
M=TmA NTMK OY X, MT-TINTMK OY 071913 20 01 w1 ,2x0wD 1rom 1rve Dxmewn 203 —Tob 1912 no—yan bv
NX N=wERM 7WINT 7207T.0°912p 0°07TR2 070271 M2 1 2Y 71 TMNIWEnK2 N-waRnMmi 722 07 Tpn Ninm
521pn5 ,0°2°1 5w ©°0271P N>V NX 191,N°0~EMN"~IN,N°2"F MDY 5T 01272 221p1D 1A%y NN NNPn»
"2 0 »ar7o A0 Y prrn o waxen,ffortida o 1w on A an—T.n 0TI 5wa "a—mop 0197 2
N7 DR 07 TRY 07T TN ~TIPA X/ NANRI NIX 23 —T39 21237 1P N7 2% —~3yn? 1n°1 —ox ,POSTSCRIPT
P2, MM 0P NMR —wX POSTSCRIPT=2 071913 (2)71 0727 p»n NIRA P21 2w /1 118y NIxa 2w anennn
VY 0027 By MY A9 an Y 10277 N—XM show x 171

/172753203 5w NI2TIMRANT 2215 X771 ,2°¥? A—RM@ NO-yA0 NWnR1 01 7T 7ANA NMY 1p772 IR
OB IR

LN
55 —dad mely cditrofffffortid s 58— ad AL 00
Qsled aecd vd]y ci] A ad W bl

Received 1 January 1997
[] 1997 by Daniel M. Berry Revised 1 Whenever 199?

2 D.M. BERRY

“ e e Bl (o hdas L 5,003 pab il
PRSI NI NGRS v d R U JRCI gpess B
L)b—]l Q}Lﬁ k."j }C,:Aio j.ﬁ L—QS ¢ L.M \—é)}u| ix_& \.}
b e Bl eyl Lsd 3&4’# o LS el
5)>| (V) C;o JL«:.:YL: [.@_J C_Q.M;S gﬁ"'ﬂj ffortld—J ubM.x_:
Ldold (2osows Q&JL; de (dynamic) 3 , . s PostScript
Jl)w C—c cdﬁa} }/)] o&:):c k.)&'&b J)} ESO.X.CLL”
s ot sVl 5/ ais o ad se §peS s
ul shovx}.li.})..\tJ {L3Le PostScript JJ_&| (Y) 5 « L.@c.a.ﬁ./: q,dl
ol dlesaes £ by WS Ll
ﬂja,w').: s_—\ ‘\.JLSL“ o.LJb ¢ _.'QL))«J—J 6.:'.3) ﬁn}[S
L.JG:IG'UJLUQI 3 s _}C ;ﬁ") cb>’t9| J}‘\ajil C_.QL&JA-“
s lidy e el e

s

db_, sl L_5" R QS \ < C_:JM..» |) ditrOﬁ/ffortidjg k_;c“" aJie g_)"l

U"I w_: Qj)j LSW)La 9 LET e W L.Jhwf ka 99 dw

bl el 5l maly g 5l byl (deig cslie st
b ldasl (petSabnn b 5 csasn e boae Sl e S 51 a0l
o b T oS saim ool b b ey slaeSe LS5
soes c s bl Sl oo S i 0 et S das LB ae
Lol bl ol Lo S e nllS hacl 50,5 5, il fese gyl
3o el gl 5l JSime b oS lal T el e
Slalos (dabs ol eslizal (1) ogbile | L el 55 o a &S flortid

STRETCHING AND SLANTING 3

dlasl b oesS Gs 0 (L) 2 wby @l & fste <5 POSTSCRIPT
A dlasl G e b e i S anlil S lanell oMby cols)
POSTSCRIPT s dn o> _glaks 5l sslizal (v) 5 oo asie |, O
wWlS plet ol ael e o WS 2l (40 show jsies alasl 4S5k

g L N N T T

L_‘>.~.|| BE) Y W)| saliawl L.a aJlie g_J"I ‘&_;‘LUTJj} ;[.: ulﬁ""'
el s e s i ol Ll 5 el (enlB ol mois

.a)|.> e B
MW

féz};/‘)g/l/af)}/‘gj/l) ditroff/ffortid jgj/,\;uﬂfl
%)|kyfy}fyglﬁﬁ/jlﬂ05ﬁ'f)u)‘j‘j};é\%[p;\;ﬂf
ILeI){{Ag%U}b%'Ag

o et
;Sj‘y'y;ﬂf)%‘/‘j/jwk,);g))f;yJ%/wkg
Vejy);g,,a”ubu,)‘%U}o,ﬂf)ujuy{%,g‘yuﬁyqe&yﬁ
\/Wk}jlpglj;w'“):M|);5L..’°|)/_%)JSJ°|}>QT44».§ ffortid)py'jﬂ,)")lfﬂf
‘JIJI)JL%IQJ.)%/Z//}(/JWfﬁmbﬁwky}kﬁﬁ POSTSCRIPT yw’
)fy%/ﬂl)/t/]p)wljﬁ}ﬁtg_)/f‘)),',;{)l»')ASJUD/,;AIJL')’U%M
Agwlf;lg\/lﬁéshow);;’”D(L?JIAQ)JJM POSTSCRIPT D}','»}y")'lﬂu;/l(t)

J)?Alff'teﬁ;‘ R Gt AP STV LN oy

.sf‘av@mﬁ"yqb’/’b%“ﬁjrufkybﬁw

4 D.M. BERRY

7 2 e e LT
.J)Igaj}ﬁ)’f)u)‘ju})}y"i)})t}‘%)wh}}

KEY WORDS Arabic Bidirectional Formatting Multilingual Troff Stretching Keshide Slanted-
baseline

1 INTRODUCTION

The reader is assumed to be familiar with the paper “Arabic Formatting with
ditroff/ffortid” Published in Electronic Publishing in December, 1992[1]. This paper
described an Arabic formatting system that is able to format multilingual scientific docu-
ments that contains text in Arabic or Persian, as well as other languages, plus pictures,
graphs, formulae, tables, bibliographical citations, and bibliographies. The system is an
extension of ditroff/ffortid that is already capable of handling Hebrew in the context of
multilingual scientific documents. ditroff/ffortid itself is a collection of pre- and postpro-
cessors for the UNix ditroff (Device Independent Typesetter RunOFF) [2] formatter. The
system was built without changing ditroff itself. The extension consists of a new prepro-
cessor, fonts, and a modified existing postprocessor.

The preprocessor tranditerates from a phonetic rendition of Arabic using only the
two cases of the Latin aphabet. The preprocessor assigns a position, stand-alone,
connected-previous, connected-after, or connected-both, to each letter. It recognizes liga:
tures and assigns vertical positions to the optional diacritical marks. The preprocessor
also permits input from a standard Arabic keyboard using the standard ASMO[3] encod-
ing. In any case, the output has each positioned letter or ligature and each diacritical
mark encoded according to the font’s encoding scheme.

The fonts are assumed to be designed to connect letters that should be connected
when they are printed adjacent to each other.

The postprocessor is an enhancement of the ffortid[4] program that arranges for
right-to-left printing of identified right-to-left fonts. The major enhancement is stretching
the final connection to letters of lines or words, using a fixed-sized baseline filler, instead
of inserting extra inter-word spaces, in order to justify the text.

This ffortid does not handle letter stretching, and the Srouji and Berry paper observes
in its conclusion that adding the ability to stretch letters would be left for future work.
That future work, applied to Arabic, Hebrew, and Persian, together with the abilities to
stretch connections without a filler and to slant the baseline of words as in Persian isthe
subject of the present paper.

As usual for papers dealing with formatting issues, this paper was typeset with the
software described herein. The commands that cause the printing of this paper are:

refer -d -e -n -p /hone/dberry/.refsidx paper > paper.ref

STRETCHING AND SLANTING 5

psfig paper.ref|sed -f cross.references|tbl|egn -Tpsc| \
troffort -nXP -r13 -r14 -r22 -r42 -r43 -r44 -r45 \

--13 --42 --43 --44 --45 -sea -nmsw \

-1hD -1AN -IPN -1PU -pn -1hF -ILG -t > $F. ps

where mounted on position

13 isastretchable Hebrew font called Frank Ruehl (hF),

14 isanon-stretched mounting of that on position 13,

23 isanon-stretchable Hebrew font called David (hD), which is also not reversed,

42 is a stretchable Arabic font called Naskh (AN),

22 isanon-stretched mounting of that on position 42,

21 isanon-stretched mounting of that on position 42, which is also not reversed,

43 is a stretchable danted Persian font called Persian-Naskh (PN) with no space

between words,

e 44 is a dtretchable non-slanted Persian font called Persian-Unslanted (PU) with
space between words,

e 45isan unganted version of that on position 43 (pn), and

e 20istheLogo font (LG) for the word METAFONT.

2 STRETCHING

In high quality Arabic and Persian printing, stretching is preferred to inserting extra
inter-word spacing to achieve left (end-of-the-line) justification. Figure 1 shows an ex-
ample from an Egyptian textbook in Arabic caligraphy [5,6]. This stretching is called
“keshide” in both Arabic and Persian from the Persian word keshidan, which means “to
stretch”. In Arabic and Persian, there are two kinds of stretching,

1. stretching of the connection to the last connecting-before letter in a line or words,
and
2. stretching of the last stretchable letter in aline or words.

In Figure 1, the pronounced stretching at the end of line 2 is of a letter, the connecting-
before nun, while those near the middles of lines 3 and 4 are of connections.

In high quality Hebrew printing, especially in the Torah and in prayer books, stretch-
ing is for the same purpose, to achieve justification without spreading words. Figure 2
shows some stretching in the first verses from the book of Genesis[7]. Since Hebrew
letters are not connected to each other, only letter stretching is available and it is usually
applied to the last stretchable letter in aline. One seesin line 4 a stretched 2 (bet), in line
20 a stretched a1 (he), in lines 5, 10, 15, 16, 18, and 19 stretched —s(reshes), all of
differing amounts, and in lines 9 and 13 stretched 2 s (lameds), of differing amounts. Be-
cause the amounts of stretch are all different, a collection of stretched versions of letters
of specific amounts of stretch is not likely to work. (All occurrences of words for G-d or
G-d's name have been removed in order to avoid profaning these words).

One can imagine a scribe in these languages, writing with indelible ink on expensive
parchment, not having an opportunity to rewrite a line to left justify it after it is known
what text can fit in the line. Stretching is applied near the end of the line, when it is
easier to predict how much more can be written on the line. The scribe merely stretches

6 D.M. BERRY

o o R K o e e K o o A o e S A K

WY

s SESI Vi
LR BN B IO P G S
§ :'“0‘: 3%\.\3\3 % ,‘9_)‘_1-.\9\,9@\3@«&3.23:\
. Qumb@c@u iy oiEiaia

N
L&
= 4

£
(p

N\

N o R R K R

Faeeanseeeeseesneaesnenoateanness

Figure 1: Sample of Arabic Calligraphic Writing.

either the last connection or the last stretchable letter asis available. It is the perfect way
to achieve justification when there is only one pass over the material and there is no
backtracking. Of course, with modern formatting software, it is not difficult to achieve
justification by spreading words. However, old habits die hard and still stretching is asso-
ciated with high quality printing. Furthermore, not all stretching is applied at the end of
the line in a one-pass mode. There are numerous examples of printing in which the scribe
was careful to balance the stretching over several points in the line to achieve a pleasing
appearance, as is shown in Figure 3, taken from the same text book from which Figure 1

was taken. It showsthe letters —, 3 and a variation of S , without and with stretching.

The unstretched versions of the letters are said to be 5 points wide (the point is the width
of the dot that appears in two of the letters), and the stretched versions are 11 points
wide. This figure also shows the importance of aesthetics in stretching, an importance
that precludes simple algorithms. Because the three |etters that are stretched are structur-
aly similar, for appearance’s sake, they had to be stretched the same amount rather than
individual amounts according to the needed justification. For this kind of situation, the
human calligrapher must exercise lookahead.

3 STRETCHING PROBLEMSAND DYNAMIC FONTS

The following discussion is couched in terms of POSTSCRIPT [8] fonts, although the prob-
lems exist and the proposed solutions are available also in other outline-based font for-
mats such as TrueType[9].

A form of connection stretching is quite easy to achieve with most available fonts. It
requires only that

STRETCHING AND SLANTING 7

YUND TN DIwR AN N PNy
MM R Y YD RR RN
THREEN TN TR g R ngtn
=T "D YRANR NI RN
N IR P N b-a i
29 T AT RN R NG
\ SO TR DY R
IR T AT W e =N
=IVPRNTIAN . wynome e
—VON DT TIPS RIS TN TN e
Y Y= NEMID T e By
W T ST Iy I
=N R Anne oen “1aN"
NAPN {2 T AV ONT NN v
N=T 23 NUD RRAMIN PN eI
YTINTNYSS O tanvmees
WSTIMG Y NG Y PV Y Iy N
VTINTNDITY DTN PRDITY E Y oN
TG ST PV IR P e vy Ny
RS NTVIRT S WM N
e By NI I

Figure 2: Sample of Hebrew Calligraphic Writing.

1. al connecting letters connect via baseline strokes which meet their bounding boxes
at the same y coordinates

2. that the show command place the characters to be printed bounding box to bound-
ing box, and

3. that the font provide a narrow rectangular baseline filler that connects on both sides
to the connecting baseline of all connecting letters.

Figure 4 shows the connecting after and the connecting before forms of baa connected to
each other, then disconnected, then with two fillers in between them but disconnected,
finally with the two fillersand all connected.
Letter stretching is much more difficult to achieve, and that difficulty is probably the
reason that it does not seem to appear in any of the available Arabic formatting systems.
One possible way to achieve letter stretching is for the font to provide additional

8 D.M. BERRY

S

Figure 3. Non-stretched and stretched |etters.

L3 V8

(O

Figure 4: Baas with stretched connections.

stretched forms of each stretchable letter, each form being the stretching of one letter by
a specific amount. The problem with this approach is the large number of additional
letters required in the font to provide enough different sizes of each stretchable letter to
cover most needs. Arabic fonts are usually quite full, taking up nearly all 256 available
positions with all the letters and ligatures and the up-to-four forms of each letter and liga-
ture. Moreover, there will always be specific stretching needs that are not covered by the
available collection.

An dternative, and probably better approach would be to make the procedure for
each stretchable letter accept a parameter whose value, defaulted to zero, indicates the
amount of stretch with which the outline of the letter isto be drawn. When it is necessary
to stretch aletter by any specific amount, the show of that letter passes the amount to the
letter’ s procedure and informs the font mechanism of the new length of the letter.

The problem with the second approach is that it requires dynamic fonts, as proposed

STRETCHING AND SLANTING 9

by J. André and B. Borghi [10]. Such dynamic fonts violate the basic assumption for
type 1 fonts[11], namely that for any given character code, scale (point size), and font
name, the bitmap obtained by executing the character’s procedure is constant. The hold-
ing of this assumption allows caching the bitmap so that it does not need to be computed
again when a request to print the same character in the same scale and font comes later.
Dynamic fonts thus print slower because it is useless to cache a character’s bitmap when
each time it is printed, it will have a different amount of stretch and thus a different bit-
map. Such dynamic fonts need to be type 3, that is, allowing use of the full POSTSCRIPT
language, and thus are slower to print and lose other benefits of type 1, i.e., the ability to
provide hints to improve low resolution or small point size rasterization and the ability to
be handled by the Adobe Type Manager (ATM). However, in this author’s opinion, the
beauty of what can be done with dynamic fonts, including dynamic optical scaling[12],
outweigh the disadvantages. Moreover, as the use of dynamic fonts grows, Adobe will be
provided an incentive to extend hinting and the ATM mechanism to cover the needed
dynamism, perhaps through a type 2 font providing just enough capability from the full
POSTSCRIPT to cover most needs for dynamic fonts. Note that multi-master fonts
(MMFs) do not fill the bill. Each can be thought of as a font definition macro, which
when supplied with widths of the font to be smulated, generates a proper type 1 font
definition, each of whose characters prints to the specified width.

4 OPERATION OF ffortid

As shown in Figure 5, ffortid sits between ditroff and the device driver and converts from
the ditroff intermediate form to the same form so that the device driver does not know
that it did not get itsinput directly from ditroff.

Normally, with no right-to-left text

logical- ditroff formatted device
ordered - output driver
input

With right-to-left text

re-

logical- .
ordered ditroft || ‘ormated ffortid |——| formatted device
output driver

input output

Figure 5: Flow of ffortid and related programs.

Recall that the ditroff intermediate form, besides showing the exact position of each char-
acter to be printed, has a specific marker at the end of each output line and a specific
marker at the end of each input word. A program processing this form does not have to

10 D.M. BERRY

guess, and possibly be wrong, where the ends of lines and ends of words are. Recall
finaly, that the characters come out of ditroff broken into lines but in logical ord-
er[13, 14, 4], that is from left to right in the order that one hears the characters asthey are
spoken.

The main job of ffortid is to reorganize the characters so that the text isin visual ord-
er, in which the text of each language is written in its own direction and the flow of the
single-directional chunks in each line is consistent with the current document direction.
ffortid works by totally reformatting each line as a function of the current document
direction and the font of each character. At the top level of abstraction, it reads the char-
acters of each line, delimited by the end-of-line marker, and permutes characters so that
the single-directional chunks of a line flow in the current document direction which the
characters in each chunk flow in the chunks single direction.

for each linein thefiledo
if the current document direction isLR then
reverse each contiguous sequence of RL charactersin theline
€l se (the current document direction isRL)
reverse the whole line;
reverse each contiguous sequence of LR charactersin theline
fi
od

An RL (LR) character isacharacter inany RL (LR) font. Thissimple procedure falls flat
on its face when presented with an embedded LR numeral inside RL text insidea LR do-
cument, e.g., inside an English document, a Hebrew address containing a Latin house
number; the LR numeral splits the RL text into two pieces and the two pieces end up be-
ing in the document’s LR order relative to each other rather than the required RL order
relative to each other. This anomaly is prevented by applying the algorithm recursively
on the RL text. Before the introduction of the stretching capability, the original ffortid, as
a last step, applied ditroff's normal word-spreading agorithm to increase the inter-word
white space in each line to cause the text to be justified at both margins. To be concrete,
without this provision, the time-ordered input:

Helivesat mws>N 498215 nraninlsragl.
would appear as:
Helivesat nowin 49ax15 nosninIsragl.
instead of the correct:
Helivesat no>n 152849 novinin Isragl.
Note that the logical ordering of the house number is “4-9-alef-bet-1-5". and that the this
number must come after the name of the street, X>win and before the name of the city

n9n in the right-to-left flow of the Hebrew text that is embedded in an English sentence
in aleft-to-right document.

STRETCHING AND SLANTING 11

It is clear that the total amount of white spave between the words in aline, 6, is cal-
culable as the difference between the current line length and the sums of the lengths of
the words and the minimal spacing. Stretching is achieved by not spreading the words
and dividing & by the number of stretching places to get an amount, o, to stretch at each
stretching place. When connection stretching is used, then a number of these fillers
whose total length is greater than equal to o is put in each connection to be stretched. The
last of these can be made to overlap its predecessor so that its end is precisely at the be-
ginning of the character to which it connects. Clearly, if stretching of letters is added,
then the simple strategy is to pass this ¢ amount as the length increase parameter to the
letters to be stretched. Therefore the problem is to modify the POSTSCRIPT definitions of
the fonts so that the procedure for a stretchable letter takes the amount of stretch as a
parameter and modifies the outline appropriately.

5 DYNAMIC FONTS

With the general strategy laid out, the step of highest technological risk was the produc-
tion of the dynamic fonts with the parameterized stretchable characters. Hence, this was
the first step to work on.

In Arabic, Hebrew, and Persian, al stretching is across horizontal portions of a letter
such that stretching them does not cause the result to look like another letter. Letters,
such as the alif in Arabic and Persian and the vav in Hebrew, that are entirely vertical
cannot be stretched. In Hebrew, all horizontal portions involve sections bounded by
paralel horizontal straight line segments. In Arabic and Persian, the horizontal portions
are not straight; they involve smooth curves that are mostly horizontal. Thus stretching
Hebrew letters is rather straightforward, but stretching Arabic and Persian letters in-
volves stretching curves in such a way that the curvature, in the vernacular sense of the
word, is somehow preserved and that the stretched sections flow smoothly to the rest of
the letter. Therefore, it was decided to build a stretchable Hebrew font first. Thisway, the
details of the parameterization could be worked out independently of dealing with the
aesthetics of curve stretching.

6 DYNAMIC HEBREW FONTS

The stretchable Hebrew letters are those with horizontal portions for which stretching the
horizontal portion would not cause the result to look like another letter. Therefore, the
stretchable letters are 2 (bet), 7 (daled), 7 (heh), n (khet), 7 (khaph sofit), > (kaph), >
(lamed), o (mem sofit), —tnesh), and n (tav). This author has seen x (aleph), » (mem), and
7 (quf) stretched in some documents. Note that 1 (vav) is not stretchable bacause stretch-
ing its small horizontal portion would cause the result to look like —tnesh).

It was decided to stick to the definite set for now. Once the technique is understood, it
is easy to add additional stretchable letters. Indeed, the software has been carefully
designed so that the parts affected by adding additional letters to the stretchable set are
completely table-driven from human-editable ASCI| tables.

First it was necessary to decide how to pass the amount of stretch to each letter to be
stretched. It was decided that before the show of the letter to be stretched, a global vari-
able called f act would be set to the amount of stretch. The procedure for this letter
could use this value as it sees fit to adjust the values of mostly x coordinates in the outline

12 D.M. BERRY

path. Following thisshow, f act would be reset to zero, with the intention that a stretch-
able letter finding f act set to zero would end up not being stretched. Initialy, the units
of f act were those of the Font Mat r i x of the font. However, such a unit requires the
invoker to know the Font Mat ri x of the font, which is normally considered a hidden
implementation detail. Later, it was decided to make the unit of f act be emms. The
letter’s procedure is required to convert the value of fact into Font Mat ri x units by
multiplying f act by the x value in the Font Mat ri x, and does so with the POSTSCRIPT
code

/fact fact Name-of-font-definition-dictionary
/FontMatrix get 0 get div def

To stretch a character, it is necessary to examine its outline and to find the points
defining the straight line segments to be stretched. The simplest situation is when the
definition of a character’s outline does an absolute move to a starting point and then
draws the path using only relative commands thereafter. Recall that all stretching in He-
brew is across straight line segments; if the path is described with relative commands,
each such segment is defined with anr | i net o whose prefix arguments are the x and y
of the ending point, the starting point assumed to be where the current point is at the start
of the command. Therefore, it suffices to decide which r| i net o segments are to be
stretched and to add or subtract f act , depending on the direction in which the segment
is being drawn, to the x argument of ther | i net 0. Thus, the definition of the Hebrew
letter bet from one font,

[bet {

464 0 -61 -26 482 541 setcachedevice
0 0 noveto

127 388 rnoveto

-127 O rlineto

-2 0 35 52 44 62 rcurveto

9 11 54 67 54 65 rcurveto

O -47 rlineto

22 0O rlineto

114 O rlineto

30 0 80 0 107 -32 rcurveto
25 -30 19 -90 19 -104 rcurveto
0 -252 rlineto

61 O rlineto

-61 -80 rlineto

-360 O rlineto

56 80 rlineto

233 0 rlineto

00 -1 221 0 238 rcurveto

0 9042 -9 56 rcurveto

-9 15 -28 14 -46 14 rcurveto
-107 O rlineto

fill } def

STRETCHING AND SLANTING 13

is converted to

/bet {

%9464 0 -61 -26 482 541 setcachedevice
543 fact add O setcharw dth
0 0 noveto

127 fact add 388 rnoveto
-127 fact sub O rlineto

-2 0 35 52 44 62 rcurveto

9 11 54 67 54 65 rcurveto

0 -47 rlineto

22 0 rlineto

114 fact add O rlineto

30 0 80 0 107 -32 rcurveto
25 -30 19 -90 19 -104 rcurveto
0 -252 rlineto

61 O rlineto

-61 -80 rlineto

-360 fact sub O rlineto

56 80 rlineto

233 fact add O rlineto

00 -1 221 0 238 rcurveto

0 9042 -9 56 rcurveto

-9 15 -28 14 -46 14 rcurveto
-107 fact sub O rlineto

fill } def

Observe that the set cachedevi ce command was replaced by a set charwi dt h
command that implements the same net character width. Since a dynamic character may
produce different outline each time it is called, its bitmap cannot be cached; if it were,
then the next time the character is shown, the procedure would be totally ignored and the
previously produced bitmap would be used, possibly of the wrong width. The defined
character at point size 30 and a1 emm stretching of it are

22

The stretching occurs at the boundary between the curves leading to the straight line seg-
ments and the straight line segments both upstairs and downstairs. In the case that the
path definition is not a series of relative commands, but a series of absolute commands, it
is necessary to calculate the x coordinate of al pointsin terms of the f act parameter.
Generally, the xsto the right of the stretching are all increased by the value of f act and
those to the left of the stretching are left alone;

Erez Manor, a student, implemented much of the stretching of the Hebrew font used
in this paper as a project for the author’ s Electronic Publishing seminar.

14 D.M. BERRY

7 DYNAMIC ARABIC FONTS

There are two parts of Arabic and Persian letters to be stretched, the letter itself in the
cases of stand-alone as well as connecting letters, and the connecting parts in the cases of
connecting letters only.

7.1 Stretching Letters

In Arabic and Persian, the situation is more complex than in Hebrew. No letter has por-
tions bounded by horizontal straight line segments. There are letters with curved strokes
in which the predominant flow of the stroke is horizontal. It is more correct to say that
there are forms of letters with these predominantly horizontal curved strokes; not all
forms of the same letter have these strokes. Therefore a form is stretchable if it has a
predominantly horizontal curved stroke such that stretching it does not yield a result that

looks like aform of another letter. On this basis, the stretchable formsare — (stand-a
lone baa), e (stand-alone seen), e (stand-alone sad), 3(stand-alone faa), %)
(stand-alone gaf), 2 (stand-alone caf), S (stand-alone Gaf), J (stand-alone lam),
u(stand -alone noon), d(stand -alone alefmaksura), < (connecting-after caf), f
(connecting-after Gaf), < (connecting-both caf), g (connecting-both Gaf), —. (con-
necting-before baa), o (connecting-before seen), ua.(connecting—before sad),
——connecting-before faa), G (connecting-before gaf), =l (connecting-before caf),
_si (connecting-before Gaf), J(connecti ng-before lam), S, (connecting-before
noon), s (connecting-before alefmaksura), L3(stand—a| one faa yaa), J(stand—&
lone lam_alefmaksura), J(connecti ng-before'iam_alefmkwra), and al other forms

that vary from these by additional or fewer dots or hamzas. In particular, | (stand-alone
alef) is not stretchable because it has no horizontal strokes.

The outline of any character is a series of elements, each of which isaline, four-point
Bézier curve, circle, or arc. As is shown in Figure 6, elements that share an end point p
are tangent to the same line which passes through p if the outline is supposed to be
smooth through p, and elements that share an end point p have tangents at an angle at p if
the outline is supposed to have a corner at p. As arule, stretching should not introduce,
remove, or change any corner. Therefore, tangents at end points of all elements should
not change. While horizontal stretching will definitely change x values in the outline, for
other reasons, it is not good that y values change. For example, it should be possible to
vertically position a diacritical over or under a stretched character asit is positioned over
or under the unstretched version. Furthermore, it should not be necessary to have to ad-
just vertical spacing dynamically as a part of stretching.

With Arabic and Persian, all stretching is across curved portions of |etters. Therefore,
the issue is how to stretch curves that are described in the font definition as four-point
Bézier curves. A four-point Bézier curveiseasy to stretch, if asisshown in Figure 7, the
stretching is in the interior of the curve between the two middle, control points. To
stretch such a curve by A units, smply add A to the x values of the two right hand points

STRETCHING AND SLANTING 15

Figure 6: Smooth meeting and cornered meeting.

and to al points to the right of the left hand one of these. Note that the stretched curve
connect with its neighbors with the same slope and at the same y values as before. More-
over, it appears that stretching 4-point Bé&zier curves in the middle in this manner always
gives aesthetically pleasing resullts.

It is a problem to stretch through the shared end point of two Bé&zier curves whose
tangents are the same at the shared point. As is shown in Figure 8, adding A to the x
values to the three rightmost points of the right hand curve in order to stretch between the
first and second point introduces a corner into what was a smooth meeting at the shared
point.

As shown in Figure 9, the corner can be avoided by preserving the slope in the left
hand tangent of the right hand curve by increasing both the x and y values by amounts
consistent with the slope of the tangent. However, now the right end of the combined
curve does not have the same y value as before. One proper solution requires redesign of
the two adjacent Bé&zier curves into one or three adjacent curves so that the place of
stretch is in the middle of one 4-point Bé&zier curve. One special case of stretching
through a shared end point works, specifically, when the tangents through the shared end
points are completely horizontal, as suggested by Figure 10.

Another solution was discovered during the first experiments, with the connecting-
previous form of the baa. This turned out to be a case of wanting to stretch across a

16 D.M. BERRY

Figure 7: Sretching 4-point B&zier curve.

shared end point when the tangents going into this point are not completely horizontal.
First it was necessary to plot the outline of this letter in order to see the locations of
the end and control points of the Bé&zier curves defining the outline. Figure 11 shows the
result of systematically converting the POSTSCRIPT code for the outline of the form into a
drawing of its outline with points marked by circles; the starting point of the path that is
stretched is labelled with “ Start”, the direction of flow is indicated by the arrow coming
out of the label, end points of curves and lines are big circles, control points of curves are

STRETCHING AND SLANTING

little circles, and the stretched curves are marked with vertical arrows.

o Cornered shared end point

Figure 8: Cornered shared end point.

18

D.M. BERRY

Figure 9: Avoiding cornered shared end point.

STRETCHING AND SLANTING 19

Figure 10: Stretching through shared end point with horizontal tangents.

Each of the upper and lower strokes defining the horizontal portion to be stretched
have two Bé&zier curves meet at a shared end point which is smack dab in the middle of
the stroke. The shared end points are marked with asterisks in the figure. Stretching
through the upper and lower shared points would introduce corners. Rather than rebuild-
ing the adjacent curves as one curve or adding an additional curve, it was decided to split
the amount of stretch A into two equa parts A/2, and to stretch each of the adjacent
curves in itsown middle by A/ 2. The stretched Bézier curves are all marked with pluses
in the figure. The result was that the normal code for the outline of the connecting-
previous baa:

/ baa_CP

{ 502 0 -15 -180 527 153 setcachedevi ce
0 0 noveto

243 -94 rnoveto

42 -32 rlineto

-34 -38 rlineto

-40 28 rlineto

cl osepat h

0 0 noveto

260 -5 rnoveto

-17 -1 -136 -10 -192 15 rcurveto
-58 25 -18 106 -8 127 rcurveto

0 -6 -11 -57 11 -69 rcurveto

20 D.M. BERRY

67 -39 163 -24 190 -23 rcurveto
28 2 129 10 156 29 rcurveto

17 11 27 44 28 48 rcurveto
1-14 3 -27 28 -51 rcurveto

20 -19 27 -15 29 -15 rcurveto

0O -56 rlineto

-1 0-21 -6 -48 26 rcurveto

-9 11 -16 17 -22 34 rcurveto
0-11-16 -28 -34 rcurveto

-46 -28 -86 -25 -144 -31 rcurveto
closepath 0 O nmoveto fill } def

is converted into the following code that usesf act initialized to the amount of stretch in
emms (with the changes emboldened).

/ baa_CP

{ /fact fact Arabic-NaskhFont /FontMatrix get 0 get div def
502 fact add O setcharw dth

/fact _2 fact 2 div def

0 O noveto

243 fact_2 add -94 rnoveto

42 -32 rlineto

-34 -38 rlineto

-40 28 rlineto

cl osepat h

0 O noveto

260 fact_2 add -5 rnoveto

-17 -1 -136 fact_2 sub -10 -192 fact_2 sub 15 rcurveto
-58 25 -18 106 -8 127 rcurveto

0 -6 -11 -57 11 -69 rcurveto

67 -39 163 fact_2 add -24 190 fact_2 add -23 rcurveto
28 2 129 fact 2 add 10 156 fact_ 2 add 29 rcurveto

17 11 27 44 28 48 rcurveto

1-14 3 -27 28 -51 rcurveto

20 -19 27 -15 29 -15 rcurveto

0 -56 rlineto

-1 0-21 -6 -48 26 rcurveto

-9 11 -16 17 -22 34 rcurveto

0-11-16 -28 -34 rcurveto

-46 -28 -86 fact_2 sub -25 -144 fact_2 sub -31 rcurveto
cl osepath 0 O noveto fill } def

The defined character at point size 30 and a 1 emm stretching of it are;

—t

L 4 L 4

STRETCHING AND SLANTING 21

Figure 11: Plot of outline of connecting-previous baa.

A larger sized version of these same characters are shown in Figure 5 of the Srouji and
Berry paper.

The next form considered was the stand-alone form of the gaf. This proved to be a
case of stretching across the middle of asingle Bé&zier curve. Figure 12 shows the outline
of the form in aform similar to that of Figure 11. Only the start of the path that has to be
stretched is marked.

The defined character at point size 30 and a 1 emm stretching of it are:

L 24 *®

Once it was clear how to proceed, the author got the assistance of Asaf Segal, a stu-
dent needing additional academic credits, to carry out the stretching on the entire font.
For the most part, adding stretching to the stretchable forms went quite straightforwardly
after seeing the path followed by the outline for the form. However, one form, the stand-
alone alef maksura, proved to defy an assthetic stretching. Items 1, 3, 4, and 5 of Figure
13 shows various different attempts. The outline of this form had a strange situation that
had never appeared before. In al but this form, the upper and lower strokes surrounding
the stretched portions were implemented as the same number of 4-point curves. For ex-
ample, in the connecting-previous baa, both the upper and lower strokes consisted of two

curves and in the stand-alone gaf, both the upper and lower strokes consists of one curve.
Therefore in both of these cases, the method of stretching both strokes is the same. In the

22 D.M. BERRY

Figure 12: Plot of outline of stand-alone qgaf.

stand-alone alef maksura, the lower stroke consists of one curve while the upper curve
consists of two curves. It appeared that no matter how stretch in these curves was divid-
ed, the results were ugly.

After | had failed to get a pleasing stretch for the stand-alone alef maksura, | recalled
Don Knuth's difficulties with getting a pleasing letter S when he was building the first
version of the computer modern fonts with his then new METAFONT system. Interestingly,

STRETCHING AND SLANTING 23

o S S
@ S S
@ O S
@ S S
6 (S S
o 5 5
n S S
® S S

Figure 13: Various attempts to stretch the stand-alone alef maksura.

in a fashion, the alef maksura can be considered S shaped. After failing many times, he
even considered writing his next book without the |etter S. He remarked that the most im-
portant words, “Donald E. Knuth” did not require aletter S. Well, | too despaired of pro-
ducing a stretchable stand-alone alef maksura and considered writing this paper without a
stretched stand-alone alef maksura, but in my case, the most important words “Daniel
Berry” requires a stand-alone yaa at the stretchable end of the second word, and the yaa
is an alef maksura with two dots added underneath. So | had to find a solution. Knuth
finally found a solution when his wife suggested making the S S-shaped. When | showed
the problem to my wife, she did not suggest anything. Moreover, the obvious dictum of
making the stand-alone alef maksura stand-al one-alef-maksura-shaped did not help me
think of any solution.

Realizing the hopelessness of trying to get along without the stand-alone alef mak-
sura and its relatives, | cheated! | had noticed, as shown in item 2 of Figure 13, that the
connecting-before alef maksura stretched just fine. So | built a new stand-alone alef mak-
sura from the bottom portion of the connecting-before alef maksura and the top portion
of the stand-alone alef maksura. This construction is item 6 of the same figure. This ver-
sion stretched properly, but the new letter did not go as deeply below the baseline as it

24 D.M. BERRY

should. In the mean time, | got another student, Yaniv Bejerano, also needing extra
academic credit points, to work on the problem. Hisfinal solution was to change the out-
line of the form so that the upper stroke consists of only one four-point Bézier curve. It
proved impossible to duplicate with one fewer curve the original outline, but by fine ad-
justment of the control points, Bejerano managed to come very close, closer than can be
discerned by the human eye at even phototypesetter resolution. Furthermore, when we
showed the results to a small sample of people here no one could see the difference at the
usual point sizes. Figure 14 shows the old and new outline side by side and below that su-
perimposed; note that the words “Old” and “New” overlap. The reader can see, in the
superimposed outlines, that the upper strokes of the bottom portion is dlightly different.

Figure 14: Old and new alef maksuras individually and superimposed.

Item 7 of Figure 13 shows the final form adopted and a stretched version. As a side-effect
to the investigation, Bejerano found an improved way to stretch the connecting-before
form, as shown in item 8 of the same figure.

7.2 Stretching Connections

Once it is understood how to stretch letters themselves with dynamic fonts, the same ap-

STRETCHING AND SLANTING 25

proach can be used to provide aternative, improved and more aesthetic methods to stretch
connections, with and without the baseline filler. First, by making the filler a stretchable
letter with a normal width of zero, it is possible to get smaller connection stretches than
the size of one fixed-length filler. This makes it possible to avoid the problem of what to
do when the needed stretch is not an integral multiple of the length of the fixed-length
filler. Second, by applying the letter stretching technique directly to the connecting parts
of connecting letters, it is possible to avoid using the filler entirely. The result is a
smoother connection stretch; gone are the long flatness and the sudden corners where the
filler or fillers meet the connecting parts of its neighbors. In their place is a gently sweep-
ing curve with a slope of zero only momentarily where the two connecting parts connect.
Figure 15 shows the connection between the connecting after baa and the connecting be-
fore baa first done with stretching the connecting parts and then with afiller. The amount
of stretching is the same difference accentuating amount in both cases.

(@)

(b)

¢ 4

Figure 15: Sretchable connecting parts (a) vs. fillers (b).

In the POSTSCRIPT outlines, it is much easier to find the connecting parts of letters
than the parts of letters themselves to be to be stretched, and once the connecting parts
are found, it is easier to modify them for stretching than the parts of letters themselves to
be stretched. Each connecting part consists of afour-point Bézier curve arriving at a vert-
ical line segment, the vertical line segment, and a four-point Bézier curve leaving the
vertical line segment; moreover, all such vertical line segments are exactly the same
length since they have to be placed adjacent to each other. In the Arabic font used in this
paper, each such line segment was either 0 56 rlinetoor0 -56 rlineto. Still
moreover, the Bé&ier curves going in and out of the line segment have a slope of zero at
the corner with the line segment. It is straightforward to stretch these zero-sloped Bézier
curves in the method suggested by Figure 10.

26 D.M. BERRY

8 MODIFICATIONSTO ffortid
The major changes required to ffortid are

1. the addition of the possibility of stretchable letters when replacing justification by

stretching,

2. the addition of the possibility to stretch connections via a single stretchable filler of

zero length rather than via sequences of fixed-length fillers,

3. the addition of the possibility to stretch connections by stretching the connecting
parts of letters, say by putting half of the stretch amount into the connecting part of
the before letter and the other half into the connecting part of the after letter,

. the addition of some more command line options to control the nature of stretching,

. the addition of some new fields to the width tables shared by ditroff and ffortid.

. the addition of recursive reversing to deal with embedded X text inside Y text inside
a X document, where X and Y are opposite directions of flow.

(92042 IF N

The description of the changes is driven by explaining the new command line options and
the new width table fields. The changes to the algorithm is apparent in this discussion.
The command line to invoke ffortid is of the form:

ffortid][-rfont-position-list] ... [“wpaperwidth] [— font-position-list] ...
[=s[nll[l [clep][f [2In{amount]|ajad|al]]] [-ms[c]l W] ...

The job of ffortid is to take the ditroff output which is formatted strictly left-to-right,
to find occurrences of text in aright-to-left font and to rearrange each line so that the text
in each font iswritten in its proper direction.

In the command line, the —r font-position-list argument is used to specify which font
positions are to be considered right-to-left.

In addition to the specified font directions, the results of ffortid’s reformatting also
depends on the document’ s current formatting direction, which can be either left-to-right
or right-to-left. The default formatting direction is left-to-right and can be changed by the
user at any point in the document through the use of the

\ X' PL’
and
\ X' PR

escapes in the ditroff input.

If the current formatting direction is left-to-right, all formatting, filling, adjusting, in-
denting, etc. is to appear as occurring from left to right. In each ditroff output line, any
seguence of contiguous right-to-left font charactersis reversed in place.

If the current formatting direction is right-to-left, all formatting, filling, adjusting, in-
denting, etc. is to appear as occurring from right to left. Each ditroff output line is re-
versed, including both the left and right margins. Then, any sequence of contiguous |eft-
to-right font characters is reversed in place.

Sometimes right-to-left text contains some embedded left-to-right text, such as a

STRETCHING AND SLANTING 27

street address in Hebrew contains a numeral using traditional western digits with the
most significant digit to the left. If this right-to-left text were embedded inside |eft-to-
right text, e.g., an English sentence announcing a Hebrew street address, inside a | eft-to-
right document, then the numeral, being left-to-right text, would be treated as left-to-right
text that separates two right-to-left chunks inside a left-to-right document and the two
chunks would end up flowing from left to right rather than being a single right-to-left
chunk. The same problem occurs in the opposite directions as well. Let X and Y be two
opposite directions. The user can announce embedded X text inside Y text in order to in-
sure that its visual ordering is what is intended even when inside a X document by sur-
rounding the embedded X text with the

\ X {’
and
\ X}’

escapes. The time-ordered input that produces the correct street address example of Sec-
tion 4 is (with each input character showin in its output font).

Helivesat \f(hDnywrx \FR\X'{"49\X"}'\f(hD xa\fR\X" {"15\X"} " \f(hDn»an
\fRin Isragl.

The —wpaperwidth argument is used to specify the width of the paper, in inches, on
which the document will be printed. ffortid uses the specified paper width to determine
the width of the right margin. The default paper width is 8.5 inches and like the font
directions, it remains in effect throughout the entire document.

The —- font-position-list argument is used to indicate which fonts positions, generally
a subset of those designated as right-to-left, contain fonts for Arabic, Hebrew, Persian, or
related languages. For these fonts, left and right justification of aline can be achieved by
stretching instead of inserting extra white space between the words in the line. If request-
ed by use of the —s argument described below, stretching is done on aline only if the line
contains at least one word in a— designated font. If so, stretching is used in place of the
normal distributed extra white space insertion for the entire line. The intention is that
stretching soak up all the excess white space inserted by ditroff to adjust the line. If there
are no opportunities for stretching or there are too few to soak up all the excess white
space, what is not soaked up is distributed in between the words according to ditroff' s al-
gorithm. There are several kinds of stretching, and which isin effect for all — designat-
ed fonts is specified with the —s argument, described below. If it is desired not to stretch
a particular Arabic, Hebrew, Persian, or other font, while still stretching others, then the
particular font should not be listed in the — font-position-list. Words in such fonts will
not be stretched and will be spread with extra white space if the containing line is spread
with extra white space.

The -r and the — specifications are independent. If afont isin the — font-position-
list but not in the —r font-position-list, then its text will be stretched but not reversed. This
independence can be used to advantage when it is necessary to designate a particular
Arabic, Hebrew, Persian, or other font as left-to-right for examples or to get around prob-

28 D.M. BERRY

lemsin the use of eqn, ideal, pic, or thl.

The kind of stetching to be done for all fonts designated in the —- font-position-list is
indicated by the —s argument. There are two relatively independent dimensions that
must be set to describe the stretching, what is stretched and the places that are stretched.
A stretch argument is of the form

-smp
or
-sn

where m specifies the stretching mode, i.e, what is stretched, and p specifies the places
that are stretched. The m and p must be given in that order and with no intervening
spaces. The —sn means that there is no stretching and normal spreading of words is used
evenin — designated fonts. The choices for the mode m are;

1.1 (letter ell): In the words designated by the p, stretch the last stretchable | etter.

2. ¢: In the words designated by the p, stretch the last connection to a letter.

3. e: In the words designated by the p, stretch either the last stretchable letter or the
last connection to aletter, whichever comes later.

4. b: In the words designated by the p, stretch either the last stretchable letter or the
last connection to a letter, whichever comes later, and if it is aletter that is stretched
and it is a connect-previous | etter then also stretch the connection to the letter.

Not all modes are available for all fonts. For example, fonts for Hebrew, whose
letters are not connected do not support connection stretching. While Arabic, Hebrew,
and Persian traditionally do have letter stretching, not all fonts for them support letter
stretching. ffortid attempts to stretch all —- designated fonts in the specified modes, but
in any text, ends up doing only those stretches that are possible given in the text’s current
font. To allow ffortid to know what stretches are possible, the width tables for stretchable
fonts have some additional lines that must come somewhere after the nane line and be-
forethechar set line.

stretchable: letters connections
stretchabl e: connections letters
stretchabl e: connecti ons
stretchable: letters

Each such stretchable font must have one of the first four lines. We now discuss the vari-
ous ways that different kinds of stretch are achieved in the available fonts and how ffortid
deals with each.

To our knowledge, al Arabic and Persian fonts, have a base-line filler that can be
used to achieve the stretching of connections. It isfairly easy for such afiller to be added
to any font definition that does not have it, and moreover to make it the character that is
addressed by \ (hy, which is normally the code for the hyphen character. Since Arabic
and Persian do not have a hyphen and hyphenation is turned off when in an Arabic or
Persian font, it is safe to use \ (hy to name the filler. Of course, this requires that the

STRETCHING AND SLANTING 29

width table for Arabic and Persian fonts have an entry for hy designating the filler char-
acter in the font, for example:

hy 15 0 0267 filler

Giving the filler character an explicit ditroff two-character name allows ditroff to deal
with it uniformly despite that it might be in a different position in each font.

On the other hand, stretching of letters requires a dynamic font which, by its very na-
ture of not having a constant hitmap for a given font name, point size, and character
name, cannot be type 1, in POSTSCRIPT terminology, and cannot be a bitmapped font.
Therefore, not all Arabic and Persian fonts support stretching of letters. Moreover, within
a dynamic font, not al characters are stretchable. Historically, only characters with
strong horizontal components are stretchable, such as those in the stand-alone and
connect-previous forms of the baa family. Obviously, one cannot stretch totally vertical
characters such as alif. Therefore, it is necessary to specify by additional information in
the ditroff width table for a font which characters are stretchable. In the width table for
an Arabic or Persian font, for each character that is not also an ASCII character, i.e., not
also a digit or punctuation, and thus is neither connected or stretchable, one specifies
after the name, width, ascender-descender information, and code, two additiona fields,
the connectivity and the stretchability of the character, in that order. The connectivity is
either

for stand alone,

for connect after,

for connect previous,

for connect both, or

for unconnected, because it is punctuation or a diacritical, etc.,

ComoU>»=2

and the stretchability is either

N for not stretchable,
S for stretchable,

Some examples of width table lines are:

%) 125 2 045 per cent

--- 55 0 0101 U N conma
70 0 0105] N hanza
--- 129 0 0106 N S baa_ SA
--- 36 2 0102 N N al ef _SA
--- 113 0 0177 A N sad_CA
66 2 0215 A S caf _CA

--- 43 2 0225 P N al ef _CP

30 D.M. BERRY

--- 120 0 0274 P S baa_CP
--- 53 0 0230 B N baa_CB
73 2 0261 B S caf _CB
Recadll that - - - in the name field of a character means that it can be addressed only by

\'N' n', where n is the decimal equivalent of the character’s code. Only such lines will
have the connectivity and stretchability fields. Also in the character name which is a
comment in the table , _ SA means “stand alone”, _ CA means “connecting after”, CP
means “ connecting previous or before”, and _CB means “connecting both”.

For a Hebrew font, for which there is no notion of connectivity of letters, and there-
fore, the position of the lettersisirrelevant for deciding stretching, there is only the possi-
bility of stretching letters. Some examples of width table lines for such fonts are:

% 132 3 045 per cent
--- 95 3 0140] N quot el ef t =al ef
--- 92 3 0141] S a=bet

In a dynamic font, there are two additional, alternative ways that stretching of con-
nections can be achieved.

e Thefiller is a stretchable letter, normally of width zero, to which the total width of
thefiller is passed as the stretch amount.

e The connecting portions of all connecting letters are themselves stretchable in the
same way as the stretchable letters are. In this situation to achieve atotal connection
stretch of x, one would pass x/ 2 to each of the connecting-after portion of the before
letter and the connecting-before portion of the after letter.

The use of the first of these solves the problems caused by the fact that amount of a
given connection stretch may not be integrally divisible by the width of the filler. A
stretchable filler can be stretched to any amount. The use of the second improves the ap-
pearance of the connection stretch. While letter stretching is done with nice, smooth
curves, connection stretching using the very straight filler is noticeably flatter and there
are observable corners where the filler meets the generally curved connecting parts of its
adjacent letters. While the fixed-size filler seems to be available on all Arabic and Per-
sian fonts, stretchable fillers and stretchable connecting parts are available only with type
3 PosTScRIPT fonts, although it would be possible to provide a stretchable filler as the
only locally defined character in atype 3 font that falls to another type 1 font for al the
other characters, which are only virtua in the type 3 font.

The ditroff width table for any font providing a stretchable filler or stretchable con-
necting parts must have an additional line to specify the nature of the connection stretch
in the font, which must be one of the following.

connection stretch: fixed filler
connection stretch: stretchable filler
connection stretch: stretchabl e connections

STRETCHING AND SLANTING 31

This line must come somewhere after the name line and before the char set line. If
none is specified, it is assumed to be the first. Therefore, it is not necessary to say any-
thing new for the typical type 1 or bitmapped font with a fixed-sized filler. Note that if a
font allows different kinds of connection stretching, only one can be specified per mount-
ing of the font specified in a single width table. If one wants to use the same font with
different ways of stretching connections, one must mount the same font under different
names in different width tables, each specifying a different kind of connection strecthing.

ffortid implements the connection stretching that is requested by the —s command-
line arguement as well as it can using the kind of connection stretching available for the
font being used. Thus, if one is not using fixed-sized fillers, ffortid ignores the various op-
tions put in to deal with the fact that an integral number of fillers may not fulfill the need-
ed stretch.

Below, “stretchable unit refers to what is a candidate for stretching according to the
mode. The choices for p, which specifies places of stretching, are:

1. f : Inany line, stretch the last stretchable unit.

2. 2: Assuming that the mode is b (both), in any line, stretch the last two stretchable
units, if they are the connection leading to a stretchable connect-previous letter and
that letter, and stretch only the last stretchable unit otherwise. If the mode is not b,
then this choice of placesisillegal.

3. M or m In any line, stretch the last stretchable unit by an amount not exceeding n
emms. If that does not exhaust the available white space, then stretch the next last
stretchable unit by an amount not exceeding n emms, and so on until all the avail-
able white space is exhausted. If nisnot given, it isassumed to be 2. 0. In general,
n can be any number in floating point format.

4.a, ad,or al :Inany line, stretch all stretchable units. In this case, the total amount
available for stretching is divided evenly over all stretchable units on the line
identified according to the mode. Since the units of stretching are the units of device
resolution, the amount available might not divide evenly over the number of places.
Therefore, it is useful to be able to specify what to do with the remainder of this
division. This specification is given as an extension of the stretching argument. The
choicesared or | , with the former indicating that the excess be distributed as even-
ly as possible to the spaces between words and the latter indicating that the excess
be distributed as evenly as possible in stretchable letters only. The latter is the de-
fault if no choice is specified.

Sometimes, it is desirable to be able to manually stretch connections or letters to
achieve special effects, e.g., more balanced stretching or stretching in lines that are not
otherwise adjusted, e.g., centered lines. Stretching a connection can be achieved by us-
ing the base-line filler character explicitly as many times as necessary to achieve the
desired length. Note that the ditroff line drawing function can be used to get a series of
adjacent fillers to any desired length, e.g.,

\I'2m (hy’
will draw astring of adjacent base-line fillers of length 2 emms.

To achieve stretching of |etters, one should immdiately preceed, with no intervening
white space, the letter to be stretched by

32 D.M. BERRY

\ X stretch’\h' n’

where nisavalid length expression in ditroff’s input language. ffortid is prepared to deal
with the output from ditroff generated by this input to generate output that will cause the
letter immediately following it to be stretched by the length specified in n. For example,

\ X stretch’\h"1m \N 70"’

will cause the character whose decimal code is 70 to be stretched by 1 emm. The output
will fail to have the desired effect if the letter following is not a stretchable | etter.

If connection stretching is achieved by having a stretching filler, then one manually
stretches the filler character by the desired amount as if it were aletter.

\ X stretch’\h'n'\ (hy

Here, though the stretch parameter n is the total length of the filler, as the filler is of
length zero if it is not stretched.

To stretch the connecting parts of |etters, two additional escape sequences are provid-
ed that may be placed before, with no intervening printable text, the letter to which they

apply,

\ X BCstretch’\ h' nb
\ X ACstretch’\ h' na

where nb and na are valid length expressions in troff’s input language. These specify the
amounts of stretch in the before and after connecting parts of the immediately following
letter. The order inwhichthe \ X stretch’\h’'n', \ X BCstretch’\ h’ nb' , and
\ X ACstretch’\ h’ na’ for a letter appear is irrelevant, but in between them and
after the last of them, there is no printable text, including white space (including new
lines), and the letter to which they apply immediately follows the last. Suppose that two
consecutive, in logical order, letters have decimal codes 70 and 80. Suppose aso that 70
connects after to the connecting before 80. Suppose finally that this connection from 70
to 80 isto be stretched by 1 emm and the letter 80 isto be stretched by 2 emms. Then the
input would look as follows (but not split into two lines, in fact with no internal white
space at al):

\ X ACstretch’\h'.5m\N 70"\ X BCstretch'\ h’ . 5mi
\ X stretch’\h’ 2m \ N 80’

Note that the connection stretch of 1 emm was split into two stretches of .5 emm for each
of the connecting after and the connecting before parts.

For finer control over stretching, it may be desirable to inhibit automatic stretching on
manually stretched connections and letters. Accordingly, two command line flags are
provided for this purpose:

1. -nsc: Do not automatically stretch manually stretched connections.
2. —nrsl : Do not automatically stretch manually stretched letters.

STRETCHING AND SLANTING 33

3. —-msw. Do not automatically stretch any word containing any manual stretching.

9 EXAMPLES

All of these samples use a very narrow column width in order to exaggerate the
differences and to force whatever stretching that is done to be very pronounced. In al the
samples, the last line has no stretching since it is not full and in the normal word-
spreading realm, no additional space would appear between the words. Because only one
setting of the stretch option applies for the whole of a given document, all the samples
were typeset as other documents and were included in this paper as encapsulated POST-
ScripT figures. Finaly, each example is designated by its language and the stretch option
that was used to typeset it.

In Hebrew, letters are not connected. Therefore, only letters are stretchable, and the
width tables reflect this fact. Therefore, all —scPs for any place P, look line —sn, each
—sbP and —seP looks like the corresponding —sIP, with the special case of —sb2 looking
like —dIf. Therefore, only the —sla and the —dIf examples are shown.

1T ~ERM NNy P72 IR
N O¥yoIn yEHRX2 —To3
5 51RO YR XY
2 % wn 12Tm wRRNT

Nakiohwonn akame s I giio e

Figure 16: Hebrew with —dla.

7T TR, NMEY ApTT2 TR

n Oy MyxnaxR2 —To
9 210 XM ,2°Y% R
2 no 5w mMa—mxnxT

JPOTEM IR, NP2Y D

Figure17: Hebrewwith—dlf.

In Arabic, both letters and connections are stretched. The first group of examples, the
—sMfs, show stretching in final places in a line and the second group, the —sMas shows
stretching in al places on a line. As expected, the stretching is more pronounced in the
—-sMfs. For —scf, in al non-last lines, the connections absorb all of the stretch. The effect
ismost pronounced in lines 2 and 3.

34 D.M. BERRY

el 15 Lk
U A T N

= - byd ihals
sigdy el gl
i e el S
w) ‘MJJI

Figure 18: Arabic with —scf.

For —dIf, the final stretchable letter of each line absorbs all the stretch, with the effect be-
ing most pronounced in line 2. Inlines 1 and 6, the last stretchable letter is not the last
letter inthe line. Inline 3, there is no stretchable letter at all, so the words are left spread

apart.

(C.&L:)..ULS.:IJ)L\Q[S
- ;.Jo il son
ol] o o
8 el byl
A .@J JL.J dos L}
od = L,.J_JL ws

Figure 19: Arabic with —dIf.

For —sef, the final stretchable letter or connection, whichever is later (left most), and not
both, gets stretched. The effect is most pronounced in lines 2 and 3. In line 2, the last
letter is stretchable so it gets al the stretch. In line 3, the final letter is not stretchable, but
it is connected to the previous letter, so that connection absorbs al the stretch.

STRETCHING AND SLANTING 35

¢ e b U &gls Ll
= Al il i
= - l;,;.JI ials
Ty sl ool
A aaed eS

e,y e

Figure 20: Arabic with —sef.

The —sb2 option is similar to the —sef option, except that when a letter would be
stretched and that letter is connected, then the letter and its connection split all the
stretch. In line 2, each of the main body and the connecting part of the final taa absorbs
half of the total stretch. In line 3, the final letter is not stretchable, but it is connected; so,
that connection absorbs all the stretch. In line 4, the final letter is stretchable, but it is not
connected; therefore the letter absorbes all of the stretch.

el gls LS
e oa b UEll sis
= o b Ky
Ty sl ool
gJ""i‘"i'J JL‘”I 5 u}
K] el =S

i,y i

Figure 21: Arabic with —sb2.

For the —sMas, the total stretch is distributed over al candidates according to the M.
Thus, each individual stretch tends to be shorter than for the —sMfs. The —sca option
causes only the and all the connections to be stretched.

36 D.M. BERRY

bl 13 LS
con b TG sk
e~ L i Lol
B g ¢l _ﬁjﬁajﬂ
ead Jlad sk
Gaed edally e

e,y e

Figure 22: Arabic with —sca.

For —dla, it is expected that al stretchable letters in a line be stretched the same amount.
For all lines, except lines 2 and 3, the stretches are hardly noticeable since each stretch is
afraction of the total stretch for the line. Line 2 has only one stretchable letter, and it ab-
sorbs al the stretch. Line 3 has no stretchable letter; therefore, the words remain spread

with additional white space.
cptol sl LS
- b $dill sim
g U o
Lz el sl
LJ@:AEJ J L:.;r;l 5” \-};
Figure 23: Arabic with -da.

For —sea, each word has at most one stretch, which is either in the body of the last
stretchable letter or in the last connection, which ever islater in theword. Inline 2 and 3,
there are few enough such places that the stretch per place is quite pronounced.

STRETCHING AND SLANTING 37

bl il LS
e a2 J Gl si
e~ L i bl
Csmny el il
e Jld s
Gad ol el

e,y e

Figure 24: Arabic with —sea.

The —sha case differs from the —sea case in line 2. Both the last letter and its connection
are stretched the same amount as the other stretchable places in the line, which just hap-
pen to be connections

bl g3l LS
o oaab G si
e o= by i Lol
s Ol ol
cAaamd W “":ZS
sy i

Figure 25: Arabic with —sba.

For Persian, only examples with results differing significantly from the corresponding
Arabic examples are shown. With the Persian text, the —sb2 case yields more pronounced
results. There are severa occurrences of connecting before yesin lines 5, 6, and 7 that
end up being the stretch places of their lines. Each of these lines shows that ye and its be-
fore connection stretched the same amount.

38 D.M. BERRY

‘LSS Lo)'Taj_‘; -[.s Jj.«:u
Sl eslazal b i
L > s S st
(SRt Syl s
Shle 5 e 5 su
(L s sy
02 s Ity C L

.o)|.> S g

Figure 26: Persian with —sb2.

In the —sef, —scf, and —df examples, which are not shown, the same yes are stretched, but
all the stretch is absorbed by the body of the letter, the connection, and the body of the
letter, respectively. Among the —sMas, which are not particularly remarkable, only the
—sea example is shown.
5l sslazal b oJie
Lo 5 4S8 g
d .. S e .Dj/:;.,:go C-.) Lo ee
P Lj -3); d : =3 .’.j:’
PR R B BRGNS e
))|.: S g O

Figure 27: Persian with —sea.

An imitation, in which each letter is stretched by one emm, of the caligraphic exam-
ple of Figure 3 is shown below.

O S

.

This example shows that the balanced stretching can be achieved by manual control, but
it also shows that the font being used is not very good for stretching. Now that the tech-

STRETCHING AND SLANTING 39

nigue to do stretching has been demonstrated, it is necessary to design a font whose
letters stretch more gracefully.

On the first page of the paper, the stand-alone yaa in the author’s Arabic name and
the resh in the author’ s Hebrew name were stretched manually for the purpose of making
each family name the same length as its corresponding private name. The amount of
stretch was calculated using the ditroff internal length functions to put into a register the
difference in the lengths of the family and private names.

10 SLANTED BASELINE WRITING
Examination of examples of Persian printing shows that

1. it uses fonts whose characters are observably different from those of fonts typically
used for Arabic,

2. stretching of characters seems to be more prevalent than in Arabic printing almost
to the exclusion of stretching of connections, and

3. words, but not lines seem to be written on a slanted baseline.

These observations are clear in Figure 28, which shows a sample of some Persian print-
ing from the author’ s favorite Persian cookbook [15] and Figure 29, which shows a sam-
ple of some Persian calligraphy.

4 }‘“” .

. - - /
asswbis ,4,—-//)(J/ RyM S)_A/Juﬂ:u‘)
PR s 5 /, PO ./
,L}JAL/OJLU‘::///C]/L ;)ULJL‘}}/“(/UUD
b ST

VU}// /J 201 /L:/’I_%U:(g‘“t

LUFV}M(/’)i}(’ﬁ)/(‘/Uﬂ,{A
{/L'/
) Figure 28: Persian printing.

The font that is used in the cookbook excerpt is called Nastaliq. To date, neither the au-
thor nor any others contributing to an Internet Arabic Script group have seen a decent

40 D.M. BERRY

Figure 29: Persian calligraphy.

PosTScriPT outline font for Nastaliq or any other font with the distinctly Persian flavor.
As a conseguence, at present, computer-aided Persian typesetting seems to be done using
Arabic fonts for results that are not entirely assthetic to the Persian eye.

First, by making copies of a large variety of samples and marking these copies up
with lines showing the flow of words and lines running through the slanted baselines, it
was determined that while the line flows horizontally, the baseline of individual words or
individual groups of consecutive short words is generally slanted 22° downward from the
horizontal. (Recall that Persian text flows from right to left, so the slant is described in
these terms.) The sequence of the center points of the slanted-word-or-group-of-word
baselines for asingle line of text describe a single horizontal line segment, which is taken
as the axis or baseline of the whole line of text. Figure 30 shows a schematic of the base-
lines of words or groups of words that form asingle line.

Furthermore, it appears that the beginning of any but the first word on aline is im-

STRETCHING AND SLANTING 41

Figure 30: The slanted baselines of wordsin one line.

mediately above the end of the previous word. That is, from the point of view of projec-
tions of the words onto the horizontal axis of the line, there is no spacing between words.
The separation of the words is achieved by the vertical clearance between the end of one
word and the beginning of the next right above it. In the above, when a group of con-
secutive short words is treated as a unit for lanting, there is some some horizontaly visi-
ble white space between the words. It appears that merging short words into alarger unit
for danting is a physical necessity as there would not be enough vertical clearance
between one short word and the next if each were slanted separately. Finally, it appears
that stretching is applied mainly to letters and not to connections.

It is this author’s opionion that the reason no one has invested the considerable effort
to produce a suitable Nastaliq font is that it was not understood how to implement in
PosTScrIPT and use in formatters the danted baseline aspect. This section remedies this
problem by analyzing the slanted baseline requirement and showing how it can be imple-
mented in POSTSCRIPT fonts and used by formatters to achieve a very Persian appear-
ance. Since the author does not even have aflat version of Nastaliq available as atype 3
PosTScripT font, the author applied the slanting to the Arabic Naskh font with stretch-
able forms to produce a font named Persian Naskh also with stretchable letters and he
used this font with a modified ffortid that knows how to use a slanting font to achieve the
proper baseline slanting. It is hoped that the availability of the technology to define and
use slanted-baseline-printing fonts with stretchable forms will provide the incentive for a
good typographer to develop a high quality Nastaliq PosTScRIPT font definition.

First the method of danting POSTSCRIPT fonts is described. Then the modifications to
ffortid and to ditroff width tables to support the use of slanting fonts is described.

11 SLANTING FONTS

As mentioned, it was decided to apply slanting to a new font called Persian Naskh which
is a copy of a stretchable Arabic Naskh except for the stretching. The simplest way to
achieve the danting in all characters is to modify the font matrix so that what was hor-
izontal is now slanted 22° upward (PosTSCRIPT fonts view characters as being laid out
from left to right; therefore the dlant is considered in the opposite direction from for the
normal right-to-left flow.) and what was vertical is still vertical. Thus the font matrix
defining line was changed from

/FontMatrix [.001200 0 0 .001200 O O] def
to
/Font Matri x [.001200 .0004495 0 .001200 0 0] def %®R2 degrees

The value .0004495 will be recognized as tan(22°) x0.0012 where .0012 is both the x

42 D.M. BERRY

and the y value from the matrix
[.001200 .0004495 0 .001200 0 O]

Once this font is defined and set, one can print any word with a slanted basdline by
moving to the position of the right end of the word, below the line's axis and then show-
ing the word. Figure 31 shows a slanted printing of the word salaam.

Figure 31: Santed salaam.

This output was achieved by simply finding and setting the Persian-Naskh font and issu-
ing a show command with the characters, from left to right, of the word salaam, as its
string argument. The use of the font matrix to achieve the danting insures that what the
PosTScRIPT show mechanism believes is a move in the x direction by the width of the
last printed character isin fact a move upward and to the right. Figure 32 shows the ex-
ample of Figure 5 of the Srouji and Berry paper printed using the Persian Naskh font.
The purpose of this example is to show that both forms of stretching work quite handily
in the presence of slanting.

12 MORE MODIFICATIONSTO ffortid
Again there were three main kinds of modifications to ffortid.

1. The layout algorithm of ffortid is changed so that it puts each word, after
justification either by spreading words or stretching, into its own slanted baseline.

2. New command-line options are added.

3. The width tables shared by ditroff and ffortid are modified slightly.

These changes are discussed in reverse order.

STRETCHING AND SLANTING 43

@

(b)

(©)

(d)

(€)

(f)

Figure 32: Non-stretched and stretched.

44 D.M. BERRY

The width tables have to be modified dightly so that there is a line announcing that
the font described by the table is slanted and that line gives the amount of slant in de-
grees, which must agree with the angle implicit in the font matrix of the font. In addition,
in order to cause the beginning of one word to be just above the end of the previous with
no horizontal movement, it is necessary to lie to ditroff and tell it that the normal inter-
word space is 0, while providing another unpaddable space to be used explicitly by the
input document to group short words together into a single slantable unit. First, ditroff
would not accept awidth of O for the space; it took it as the default width of ¥s emm. So,
a space of width 1 wastried and it both was accepted by ditroff and produced visually ac-
ceptable results which the human eye could not distinguish from a space width of 0. Re-
call that the units of the space width is the unit of device resolution. Thus, for Adobe
transcript’s psc device, a width of 1 is a width of 1/576 inches. Figure 33 shows the
second paragraph of the Persian abstract with the same spacing between the words but
with nothing slanted. The reader can see that the words appear run together with no space
between them. The unpaddable space was provided as the character named by the ditroff
special character \ (ps, for “permanent space” whose width is set to what was the width
of the space before setting it to 1. The name for the unpaddable space had to be a two-
character name that is mnemonic and is not in the special font; if it were in the special
font, then it would not be possible to address the like-named specia font character
without explicitly mounting the special font.

B 5 e 5ol 308 ot 3l s Lt ILadlie ol SlasTo ol ol g
. a)|oajsdzﬁ)o§~)léj‘ T &s’)iks[ﬁ)mfjlgL@JLiﬁjéu
33: Undlanted Persian text spaced as for slanted printing.

The new command-line option is to indicate which font positions contain slanted
fonts. Of course, it will not work to attempt, through the setting of this option, to slant a
font whose width table does not say that it is slanted. However, the danting algorithm,
described in the next paragraph, does not happen to afont not in thislist.

The change to the ffortid layout algorithm is that after all characters have been put in
visua order and all justification and stretching requested by the user have been applied,
the projection of the starting position of each word on its text line's axis is known. Note
that the justification and stretching are affected by the fact that the space is of width 1. Of
course, if stretching is not indicated, then as a result of justification, words may be more
than 1 unit apart as a result of the additional white space inserted by the spreading of the
words. If stretching is specified, then if there are stretchable places none of the interword
gaps should be spread, as stretching should absorb all of the excess white space.

At this point ffortid calculates the width of each word and then inserts before the be-

ginning of each word, of length len_word, a vertica movement to

len_word

v = tan(a) x units below the line's horizontal axis, where a is the angle of

dant, usualy 22°, determined from the font’s width table. In order to avoid the line's
axis drifting as a result of round-off error in digitizing the floating point tangent values,
the vertical positioning before the printing of each word is accomplished by using the ab-
solute vertical positioning instruction with an argument that is the sum of the y of the

STRETCHING AND SLANTING 45

line's axis and the calculated movement v for the word.

The Persian abstract of this paper was typeset in this slanted pseudo-Persian font. In
preparing this example, it was learned that it is not a good idea to slant text that contains
non-slantable text such as that in Latin letters. However, if one is going to slant such text
anyway, then Persian text which is immediately adjacent to Latin text, such as
parentheses and other punctuation or a single letter grammatical article or conjunction,
should be in a non-slanting font whose appearance is coordinated to the slanting font. In
this case, since the dlanting Persian Naskh is a danting version of Arabic Naskh, Arabic
Naskh was used as the non-slanting font whose appearance is coordinated to that of Per-
sian Naskh!

13 EXAMPLES

The same text used earlier for Persian examples is used for the slanted Persian examples.
Only the —d/P examples are exhibited, because it appears that connection stretching is not
used in danted writing. The dlanted Persian abstract at the beginning of the paper is
typeset, as are al the abstracts, with —sea, and it shows connection stretching in slanted
text.

Figure 34: Santed Persian with —da.

46 D.M. BERRY

Figure 35: Santed Persian with —dlf.

In these examples, consecutive words are grouped together as single slanted units, in ord-
er that all slanted units in a line are approximately the same length. This way, no indivi-
dua word extends far beyond the others and no individual word is so short that it does
not have a clear separation from its neighbors. Between two consecutive words of a sin-
gle slanted unit is an unpaddable space built into the slanted persian font, addressed by
\ (ps in ditroff. These unpaddable blanks are not candidates for stretching if there is
nothing stretchable in the line and are not candidates for shrinking to give way to stretch-
ing. They insure horizontal separation of the words that make up a single slanted unit.

14 RELATED WORK

Asfar as this author has been able to determine, no other Arabic, Hebrew, or Persian for-
matting system provides letter stretching and slanting the baselines of words. This author
is aware of Yannis Haralambous's ScholarTeX [16], Klaus Lagally’s ArabTeX [17], and
Don Knuth and Pierre MacKay's TEX-X gl [18]. The closest that this author has seen are
systems that provide multiple forms of stretchable forms that can be selected by the user.
TeX systems typically use fonts generated by METAFONT, which are usualy bitmaps.
Bitmap-based formatters would be hard put to provide dynamically stretchable characters
that are necessary to implement the solution outlined in this paper and implemented with
ditroff/ffortid, a system that supports easy use of POSTSCRIPT outline fonts. There are op-
tions to use POSTSCRIPT outline fonts with TEX, but to date, only type 1 fonts seem to be
availiable for the METAFONT-generated fonts. It would be necessary to obtain type 3 ver-
sions of these fonts so that the character definitions can be edited to make them dynamic.

STRETCHING AND SLANTING 47

15 CONCLUSIONS

This paper has described the addition of full stretching and slanting to Hebrew, Arabic,
and Persian typesetting with ditroff/ffortid. The changes necessary to the POSTSCRIPT
fonts and the ffortid ditroff postprocessor were described. As to whether the results are
aesthetically pleasing is left to the reader. However, if the assthetics are lacking, perhaps
applying the techniques described in this paper to better designed fonts, perhaps designed
specifically to be stretched and slanted, will yield more pleasing results. It is hoped that
the proof of principle given in this paper increases the incentive for developing these
better fonts.

ACKNOWLEDGEMENTS

The author thanks Jacques André, Bijan Arbab (——L,| -, 5.), Farhad Arbab (sl » 3
——L,0), Yaniv Begerano (132 2»»), Avron Cohen (Y05 1772x), Gershon Elber (1w
929N), Achi Gvirtzman (ynx92) »nX), Yannis Haralambous, Ziv Horesh (wn 201),
Nir Katz (x5 =3), Don Knuth, Eli Leiba (na»Y »oN), Erez Manor (7n 1IN),
Shahrzade Mazaher (, » Use ol , ¢ &), Asaf Segal (930 qoON), Johny Srouji (&5 e
g;.)JM) and Uri Yifrah (n19 »m) for their help and suggestions.

REFERENCES

1. J. Srouji and D.M. Berry, ‘Arabic Formatting with ditroff/ffortid’, Electronic Publishing, 5 (4),
163-208 (1992).

2. B.W. Kernighan, ‘A Typesetter-independent TROFF', Computing Science Technical Report
No. 97, Bell Laboratories (1982).

3. ‘Arab Standards and Metrology Organization, 8-Bit Coded Arabic/Latin Character Set for In-
formation Interchange’, ASMO DS 708, Amman, Jordan (1985).

4. C. Buchman, D.M. Berry, and J. Gonczarowski, ‘DITROFF/FFORTID, An Adaptation of the
UNIX DITROFF for Formatting Bi-Directional Text’, ACM Transactions on Office Informa-
tion Systems, 3 (4), 380-397 (1985).

5. “\JJ) C.«.».) L;;d' L}Jl H.l.a.& _'QS 3 J}Q}'—Q Ju.m'-JI gﬁc
‘)—)J\AAJI) C.:)jﬁ.lb) 3 Lﬁw u)' 4»\& M)b g/.l.)
VAAY ¢ e B0l

6. Mahdi ElSayed Mahmud, Learning Arabic Calligraphy: Naskh, Requah, Tholoth, Farsi, Ibn
Sina, Publisher, Cairo, Egypt, 1987.
. ‘Genesis (n°wx—Tji, Torah Scrolls (n—mm-zo), Found in any synagogue (Unknown).
. PostScRIPT Language Reference Manual, Second Edition, Adobe Systems Incorporated,
Addison-Wesley, Reading, MA, 1992.
9. D. Weise and D. Adler, ‘TrueType and Microsoft Windows Version 3.1', Technical Report,
Microsoft Corporation, Redmond, WA (1992).
10. J. André and B. Borghi, ‘ Dynamic Fonts', PostScriPT Language Journal, 2 (3), 4-6 (1990).
11. '‘Adobe Type 1 Font Format’, Part No. LPS0064, Adobe Systems, Inc. (1990).
12. J. André and I. Vatton, ‘Dynamic Optical Scaling and Variable Sized Characters', Electronic
Publishing—Origination, Dissemination, and Design, 7 (4), 231-250 (1994).
13. J.D. Becker, ‘Multilingual Word Processing’, Scientific American, 251 (1), 96107 (1984).
14. J.D. Becker, ‘ Arabic Word Processing’, Communications of the ACM, 30 (7), 600-611 (1987).

o~

48 D.M. BERRY

15. N. Batmanglij, Food of Life, Mage, Washington, DC, 1986.

16. Y. Haralambous, Scholar TEX, Y. Haralambous, Lille, France, 1991.

17. K. Lagally, ‘ArabTgX, a System for Typesetting Arabic, User Manual Version 3.00', Report
Nr. 1993/11, Fakulta Informatik, Universita Stuttgart, Stuttgart, Germany (1993).

18. D.E. Knuth and P. MacKay, ‘Mixing Right-to-left Texts with Left-to-right Texts', TUGboat,
8 (1), 14-25 (1987).

