
A Case Study of Software Reengineering

Harry I. Hornreich

and

Daniel M. Berry

Computer Science Department

Technion

Haifa 32000

Israel

harry@ubique.com, dberry@csg.uwaterloo.ca �

�Current Address of Corresponding Author: Prof. Daniel M. Berry, Computer Systems Group, University of Waterloo,

200 University Ave. West, Waterloo, Ontario N2L 3G1, Canada

1

Abstract

This paper describes a case study attempting to validate the e�ectiveness of the Ahrens-Prywes
(AP) top-down domain engineering method as it applies to maintaining and enhancing legacy systems.
Hornreich was totally unfamiliar with a particular legacy system and Berry was intimately familiar with
the system. The case study has Hornreich apply the AP method to do two consecutive enhancements
of the system and has Berry apply the traditional seat-of-the-pants (SOTP) method to do the same
two enhancements of the system. By several measures of software and software development quality,
Hornreich produced better code faster than did Berry. Therefore, the case study indicates that the AP
method has promise as a software reengineering method.

2

Requirements Design Implementation

Forward
engineering

Forward
engineering

Reverse
engineering

Reverse
engineering

Design
Recovery Design

Recovery

Reengineering Reengineering

Restructuring Restructuring Redocumentation,
Restructuring

Figure 1: Relationship between terms

1 Introduction

The problem of maintaining and enhancing existing systems has been recognized as a major problem
in the �eld of software engineering [10].

1.1 De�nitions

This paper assumes that the reader is familiar with the vocabulary of software maintenance, forward
engineering, reverse engineering, redocumentation, design recovery, restructuring and reengineering.
Their de�nitions can be found in the literature [10, 5, 22]. Figure 1 shows the relationship between
these terms.
Reverse engineering, restructuring, and reengineering are usually all performed on existing systems

and are, therefore, forms of maintenance. However, each of these processes can be used in new system
development or in evolutionary system development. Reverse engineering by itself is not maintenance.
However, it can be used as part of a maintenance e�ort to help understand an existing system in
order to determine the needed changes. Restructuring of an existing system is e�ectively preventive
maintenance. A reengineering e�ort can either be adaptive, perfective, or preventive maintenance, or
some combination of them.

1.2 Current Life-Cycle Models

Most software today is developed using one, or a combination of, well known life-cycle models such
as the waterfall [22], prototyping [22], the spiral [8], and what have been called fourth-generation tech-

niques [22]. These and other life-cycle models do not adequately represent software maintenance and
reengineering activities, which today account for the vast majority of software labor costs [3]. Addi-
tionally, they do not adequately represent state-of-the-art concepts for improving software engineering
practices such as domain and application engineering [12] and software reuse [11].

3

1.3 Proposed Life-Cycle Model

Ahrens and Prywes [2, 1] have proposed a new life-cycle model called the legacy and reuse software life
cycle (LRSLC), which \... is a generalized model of the software life cycle that recognizes explicitly the
critical contribution of legacy software to the attainment of software production from reusable software
components."
The LRSLC is mapped out in Figure 2. Rectangles represent life-cycle product and information

states. Transformation processes, denoted by arrows, convert artifacts in one state to information
products in a neighboring state. Forward transformations are represented by dashed lines, and reverse
transformations are represented by solid lines.
The LRSLC model does not necessarily replace current models; it can be combined with them. For

example, the model �ts well in the risk-oriented, iterative spiral model. It can also be combined with
other models such as the prototyping model to validate customer requirements. The model does however
have some notable features:

� The model de�nes the information products of the software life cycle, but leaves the transition
processes between them open to various methods. This is similar to the spiral model, which also
de�nes the information products produced at the conclusion of a life-cycle phase but leaves open
the means of their attainment.

� The model integrates forward and reverse engineering processes for traversing the life cycle.
Traversal is triggered by new information in one or more states and concludes when all states
become consistent. Both forward and reverse engineering traversals can be generated from a
single trigger.

� The model speci�cally incorporates reverse engineered legacy software in the creation of software
applications and reuse libraries.

� The model does not have a separate maintenance state. The integrated forward and reverse
engineering processes enable the creation, maintenance, and evolution of software domains, reuse
libraries, and applications over long time spans. The model is, therefore, evolutionary.

As an example use of the model, suppose one has already created a domain and built a �rst application
from it. A customer, having used the application, now has a set of new requirements. To satisfy these
requirements, we decide to create some completely new components and to reengineer others from the
legacy software. First, in a reverse traversal, we reengineer the legacy software by analyzing, possibly
translating, restructuring, and redocumenting components from the legacy software, adding them to
our domain. We update the design, architecture, and component speci�cations from the documentation
extracted by the reverse engineering process. Then, forward traversal is used to create the new domain
components, updating in the process, the speci�cations, architecture, design, and reuse information.
Finally, a last forward traversal is used to create the customer's new application by integrating previous,
new, and reengineered software components.

1.4 Transition Method

The LRSLC model presented in the previous section is a generalized life-cycle model that describes
information product states rather than the processes for moving between them. This model is well
suited for state-of-the-art software engineering methods aimed at the development of reusable building

4

Requirements

Component specifications

Architecture

Design

Application/reuse software

Transformed software

Legacy software

Forward Software Engineering Transformations

Reverse Software Engineering Transformations

Software Life Cycle Phase

Requirements—Domain or aplication software requirements defined in terms of functionality, capabilities,
performance, user interface, inputs, and outputs.

Component specifications—Domain or application software requirements specified in terms of capabili-
ties of hardware and software components and interfaces. This state is exemplified by the software
specifications in Department of Defense Military Standard 498, ’’Software Development and Documenta-
tion,’’ December 1994.

Architecture—The hierarchy of software components, rules for component selection, and interfaces
between components.

Design—Program interfaces, control flow, and logic, defined in greater detail.

Application/reuse software—In application software, a unique software product; in software reuse, a li-
brary of adaptable reusable software components. The reuse software components are tested, verified
and validated.

Transformed software—Legacy software restructured and translated, if needed, into a modern program-
ming language.

Legacy software—Application software created in a previous traversal of a software life cycle.

Figure 2: The legacy and reuse software life cycle

5

Resources Process Products

Domain
expert

Software
expert

Legacy
software

Augmented
Transition
Method

Domain definition,
specification, and
architecture

Reusable components
(code and documentation)

automatic generation of
new application software
from reuse library

Figure 3: Overview of the proposed transition method

blocks of adaptable software components from which application software can be constructed. The
ultimate goal of these methods is to be able to automatically generate applications in a speci�c domain
from a library of reusable components according to customer requirements.
However, transition from present software practice to automatic application generation has proved

to be very di�cult. The proposed transition methods, such as the synthesis approach of the Software
Productivity Consortium, advocate the creation of the domain from scratch, based on the expertise
of domain experts. These experts, based on their knowledge and experience in the domain and in
software engineering, de�ne a knowledge base of potential application requirements. Software experts
build in a top-down fashion, a library of adaptable, reusable software components to answer these
potential requirements. Decision rules and automated processes for the selection and assembly of these
components into applications are de�ned.
The problem with this approach is that it depends on having domain experts. Also, a complete

library of reusable components for a large family of applications needs to be created from scratch before
a single application can be generated. This approach has so far proved to be very costly and risky
[15, 19]. The initial investment is large and the returns are low and slow.
Ahrens and Prywes [2] propose a new method for the transition from current software practices to

the LRSLC, an augmentation of the top-down synthesis method by the use of bottom-up legacy code
component and knowledge extraction. Figure 3 presents an overview of this approach. Unlike synthesis,
legacy software becomes a key resource in the transition process. It reduces the dependency on domain
experts who are the bottleneck of the process. With the use of appropriate reverse engineering CASE
technology, it provides a basis for the creation of a library of reusable components.
Only legacy software of reasonable quality and of proven reliable performance is a good candidate

for such a process of component extraction. Most legacy software in day-to-day use answers these
requirements. These are large, complex applications that have satis�ed their users needs over a long
period of time. They are too di�cult to maintain without degredation [6] and too costly to replace
by completely new applications. They are valuable resources of their organizations and therefore hold
invaluable knowledge and code that can be extracted.

6

1.5 Augmented Transition Method

As described in Section 1.2, synthesis prescribes an ordered sequence of steps for the management,
analysis, and speci�cation of a domain that contains the architecture of a family of reusable software
components, and it provides the decision rules needed for the selection of components. The top-down
process of creating the domain is called domain engineering, which consists of six main steps: domain
de�nition, speci�cation, design, veri�cation, implementation, and validation. New applications are
constructed by selecting components from the domain, as indicated by the decision rules, in a process
called application engineering, involving: de�ning the application's software requirements, selecting
reusable components according to rules in a decision model, generating and testing the application
software, and �nally writing the application's documentation. Ahrens and Prywes have augmented the
top-down domain engineering process with a bottom-up domain reengineering process that extracts
architecture, design, business rules, etc. from legacy software, in eight major steps: (1) analyzing and
translating the legacy application, (2) converting the legacy application to new hardware and operating
system, (3) augmenting and adapting reusable components, (4) validating the domain, (5) updating the
design of the domain, (6) updating the domain's speci�cations, (7) updating the domain's de�nition,
and (8) verifying the domain.
Figure 4 illustrates the augmented method, which includes both processes. Application engineering

in the augmented method is the same as in synthesis. Either process can be used to create the initial
domain repository. The feedback loop shown in Figure 4 shows that both top-down and bottom-up
processes can be interleaved and applied iteratively, adding to the domain with each application of the
process. Note that using the two processes in a di�erent sequence will not necessarily lead to the same
reuse library.
When the top-down process alone is selected, it is driven by iterations for designated domain areas,

after which application software may be obtained from these partial domains. In later iterations, smaller
additions to the domain are needed to produce software for a new application. When combined top-
down and bottom up processes are selected, they are driven by iterations for extracting reusable legacy
applications to produce domain increments. For example, �rst a top-down process is used to de�ne
a high-level architecture. Then a bottom-up process is interleaved to �ll in the detailed architectural
levels.
Two factors indicate that the top-down approach by itself will require signi�cantly more time than

the combined approach to complete the �rst domain's increment of reusable software components for an
application. First, the top-down approach requires more input from human domain experts. Second, the
synthesis method requires the complete domain be speci�ed before applications are produced. However,
the top-down approach by itself has an advantage when developing a domain for which there is su�cient
domain expertise but no legacy applications or when the domain is not overly complex and can be de�ned
manually.
The combined approach can more quickly add components from legacy code application to the domain

architecture, leading to faster and less expensive production of new software applications than the top-
down approach. The combined approach also reduces reliance on the scarce resource of domain experts
by relying more on general software experts extracting domain knowledge embedded in good legacy
software. In summary, the combined approach presents an alternative for a faster and more economical
application of the LRSLC model.
Ahrens and Prywes emphasize the importance of an enabling technology to make their approach

practical. Automated tools complement and help the cognitive e�ort required on the part of the software
and domain experts in the domain and application engineering phases. They are especially important

7

Domain repository:
Definition

Specification
Architecture
Reuse library

Documentation

Application engineering
User requirements

Auto. program generation

Application
software

Domain SW
engineering
Top down

Domain SW
reengineering

Bottom up

Domain and
software experts

Legacy
application
software

Customer
Technology
Feedback

Figure 4: Augmented method processes

8

in the e�ort required to understand the legacy software in the processes.
The rest of this paper describes a case study amounting to a preliminary validation of the augmented

LRSLC (ALRSLC)1 model. It also lays out requirements for tools that help carry out the method.
This paper is based on the M.Sc. thesis of the �rst author. The thesis contains details that are

omitted from this paper due to space limitations. Occasionally the reader is referred to the thesis [13],
which can be obtained at 2

ftp://ftp.cs.technion.ac.il/pub/misc/dberry/hornreich.work/Thesis.pdf .
The same directory contains other materials from the experiment, including source programs and the
various documents described in this paper.

1This ALRSLC model is what is referred to as the Ahrens-Prywes method in the abstract; we thought that more readers

would recognize the names of the authors than the name of the method.
2This thesis and the other materials mentioned here can be read using Adobe's Acrobat reader, which is available free

of charge from

http://www.adobe.com/.

9

2 The Experiment

2.1 A Case Study

To demonstrate the e�ectiveness of the augmented LRSLC (ALRSLC) model, we decided to conduct
a case study [18]. In general, a case study can show the e�ects of a technology or method in a typical
situation, but the result cannot be generalized to every possible situation. Although case studies are not
as scienti�cally rigorous as formal experiments [18], they can provide us with su�cient information to
judge if a method has any promise in it. It is not claimed that this case study gives a de�nite answer or
proof as to the usefulness of the new method. It does, however, attempt to show that the new method
is applicable to a real application domain and that quality applications can be produced using it. The
intention is that this case study serve as the basis for further study either by additional case studies
or by a fully controlled formal experiments. Such formal experiments are very di�cult to perform,
especially in the �eld of software engineering, and require careful planning and large resources.
This case study is intended to examine which is better, the new, ALRSLC method for legacy code

reuse and enhancement or the common and often used seat-of-the-pants (SOTP) method for code
maintenance. SOTP maintenance does not mean maintenance with no method in it. The maintainer
may indeed have a systematic method for performing modi�cations to the software. However, such a
method does not involve any systematic form of reverse engineering or reengineering.
In order to perform a successful case study, we must have well de�ned hypotheses. The hypotheses

are:

Hypothesis 1: The ALRSLC method requires less time to produce an application than current main-
tenance methods.

Hypothesis 2: The ALRSLC method produces more reusable code than current maintenance methods.

Hypothesis 3: The ALRSLC method requires less code modi�cation to produce an application than
current maintenance methods.

Hypothesis 4: The ALRSLC method produces smaller applications than current maintenance meth-
ods.

2.2 Case Study Mechanics

Hornreich, the �rst author, served as the subject of the experiment, who applies the ALRSLC method.
Berry, the second author, served as the control, who applied his own systematic SOTP maintenance
method. We believe that this SOTP method, described by example in Section 5.5, is representative of
the maintenance methods used by most programmers that do not apply any systematic form of reverse
or reengineering. Both the subject and the control worked on similar UNIX systems and neither used
any CASE tools. All work was done manually with the help of some common UNIX commands such as
grep. The case study followed the following steps:

1. A valid legacy code program P was selected as the pilot.

2. The subject domain reengineered P and created an initial domain architecture and a set of reusable
components.

10

3. A set of requirements R0 was devised for a new version of P .

4. The control and the subject each created individual implementations of P 0 according to the re-
quirements R0. The subject used the ALRSLC method for the evolutionary development of a
domain according to new external requirements to create his version of P 0 using the initial do-
main as his basis. The control used his own systematic SOTP method of maintenance to create
his version of P 0 using P as his basis.

5. Both implementations of P 0 were tested against the same set of tests to make sure they had
implemented correctly the requirements R0, and therefore had the same functionality.

6. A second set of requirements R00 was devised for a new version P 00.

7. Again, the control and the subject each created individual implementations of P 00 according to
the requirements R00, each using his own method.

8. Both implementations of P 00 were tested against the same set of tests to make sure they had
implemented correctly the requirements R00, and therefore had the functionality.

The following measurements were to be collected during the experiment in order to validate or
invalidate the experiment hypotheses:

� Each recorded the number of implementation hours for each application version and for each
method.

� Each recorded the number of added, deleted, and modi�ed code lines for each application version
and for each method.

The case study was designed to follow the steps of a typical software project in which one has a legacy
program of which he or she has very little knowledge, but must create new versions of the program to
satisfy new user requirements.
The requirements for both new versions were not known to the subject before he had reached the

stage in which he had to know them. This is just as in real software projects in which the developers
of an application do not usually know beforehand what are the requirements for the next version of
the application. Doing two enhancements with each method allowed us to see if the ALRSLC method
produced, in the �rst enhancement, code that was easier to enhance than before and than with the
SOTP method.
The actual course of the experiment was very similar to the steps described above. The di�erence

was in the timing of the steps of the control. The actual legacy program that was selected for the
experiment was one of which the control had already created version P 0 for his own purposes before the
experiment had begun. This was an advantage to the experiment because less e�ort would be required
by the control, and was in no way an impediment to it. However, it did mean that we could not compare
the implementation hours for version P 0 because the control did not record these. This is not really a
problem. Even if we could collect these hours for version P 0, it would be wrong to compare them for
both methods because the subject was learning and developing the method during this step. Therefore,
the hours measured would not reect only the version implementation time.

11

2.3 Case Study Validity

Performing case studies correctly so that they have valid results requires careful planning. Several
steps were taken to insure the validity of the experiment:

1. A typical legacy code program was selected to be the pilot program.

2. The pilot program for the experiment was selected to be one of which the subject had no previous
knowledge.

3. The subject had no knowledge of the �rst and second sets of requirements before he reached the
steps in which he needed to know them.

4. Only discussion of the requirements themselves was allowed between the subject and the control.
Neither discussed his method or encountered implementation problems with the other.

5. Similar implementation versions were compared against the same set of tests before proceeding to
the next stage in order to make sure they have both implemented the same functionality. Each
devised his own test cases and both programs were tested against both sets of test cases.

As in any experiment in software engineering that involves several programmers, a possibly wide
di�erence in the programmers capabilities can undermine the validity of the complete experiment. It is
necessary to examine carefully how such a di�erence, if any, can a�ect the experiment. For example, a
1965 experiment to show that interactive programming is more e�ective than batch programming failed
to produce signi�cant results because the e�ect of the independent variable, batch versus interactive
programming, was drowned out by individual di�erences in programmers of equal experience. One
programmer was found to be 28 times more e�ective than another programmer of equal experience [23].
In the present case, both the subject and the control are experienced programmers in the language

of the program, C, and both come from a strong programming background. Although it cannot be
determined who is the better programmer, the control had some clear initial advantages over the subject:

� The control had more than 29 years of programming experience, while the subject had only 6
years.

� The control has a much deeper understanding of the text processing system of which the selected
program is a part, than the subject, who had absolutely no such understanding before the exper-
iment. The control had been involved since 1983 in writing and correcting programs in this text
processing system.

� The control was the client and worked with all the authors of the previous versions of the legacy
program. He also �xed some of the bugs found in the program from time to time. He therefore
has a clear initial advantage in the understanding of the program. Needless to say, the subject had
absolutely no knowledge of the program, its function, or its source code before the experiment.

� During the course of the experiment, the control had prior knowledge of the next version's re-
quirements because he was their initiator and author. The subject learned these requirements
only just before the start of programming, when the control gave the subject the requirements
document, i.e., the manual page the control had written.

12

Taking the above into consideration, it is claimed that if the experiment shows a clear advantage in
the use of the new method over the SOTP method, then indeed there is promise in the method and
it is worthy of further study. If, however the results are inconclusive or with a clear advantage to the
current maintenance method then, nothing can be concluded.
It must be emphasized however, that even if the new method shows a clear advantage over the SOTP

maintenance method, it is still possible that the advantage appeared because the subject is a better
programmer than the control or that the subject is a better programmer and the method he used is
better. Therefore, in any case, further case studies or formal experiments are required to validate the
results of this experiment.

13

¼ q
¼q
¼·q

(a)

(b)

(c)

Figure 5: Stretching connecting letters with a �ller

3 The �ortid Program

3.1 Background

�ortid [9, 24] is a UNIX ditro� [16, 21] (Device Independent Typesetter RunO�) post-processor.
When combined with ditro� and its various pre-processors, it creates a formatting system that is able
to format multilingual scienti�c documents, containing text in Arabic, Hebrew, or Persian, as well
as other right-to-left languages, plus pictures, graphs, formulae, tables, bibliographical citations, and
bibliographies.

�ortid takes as input ditro� output that is formatted strictly left-to-right, �nds occurrences of text
in any right-to-left font, such as Arabic or Hebrew, and rearranges each line so that the text in each
font is written in its proper direction. Additionally, �ortid left justi�es lines containing Arabic, Persian,
or related languages by stretching instead of inserting extra white space between the words in the line.
The stretching is achieved by inserting one or more �ller characters between the last connecting letters
of lines or words. Figure 5 (a), (b), and (c) show how a �ller is inserted between pairs of connecting
letters. Each character, including the �ller, is enclosed by its bounding box.
Figure 6 shows the ditro� output of an example combining Arabic, Hebrew, and English text. Figure 7

shows the same output after it is piped through �ortid with stretching turned o�. Note how the text
in Arabic and Hebrew has been reversed in place, and justi�cation of the lines is achieved by extra
spaces inserted between the words. Di�erent styles of stretching can be achieved in �ortid by using one
of several stretch options. Figures 8, 9, and 10 are examples of the di�erent stretch styles of �ortid. In
Figure 8, connections to last connecting letters in lines are stretched. In Figure 9, connections to last
connecting letters in lines are stretched to a maximum amount, with any remainder going to preceding
words. In Figure 10, the stretch is distributed among all connections to last connecting letters in words
in a line.
Figure 11 is the �rst page of a technical report [24] describing �ortid and is an example of �ortid output

with combined English, Hebrew, and Arabic text. Note how the Arabic text at the bottom third of the
page is left and right justi�ed by the third style of stretching.
The �rst author of �ortid was Cary Buchman, an M.Sc. student at the University of California at

Los Angeles (UCLA), and the �rst version was written during the years 1983-1984. That version could
handle only Hebrew although it did have some hooks for Arabic that proved to be useless for later
versions. The �rst external customer was the Hebrew University (HU). Mulli Bahr, a UNIX guru
from HU, modi�ed the code to optimize the output in 1986 during a visit to UCLA. Johny Srouji,

14

�¡B ��� �ª���Ö jr¨®¹ B�³Ö
B�¬¢q¹Ö y¸�Ö �Ê �� Cw¢
�Ý� ³¹£�Ö)English(jB�¬�¢�Ö .)תירבע(

CÝ��³Ö Bì¬ª�l r¸�Á B�®¢ q¹
jBv � Cy��¹ B��¨®¹ j�
B� ³´� .

Figure 6: Example ditro� output not piped through �ortid

Ö³�B ¹®¨rj Ö���ª� ��� B¡�
¢wC �� Ê� Ö�¸y Ö¹q¢¬�B

(עברית). Ö�¢�¬�Bj (English) Ö�£¹³ �Ý�
¹q ¢®�B Á�¸r l�ª¬ìB Ö³��ÝC

 �j ¹®¨��B ¹��yC � vBj
. �´³ �B

Figure 7: Same ditro� output piped through �ortid with stretching o�

Ö ³�B ¹®¨rj Ö���ª� ��� B¡�
¢ wC �� Ê� Ö�¸y Ö¹q¢¬�B

(עברית). Ö �¢�¬�Bj (English) Ö�£¹³ �Ý�
¹q ¢®�B Á�¸r l�ª¬ìB Ö³��ÝC

 �j ¹®¨��B ¹��yC � vBj
. �´³ �B

Figure 8: Last connecting letters in lines are stretched

15

Ö ³�B ¹®¨rj Ö���ª� ��� B¡�
¢ wC � � Ê � Ö�¸y Ö¹q¢¬�B

(עברית). Ö �¢�¬�Bj (English) Ö�£¹³ �Ý�
¹q ¢®�B Á�¸r l�ª¬ìB Ö³��ÝC

 �j ¹®¨��B ¹��yC � vBj
. �´³ �B

Figure 9: Last connecting letters in lines stretched up to maximum amount

Ö ³�B ¹®¨rj Ö ���ª� � �� B¡ �
¢ wC � � Ê � Ö �¸y Ö ¹q¢¬�B

(עברית). Ö �¢�¬�Bj (English) Ö �£¹³ �Ý�
¹q ¢®�B Á�¸r l�ª¬ìB Ö ³��ÝC

 �j ¹®¨��B ¹��yC � vBj
. �´³ �B

Figure 10: Stretch distributed between all last connecting letters in words

16

TECHNION TECHNICAL REPORT, MARCH 1993)

Arabic formatting with ditroff/ffortid

JOHNY SROUJI (Õuj¢y Õ�¸u, י סרוג’ וני (ג’ AND DANIEL BERRY (k¢¹q f�¹�BN,

ברי (דניאל

Computer Science Department
Technion
Haifa 32000
Israel

SUMMARY

This paper describes an Arabic formatting system that is able to format multilingual scientific
documents, containing text in Arabic or Persian, as well as other languages, plus pictures,
graphs, formulae, tables, bibliographical citations, and bibliographies. The system is an
extension of ditroff/ffortid that is already capable of handling Hebrew in the context of multi-
lingual scientific documents. ditroff/ffortid itself is a collection of pre- and postprocessors for
the UNIX ditroff (Device Independent Typesetter RunOFF) formatter. The new system is built
without changing ditroff itself. The extension consists of a new preprocessor, fonts, and a
modified existing postprocessor.

The preprocessor transliterates from a phonetic rendition of Arabic using only the two
cases of the Latin alphabet. The preprocessor assigns a position, stand-alone, connected-
previous, connected-after, or connected-both, to each letter. It recognizes ligatures and
assigns vertical positions to the optional diacritical marks. The preprocessor also permits
input from a standard Arabic keyboard using the standard ASMO encoding. In any case, the
output has each positioned letter or ligature and each diacritical mark encoded according to
the font’s encoding scheme.

The fonts are assumed to be designed to connect letters that should be connected when
they are printed adjacent to each other.

The postprocessor is an enhancement of the ffortid program that arranges for right-to-left
printing of identified right-to-left fonts. The major enhancement is stretching final letters of
lines or words instead of inserting extra inter-word spaces, in order to justify the text.

As a self-test, this paper was formatted using the described system, and it contains many
examples of text written in Arabic, Hebrew, and English.

Ö� ¯�

Ó······� Ó±´� k¡�Bj Ö¹q¢¬�B Ö³�B ¼¹�¸�� À���¢q Ì¨� f�¯ìB B¡�
Ö···¹q¢¬��q Æ� ë� Ö�¸��� ,G�³�B lN ¬�� Ö¹´³� U¸¨� ¼¹�¸r
,Ö········¹��¹q G�··�¸yP ,G�··�¸yP ,m¢··wB G�··³� Ö··���Û�q Ö··¹yP�®�Bj
Ó··¹¦�r ¸� À���¢��C .�¹�B¢�¸¹³�¹qj ,Ö¹�B¢�¸¹³�¹q PN�¨� ,fjB u
lN ·····¬�� Í···��sj ç Ö···�¢�¬�B Ö···���¬� ë···� háB PN�···¯�B ditroff/ffortid-�
À······��¬� ··¬qj (preprocessor)À··��¬� Ñ··�� Ó··� lP�··�� ditroff/ffortid .G�··³�B
Device Independent Typesetter) ditroff ,UNIX ç Ì······¨�B À······���¢�� (postprocessor)

Received 10 July 1992
 1993 by Johny Srouji and Daniel M. Berry Revised 1 February 1993

Figure 11: �ortid example output with combined English, Hebrew and Arabic text

17

Version Years Author From Major Modificationii
1.0 1983-1984 Cary Buchman UCLA Hebrew
2.0 1986 Mulli Bahr HU Output Optimization
3.0 1989-1991 Johny Srouji Technion Arabicii

Table 1: �ortid version history

Num File Size (lines) Functionsiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1 lex.h 30 -
2 lex.dit 37 -
3 token.h 34 -
4 macros.h 20 -
5 connect.h 256 -
6 table.h 18 -
7 dump.c 704 10
8 lines.c 296 6
9 main.c 506 1

10 misc.c 129 5
11 width.c 480 10iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Total 2510 32

Table 2: �ortid source �les

a M.Sc. student at the Technion, extended �ortid for Arabic stretching during 1989-1991. Table 1
summarizes the di�erent versions of �ortid.
The �ortid program described above is �ortid version 3.0. The complete manual page of �ortid version

3.0 can be found in Appendix B of the thesis [13].

3.2 �ortid Source Files

�ortid was written in C. It is composed of 11 di�erent source �les, 5 of which are .c �les, 1 of which is
a lex �le, and 5 of which are .h �les. Table 2 shows all the source �les with their respective number of
lines and number of functions. Each of the 5 .c �les is compiled separately to create a module. lex.dit

is the lexical parser de�nitions �le. The UNIX lexical parser generator lex takes lex.dit as input and
generates from it a lexical parser source �le, which is included into main.c. This parser is used to parse
the input to �ortid into tokens.

3.3 Why We Chose �ortid

�ortid was chosen as the pilot in the case study. As described in section 2.2, there are two major
criteria for selecting a program as a pilot. It should be a typical legacy code program, although perhaps
on a small scale, and it should be possible to conduct an unbiased experiment using it. �ortid is a
typical legacy code program because,

� it has been written over a long time span (9 years), by several di�erent authors (3), and had
several versions (3). All of the original authors were busy with their own lives, and therefore none
of them were approached for help in understanding the design and architecture of the program,

� it is in working condition and in current use,

18

� there are no original design documents; there are some documents describing the program's exter-
nal use and general underlying algorithms and motivation, but none of these documents actually
describes the program's design or architecture,

� the program is reasonably well commented, although certainly not fully commented, and

� it is a real program, answering a real need, and it has real users.

�ortid is a good candidate program for experimentation because

� it is reasonably sized, with 2510 source lines, not too small to be considered a toy program and
not too large for experimentation within the normal time span of M.Sc. research,

� the author had no previous knowledge of the program; he had never used it or seen its code before
the experiment; in fact, the author also had no prior experience in using the ditro� text processing
system,3 and

� the control had already written a new version of �ortid using conventional maintenance methods;
this saved some time in the experiment without a�ecting its results.4

For all the above reasons, �ortid was considered a suitable program for the experiment. The only issue
that is not addressed in this analysis is the issue of scale. This issue is addressed briey in Section 4.5
and more extensively in Section 7 describing the experiment results.

3This is why this paper was prepared using TEX rather than ditro�.
4Because of the control's other duties as a professor, he ended up being the bottleneck in the case studying, slowing up

any step in which his participation was required.

19

4 Domain Software Reengineering of �ortid

The control's next step in the experiment, as described in Section 2.2, is his creation of an initial
domain from �ortid. This domain can be de�ned as the family of ditro� post-processors that can
rearrange text in a right-to-left font so that it is written in its proper direction and can stretch Arabic
text so it is left and right justi�ed on the line.
As the subject had no previous knowledge of the ditro� text processing system or the speci�c domain

before the beginning of the experiment, it was only natural to use bottom-up domain reengineering to
extract the knowledge and code that already exists in �ortid about the domain. He used the ALRSLC
method of reverse engineering to discover the architecture and design of �ortid. The method calls for
the decomposition of �ortid into abstractions called software units. These software units end up being
the basis of the domain's reusable components library. The following section de�nes and describes the
attributes of software units.

4.1 Software Units

A software unit (SWU) is a well-de�ned component of a software system, that provides one or more
computational resources or services.
This is a de�nition of what most refer to as software components or modules.5 However, SWUs are

more general than modules. Any software module is by de�nition a SWU6, but the SWU de�nition
includes software components that would generally not be regarded as modules. For example, a single
statement, a block of statements, a function, an object-oriented class, a single de�nition and a group
of declarations are all SWUs but would conventionally be considered too small to be modules. On the
other hand, a complete program would not generally be considered a module, but it is a SWU under
this de�nition.7

The SWU concept gives a uniform view of software. It transcends traditional boundaries of scale,
language, storage medium, programming or design technique. It can be applied successfully to any
program in any language because it captures the essence of software, which is to provide computational
services. It can be applied equally successfully to programs written in machine languages, procedural
languages, functional languages, fourth-generation languages, or even job-control languages. It can be
applied to any software using any programming or design paradigm: functional decomposition, OOP,
etc. Therefore, the SWU concept and all the techniques described shortly are applicable to any software.
A SWU provides computational services, including resources, to other SWUs or to an external user

of the software system. It can even provide services to itself, as in recursion. A SWU can either depend
on other SWUs to provide its services or be stand alone. Clearly, the most basic SWUs in a software
system are stand alone. However, at least some SWUs must cooperate with other SWUs to provide
their services or else we are left with only a collection of low-level service providers. Every SWU has a
scope, capabilities, an interface, requirements, and a type:

� The scope of a SWU is the body of code that it abstracts. The scope does not have to be
contiguous.

� The capabilities of a SWU are the services it provides.

5Not necessarily compilation units as in C.
6All acronyms are pronounced as their expansions, hence \a SWU" rather than \an SWU".
7Here the software system of which the program is a component is the operating system environment or, alternatively,

any other program that can invoke it.

20

� The interface of a SWU is a description of how its services can be accessed by its clients, i.e.,
other SWUs or an external user, and how these services a�ect or might a�ect other SWUs.

� The requirements of a SWU are the services it needs or depends upon in order to provide its own
services.

� The type of a SWU categorizes the SWU into one of several types of similar service providers.
The di�erent types are decided upon by the decomposer and are language dependent. Example
types in C are: function, procedure, declaration, de�nition, groups of the above, �le, module, and
program.

The type of a SWU should reect the kinds of services it provides and not the medium in which it is
organized or stored. In some languages the name of the storage medium is also the name of the type.
For example, in C, a �le is both a storage medium and a type of SWU.
The environment of a SWU is all the software in the context in which the SWU is used that is not

in the SWU's scope. The environment of a SWU therefore depends on the context in which the SWU
is used and is di�erent for each use.
When we wish to use or reuse a SWU in a software project, we are mainly interested in its capabilities,

interface, and requirements. Its capabilities tell us what services it can provide our project. Its interface
tells us how we can access these services and in what way, if any, do these services a�ect the rest of the
SWUs in the project. Its requirements tell us what other services must already exist or be added to our
project if we want to use this SWU. Its requirements can even decide the method by which the SWU is
included in the project.
If we wish to create a reusable component library, the above information should be all we need in

order to make a successful reuse library. This information should be documented for each SWU in such
a way that it will be easy for the potential user to �nd the needed SWU, and once found, to know how
to include it into the software project, how to access it, and how it might a�ect the rest of the software
in the project.

4.1.1 Software Sub-Units

Every non-trivial SWU can be decomposed into its software sub-units. A sub-unit is a SWU in its
own right. The scopes of the sub-units must be mutually exclusive, and the union of these scopes must
be equal to the scope of the parent SWU. As with SWUs, the scope of each sub-unit does not have to
be contiguous.
The sub-units of a single SWU do not all have to be of the same type or to be recorded in a certain

order, such as the order of their scopes. However, the sub-units should be composed in a de�ned manner
in order to create the parent SWU.
The decomposition of a SWU into its sub-units is not unique, and is dependent on a partitioning

criterion provided by the decomposer. The diagram in the manual page in Figure 15 below shows an
example scope diagram, which is a graphical description of the decomposition of a SWU into its sub-
units. It shows that a SWU named �ortid is decomposed into 5 sub-units. Each SWU in the diagram
has a name and an identi�cation number.
Section 4.2 examines partitioning criteria for SWUs. There is however, one rule that must be followed

universally. This rule states that it is not desirable for a SWU to have more than 7 sub-units. The reason
for this is purely psychological. The human brain has di�culty understanding more than 7 clusters at
the same time [20], and having too many sub-units would therefore impede the understanding of the
architecture of the SWU. If a SWU does have a natural decomposition into more than 7 sub-units, some

21

ii

Software Unit

XXX
n

XXX is the name of the SWU.
n is its number (optional)

IO File

XXX

XXX is the name of the file

Local Variable

XXX

XXX is the name of the variable

ii

Parameter Variable

XXX P

XXX is the name of the variable

Return Variable

XXX R

XXX is the name of the variable

External Variable

XXX E

XXX is the name of the variable

ii

SWU Borderline

XXX

XXX is the name of the SWU

Parameters Group

. ...
..
..
..
..
..
..
.......................................

XXX P

func

Groups parameters of func for
SWU entry point

Data Flow Relationship

A B

Data flows from SWU A to
SWU B

ii

Bi-Directional Data Flow
Relationship

A B

Data flows from SWU A to
SWU B and vice-versa

Call Relationship

A B

SWU A calls a function in
SWU B

Use relationship

A B

SWU B uses declerations or
definitions in SWU A

iic
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Figure 12: Major icons used in SFDs

of them should be grouped into a single sub-unit. If it does not seem natural to decompose the SWU
into less than 7 sub-units, then usually, there is some complexity problem in the SWU abstraction, and
perhaps the SWU itself should be split into smaller abstractions.

4.1.2 Service Flow Diagrams

A Service Flow Diagram (SFD) is a graphical description of the service ow between one or more
SWUs. Di�erent graphical icons are used to describe the di�erent types of SWUs and the di�erent
kinds of services that they can provide. A summary of the major icons used in a SFD is the contents
of Figure 12.
Figure 16 below shows the SFD of the SWU representing the complete �ortid program. It shows the

interface of �ortid and the services required by it in one diagram. �ortid receives input from stdin and
from the command-line through argc and argv and sends outputs to stdout and stderr. �ortid needs
to read in a description �le and several font �les to provide its services. Note that without reading
additional documentation or providing di�erent views of the SFD, one cannot always distinguish between

22

dump.c

start P

end P

reverse_lr P

start P

end P

paper_width P

start P

end P

out_fontable E out_font E out_horizontal E out_size E out_font_name E

out_vertical E

dump_line
19

recalc_horiz
21

reverse_line
20

print_line
22

stdout

connect E

dump_defin
18

Figure 13: SFD of dump.c SWU with its sub-units

interface and required services.
Figure 13 shows the SFD of the SWU abstracting the dump.c �le in �ortid. dump.c has 5 sub-units,

one of which, the \recalc horiz" sub-unit, is hidden as an implementation detail of the SWU. It provides
function call services to two other sub-units, \dump line" and \reverse line" and no services outside
the SWU. Note that dump.c changes 6 global variables as a side-e�ect, and this side-e�ect originates
in the \dump line" sub-unit. Also note that this SFD does not show the services required by dump.c.
For example, we do not see any services that the \dump line" sub-unit requires in order to provide its
own services that are not in any of the other sub-units. We do, however, see the side e�ects of any such
required services, if there are any.
In the previous sub-section, we suggested that it is not desirable for a SWU to have more than 7

sub-units. The SFD of such a SWU would probably be too complex to understand. We have observed
that there is a correlation between the visual complexity of a SFD and the external complexity of the
SWU. A SWU can be internally very complex. However, if it has a very simple interface, then it usually
captures a very well-de�ned concept and is, therefore, easily understood by humans. A SWU that has a
very large interface is more di�cult to understand. However, if this large interface is really a collection
of individually simpler interfaces, such as function calls, then it can more easily be grasped.
A SWU that has side-e�ects is more di�cult to understand than one without any side-e�ects, espe-

cially in the context of the other SWUs. For example, a SWU that changes many global variables is
di�cult to understand. Figure 14 shows a SFD that is very di�cult to understand. Perhaps a SFD can

23

serve as an important visual indication of the external complexity of a SWU.

4.2 Reverse Engineering a Software Unit

Reverse Engineering an existing SWU has two major goals [10]: to recreate the architecture and
design of the SWU by decomposing it into sub-units identifying meaningful higher level abstractions
and to assist understanding of the SWU by documenting the SWU and its sub-units. Additionally,
reverse engineering a SWU has the following sub-goals:

� to identify SWUs that are candidates to be reused as software components,

� to recover information that is not documented in the source code, for example, about modi�cations
that were performed during maintenance but were never documented,

� to detect incorrect documentation, errors etc., in the source code, and

� to detect side e�ects in the SWUs.

Understanding of the structure and functionality of the SWU is facilitated by providing the program-
mer with a top-down progression of more detailed information on the SWU and its sub-units. The
capabilities of each SWU are documented with the aid of comments extracted from the source code.
The interface and requirements of each SWU are also documented from the source code. SFDs are
generated.
In order to recover the design of a SWU, we must decompose it by recursively partitioning it into

smaller and smaller sub-units. As de�ned in Section 4.1.1, the architecture of the SWU is represented
by a hierarchical map of SWUs, in which child sub-units show the details of their parent SWU. All
external service ow between partitioned SWUs are propagated up to a common ancestor SWU.
The decomposer must have some partitioning criteria to guide the decomposition process. The criteria

are usually based on the syntactic structure of the code combined with the principles of high cohesion
and low coupling. For example, a program in C is �rst decomposed into its compilation units (modules).
If there are too many modules, logically related modules can be grouped to create a smaller number
of sub-units. This grouping follows the principles of high cohesion, i.e., strong service relations inside
a SWU, and low coupling, i.e., weak service relations between SWUs. Each of these module groups is
decomposed into its modules. In the next step, each compilation unit can be partitioned into its source
�les, again grouping some of them if there are too many of them. Source �les are decomposed into their
global functions, etc.
The decomposer must also decide on the desired level of detail and stop partitioning when that level

is reached. We want to decompose SWUs down to a level that holds abstractions that are good reuse
candidates. On the other hand, it is important to obtain SWUs with a granularity that does not clutter
the visualization. The statement level in a function is usually too low to be a good reuse candidate.
A good decomposition level in C is the function or group of functions level. Of course, sometimes
we �nd very large functions from which we can �nd groups of statements that are good abstractions
and, therefore, are good reuse candidates. Doing so implies that the function was too large from the
beginning, and should have been split into several functions in the original design.
As explained in Section 1.1, reverse engineering is a process of examination. We are trying to

recapture the architecture and design of the SWU as understood by its creators and modi�ers. This is
not necessarily the best possible architecture and reverse engineering is not concerned with improving
the design in any way. Any design improvements we recognize can and should be recorded, but they

24

width.c

width2

. ...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

s P

in_size P

in_font P

width R

. ...
..
..
..................................

width_init

loadfont

. ...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

n P

s P

s1 P

descfile

fontfile1

......

fontfilen

stderr

c P in_size P in_font P width R

width1

. ...
..
..
..
..
..
..
..
..

widthn

. ...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

pn P

width R

width_calc
37

init_dev_font
36

debug_error
38

width_defin
35

indx_1st_spec_font E

char_name E

char_table E

char_indx_table E

size_char_table E

no_of_fonts E

width_table E

unit_width E

basic_font_info E

code_table E

fontdir E

size_char_name E

font_name E

units_per_inch E

no_chars_in_biggest_font E

Figure 14: A complex SFD

25

should not be implemented during the reverse-engineering process. In later life-cycle phases, we may
be able to justify some or all of these changes and perform them as necessary.
The process of decomposition is best performed by starting from the SWU to be decomposed, de-

termining its sub-units and proceeding recursively. However, the attributes of each sub-unit should be
determined in a bottom-up fashion, because the major attributes of a sub-unit, its capabilities, interface,
and requirements are di�cult to determine accurately without �rst determining the same attributes of
its sub-units. Section 4.1.1 shows that the capabilities of a SWU are determined by the capabilities of
its sub-units. The side-e�ects of a SWU are the side-e�ects of its sub-units minus those that do not
a�ect the outside environment of the SWU. The requirements of a SWU are the requirements of its
sub-units that are not satis�ed by any of the other sub-units.
It is, therefore, natural to view the capabilities, and interfaces, of the SWUs as being propagated

from the lowest level SWUs up through the SWU architecture. When determining the capabilities of a
certain SWU we can decide not to pass on a certain service, thereby hiding it and creating higher level
abstractions. A SWU requirement is propagated up until it is satis�ed by a SWU at a higher level, at
which point it disappears. A side e�ects is propagated up from its originating SWU until it reaches a
level, if any, in which it is no longer considered a side e�ect because its e�ect is internal to the SWU at
the new level.
To summarize, there are 4 major steps in reverse engineering a SWU:

1. Partition the SWU into sub-units and continue recursively.

2. Partition the SWU according to the syntactic structure of the SWU and the principles of high
coupling and low cohesion.

3. Partition the SWU down to the desired abstraction level of good reuse candidates.

4. Determine the attributes of the sub-units in a bottom-up fashion.

4.3 �ortid Version 3.0 Reverse Engineering

The subject performed a process of reverse engineering as described above on �ortid Version 3.0.
The process was performed completely manually using only traditional methods of text editing and
UNIX commands such as grep. All SFDs were drawn manually using pic [17]. The whole process was
very laborious and it was completed successfully only because �ortid is a relatively small program.
The following SWU classi�cations were chosen as types: Program, Module, Source �le, Declarations

source �le, De�nitions source �le, Data �le, De�nitions block, Declarations block, Procedure group,
Function group, Procedure, and Function.
It was decided that the lowest level SWU to be found was the function or procedure. It turned out

to be unnecessary to carry out all re�nements even to this level.
The initial partitioning criterion was that described in the previous section. In some cases, it was

decided to partition a SWU in one way, and later on after understanding the SWU better, a di�erent
partitioning that captured the new understanding more precisely was used. This is a natural and
expected phenomena. As one learns more about the software and understands it better, he or she might
see the abstractions of the software di�erently.
Each SWU in the decomposition was documented in what is called a Software Unit Page. Figure 15

shows the �rst part of the page documenting SWU 1, which abstracts the complete �ortid program. The
�rst section of the page, titled \Software Unit Type", describes the SWU type and scope. In this case,
the type of the SWU is \Program" and its scope is all the source �les of the program. The second section

26

Software Unit #1 — ffortid

1.1 Software Unit Type

Program. (lex.h, lex.dit, token.h, macros.h, connect.h, table.h, dump.c, lines.c, main.c, misc.c,
width.c)

1.2 Scope Diagram

ffortid
1

Dump
2

Lines
3

Main
4

Misc
5

Width
6

1.3 Capabilities

ffortid takes from its standard input dtroff output, which is formatted strictly from left-to-right, finds oc-
currences of text in a right-to-left font and rearranges each line so that the text in each font is written in its
proper direction. Additionaly, ffortid left and right justifys lines containing Arabic & Persian fonts by
stretching connections in the words instead of inserting extra white space between the words in the lines.

1.4 Interface

command line options:
ffortid [−rfont-position-list] ... [−wpaperwidth] [−afont-position-list] ...

[−s[n|f|l|a]] ...

The -rfont-position-list argument is used to specify which font positions are to be considered
right-to-left. The -wpaperwidth argument is used to specify the width of the paper, in inches, on
which the the document will be printed. The -afont-position-list argument is used to indicate
which font positions, generally a subset of those designated as right-to-left (but not necessarily), contain
fonts for Arabic, Persian or related languages. The -s argument specifies the kind of stretching to be
done for all fonts designated in the -afont-position-list

1. -sn — Do no stretching at all for all the fonts.
2. -sf — Stretch the last stretchable word on each line.
3. -sl — Stretch the last stretchable word on each line up to a maximum length.
4. -sa — Stretch all stretchable words on the line by the same amount.

The default is no stretching at all.

Manual connection stretching can be achieved by using explicitly the base-line filler character \(hy in
the dtroff input. It can be repeated as many times as necessary to achieve the desired connection length.

Side effects:
1. ffortid reads dtroff output from stdin and prints dtroff output to stdout.
2. ffortid prints encountered errors to stderr and halts program.
3. ffortid allocates and frees memory from the heap. If out of heap memory ffortid prints a

``out of memory´´ message to stdout and halts program.

Figure 15: First part of �ortid Version 3.0 SWU 1 page

27

1.6 Service Flow Overview Diagram

ffortid - Overview

ffortid
1

fontfilen

fontfile1

stdin

stderr

stdout

descfile argc P argv P

...........

Figure 16: Third part of �ortid Version 3.0 SWU 1 page

of the page, titled \Scope Diagram", contains the scope diagram of the SWU showing graphically the
SWU and its sub-units. The sub-units of �ortid are the 5 modules from which it is created. This is a
natural decomposition that captures the architecture of the program. Each of the sub-units has its own
SWU page that describes the sub-unit completely in the same fashion.
The third section of the SWU page, titled \Capabilities", gives a verbal description of the capabilities

of the SWU, a precise and concise description of the SWU capabilities in a language that is clear to the
domain and software expert. In the case of the �ortid SWU page, this section describes the capabilities
of the complete program.
The fourth section of the SWU page, titled \Interface", gives a precise description of the interface of

the SWU, simply a list of the di�erent services provided by the SWU. The interface section describes
the side e�ects of the SWU. In the case of the �ortid SWU page, the interface is the command-line
options of the program. These options are described completely in the section.
As de�ned previously, side e�ects are changes in the SWU's environment that are not clearly visible

or stated in the SWU service's access interface. In this case, the environment of �ortid is the operating
system environment. Therefore, all e�ects that are not clear from the command-line options must
be considered side e�ects, although some or all of them might be part of the normal function of the
program. Reading and writing to �les or streams and allocation and deallocation of dynamic memory
are, therefore, all side e�ects of �ortid, and they are all recorded in this section.
In most SWU pages, the �fth section, which holds a SFD of the SWU, is the last section of the page.

For SWU 1 it was decided to add a sixth section, titled \Service Flow Overview Diagram", which is also
a SFD describing the services and side-e�ects of the SWU, but without showing the internal structure
or service ow of the SWU. This SFD is a simpli�cation of the SFD of the previous section with the
intention of showing the SWU as a black box. It does not add any information to the previous SFD. In
Figure 16, we see that �ortid receives input from the command-line, argc and argv variables, from the
standard input stream, and from a number of �les, and sends output to the standard output and the

28

1.5 Service Flow Diagram

ffortid

width
6

dump
2

misc
5

descfile

fontfile1

fontfilen

stdin

argc P

argv P

main
4

lines
3

stdout

stderr

.....

Figure 17: Second part of �ortid Version 3.0 SWU 1 page

standard error streams. Allocation and deallocation of dynamic memory are not shown in the diagram,
although with appropriate icons, they certainly could have been.
As mentioned previously, the �fth section of a SWU page contains a SFD that graphically describes

the services provided by a SWU to its environment, the side e�ects of these services, and the service
ow between the sub-units of the SWU. Figure 17 is the SFD of SWU 1. Unlike the SFD in Figure 16,
it shows in detail the service ow between the sub-units of �ortid and the relation of these sub-units to
the environment. In it, we can see that the command-line options and the standard input are read by
SWU 4, which abstracts the \Main" module. The other input �les are read by the \Width" module.
Standard output is generated only by the \Lines" and \Misc" modules, and output to standard error
is generated only by the \Main" and \Width" modules. The SFD shows which module calls functions
in other modules and from which modules data ow to other modules.
There is no requirements section in our SWU pages, because the reverse engineering process was

performed before the signi�cance of such a section was realized. Clearly, such a section is needed for the
potential user of a SWU, to determine what environment must exist for the SWU to function properly.
As stated previously, each of the SWUs in the decomposition was documented by a SWU page.

Figure 18 shows the SWU page of an intermediate SWU in the decomposition, SWU 16. Note how the
function \width", SWU 34, is a sub-unit of SWU 16 but is not part of its interface. The reason for
this is that \width" provides no services. This can be seen in the SFD of SWU 16, \width" has no
parameters and returns no value. This function is an archeological relic of some earlier development
phase of �ortid.

4.4 �ortid Version 3.0 Architecture

Altogether, �ortid Version 3.0 was decomposed into 41 SWUs of which 28 are low-level. Each SWU
was given a name and identi�cation number. Additionally, the size of each SWU, and the number of lines
in its scope, were recorded. Table 3 summarizes this information for all the SWUs in the decomposition.
Figure 19 shows the complete decomposition of �ortid into its SWUs in the form of a scope diagram.

29

Software Unit #16 — misc.c

16.1 Software Unit Type

Source file. (misc.c)

16.2 Scope Diagram

misc.c
16

new_font
30

font_info
31

out_of_memory
32

yywrap
33

width
34

16.3 Capabilities

Contains a number of general support routines.

16.4 Interface

Functions:
new_font - adds a new font to the font table.
font_info - extracts a font number and name from a font token string.
out_of_memory - prints an ``out of memory´´ error message and halts execution.
yywrap - standard lex library function called whenever lex reaches an end-of-file.

Side effects:
1. new_font changes values in the passed font_table.
2. font_info returns through font_number the font token number and through font_name the

font token name.
3. out_of_memory prints ``out of memory´´ error message to stdout and causes program to halt.

16.5 Service Flow Diagram

misc.c

font_line P

font_number P

font_name P

font_number P font_name P font_direction P font_table P

stdout

1 R

new_font
30

font_info
31

out_of_memory
32

yywrap
33

width
34

Figure 18: SWU 16 page in �ortid Version 3.0 decomposition

30

ii
Num Name Type Size (lines) Low-Levelii

1 ffortid Program 3422
2 Dump Module 1044
3 Lines Module 398
4 Main Module 1299
5 Misc Module 201
6 Width Module 480
7 token.h Declarations source file 34 *
8 lex.h Definitions source file 30 *
9 macros.h Definitions source file 20 *

10 connect.h Data file 256 *
11 dump.c Source file 704
12 table.h Declarations source file 18 *
13 lines.c Source file 296
14 lexer Lex generated source file 691
15 main.c Source file 506
16 misc.c Source file 129
17 width.c Source file 480
18 dump_defin Definitions block 34 *
19 dump_line Procedure 103 *
20 reverse_line Procedure 83 *
21 recalc_horiz Function group 463
22 print_line Procedure 21 *
23 lines_defin Definitions block 35 *
24 new_free_token Function group 85 *
25 insert_tokens Procedure group 52 *
26 put_tokens Procedure group 124 *
27 lex.dit Lex source file 37 *
28 main_defin Definitions block 58 *
29 main Function 448 *
30 new_font Procedure 41 *
31 font_info Procedure 41 *
32 out_of_memory Procedure 17 *
33 yywrap Function 13 *
34 width Function 17 *
35 width_defin Definitions block 47 *
36 init_dev_font Procedure group 229 *
37 width_calc Function group 122 *
38 debug_error Procedure group 82 *
39 recalc_horiz_2 Procedure 53 *
40 calc_total Function 48 *
41 stretch Function group 361 *iic

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 3: �ortid Version 3.0 software units

31

Due to the diagram's length, it was broken into 5 scope diagrams, one for each of �ortid's direct sub-
units. They are shown one on top of the other but should be connected as shown by the dashed arrows.
Note that SWUs abstracting header �les, such as token.h, appear several times in the diagram because
they are included by di�erent SWUs.
The process of reverse engineering �ortid by decomposing it into SWUs, creating a page documenting

each SWU's scope, capabilities, interface, and SFD proved very e�ective in advancing the subject's
understanding of the architecture of a program about which he initially knew nothing.
In general, �ortid's architecture is a rather outdated form of structured programming. There is heavy

use of global variables, which, in some cases, can be justi�ed, but could always have been avoided to
achieve higher independence between modules. This outdated architecture is exempli�ed in the SWUs
that are sometimes not as reusable as desired, since they are abstractions of the code as is, without any
modi�cation.
The basic idea in �ortid is to read in the ditro� output tokens, convert them to an internal represen-

tation, perform any calculations and alterations to the lines of tokens as necessary in order to change
text direction and justify lines, and then output the token lines in the same format as �ortid input.

ditro� output is a stream of well-de�ned tokens that are device-independent commands to a typeset-
ter, usually a laser printer. These commands include such things as device resolution de�nition, font
mounting, character printing, horizontal and vertical movements, etc. This stream of tokens is parsed
by SWU 14, which is generated by lex.dit based on SWU 27, into lexical tokens, SWU 8.
As the program starts, SWU 4, the \Main" module, parses the command line options and stores them

in global variables. It then reads in each token using SWU 14, and depending on the token type either
immediately outputs it as is, or if it is a character token, stores the token in a token structure, SWU 7,
which holds lines of character tokens. \Main" simulates the actions of the typesetter by recording its
changing state as fonts and point sizes are changed and movements are performed. \Main" uses services
in \Lines", SWU 3, to create and free token structures; some miscellaneous services in \Misc", SWU 5;
and services in \Width", SWU 6, to calculate the width of characters according to their font and point
size. This information is needed for line width calculations and character transformations within lines.
The heart of �ortid is in SWU 2, \Dump". In it, lines of character tokens are transformed according

to the command-line options stored in global variables and then output using services in \Lines". For
its calculations, \Dump" needs some width services from \Width". \Dump" reverses characters of the
fonts that are speci�ed in the command-line as those to be reversed and stretches lines that contain
characters in the fonts speci�ed in the command line as those to be stretched. The stretching of the
lines is performed according to the stretch style requested by the -s option, as described in the SWU
1 page.
The subject's complete decomposition of this (and the next) version of �ortid is available in Adobe

Acrobat pdf format at [14]
ftp://ftp.cs.technion.ac.il/pub/misc/dberry/hornreich.work/FFVER*.PDF.

The decomposition has hypertext links between the di�erent SWU pages, enabling easy traversal be-
tween SWU pages, source code, and all other relevant documents.

4.5 Subject's Conclusions from Decomposition

This section, written in the �rst person, describes in the subject's own words what he learned from
doing the decomposition.
Performing a decomposition of a legacy program has a lot in common with archeology. I discovered

mixed layers of architectures and changes performed by di�erent programmers at di�erent times and

32

ffortid
1

D
um

p
2

token.h
7

lex.h
8

m
acros.h

9
connect.h

10
dum

p.c
11

dum
p_defin
18

dum
p_line
19

reverse_line
20

recalc_horiz
21

recalc_horiz_2
39

calc_total
40

stretch
41

print_line
22

L
ines
3

token.h
7

table.h
12

m
acros.h

9
lex.h

8
lines.c

13

lines_defin
23

new
_free_token

24
insert_token

25
put_token

26

M
ain
4

token.h
7

table.h
12

lex.h
8

lexer
14

lex.dit
27

m
acros.h

9
m

ain.c
15

m
ain_defin

28
m

ain
29

M
isc
5

token.h
7

table.h
12

m
acros.h

9
m

isc.c
16

new
_font

30
font_info

31
out_of_m

em
ory

32
yyw

rap
33

w
idth
34

W
idth
6

w
idth.c
17

w
idth_defin

35
init_dev_font

36
w

idth_calc
37

debug_error
38

Figure 19: Overview of �ortid Version 3.0 decomposition

33

with di�erent programming paradigms. A good legacy program is one that is relatively homogeneous
despite the various changes it has undergone throughout its lifetime.
As I examined the code during the partitioning phase, I added my own comments to help me un-

derstand what each piece of code was doing. During this phase, I found several small bugs, erroneous
comments, unused code and variables and even a gross di�erence from the documentation in the manual
page. Clearly, this is a result of the many modi�cations performed on the code. In general, the code
was readable and had enough signi�cant names in it to help understand the overall architecture of the
program. However, I did not attempt to understand the details of each and every algorithm, but instead
to gain insight into the structure of the program.
I have found that building the SWU pages was best performed by starting from the lowest level SWUs

and working my way up to higher level SWUs, because all the capabilities, interfaces and side-e�ects of
the SWUs propagate from the low level to the high level SWUs. It is simply not possible to document
correctly a higher level SWU without �rst documenting its lower level SWUs.
I found it important to be able to understand the interaction between the di�erent parts of the code,

including recognizing the use of global variables, function calls etc. and where these were de�ned. I used
grep to do these simple tasks, but the abilities to perform automated queries on the code, just as in a
database, and to generate di�erent views of the code, in my view, would greatly advance the software
understanding process.
The SFDs were actually the last thing I added to the decomposition. I found that they were a

lot of work and did not help much in the decomposing, i.e., deciding on the partitioning criterion.
Additionally, I have found that they did not help much in understanding SWUs, especially in levels
lower than function or procedure. I found it much easier to read statements of code than to understand
a graphical description of these statements. However, the graphical documentation was very helpful
in getting a global view of high level SWUs services especially when I tried to understand a SWU on
which I had not worked in a while.
The manual reverse engineering process I performed helped me reach conclusions on what functions

a dedicated CASE tool should provide to aid this process. There is much paperwork in this method and
without such dedicated CASE tools, no single or group of engineers can be expected to complete the
method in a reasonable period of time on a large legacy system. Fortunately, most of this paperwork
can be automated successfully. In my view, this method of reverse engineering is viable on real, large
volume, complex legacy code systems only with such CASE tools. See Section 7.4 for a discussion of
the requirements for such CASE tools.

4.6 The Initial Domain

The domain under consideration is the family of applications that are ditro� post-processors capable
of reversing text in right-to-left fonts and capable of left and right justifying lines by stretching Arabic
text.
The subject decided to use the architecture of �ortid Version 3.0 as discovered by the reverse engi-

neering process as the basis of the initial domain architecture. Each of the SWUs in the decomposition
is a reusable component in the domain. Some of the reusable components are low level. Others are
themselves composed of lower level reusable components. The SWU pages document the capabilities
and interface of each SWU and, therefore, of the reusable components.
The initial domain has only one SWU representing an application, SWU 1, and one way of composing

the di�erent reusable components to create it. SWU 1 is composed directly of 5 high-level reusable
components:

34

� SWU 2 { \Dump" { a module that contains routines to reverse and stretch internal token lines.

� SWU 3 { \Lines" { a module that contains routines to allocate, free, and output internal token
lines.

� SWU 4 { \Main" { a module that parses the command-line options and runs the main �ortid driver
routine.

� SWU 5 { \Misc" { a module that contains some general support routines.

� SWU 6 { \Width" { a module that contains global variables to store the font and width tables
and routines to initialize them and return character widths based on them.

The reusable components created from these SWUs are not always very adaptable or reusable. Some
of them are not as independent of other components as would be desired. The intention is that they
be transformed in an evolutionary manner to more adaptable components by a continuous ow of new
external requirements for more advanced applications in the domain. It is possible to speed up this
natural process by performing, at selected life-cycle points, a top-down domain engineering e�ort to
refurbish the components for future requirements.
For example, it would be possible not to use the architecture and components recovered from �or-

tid as is, but instead to use them as a basis for a domain with object-oriented reusable components by
extracting and analyzing the knowledge and code in the components. This method is arguably faster
and less costly than building a domain from scratch because the designers have to their advantage
the knowledge and experience of previous generations of programmers embedded in the legacy code.
However, this technique is highly dependent on the domain and quality of the legacy application being
leveraged.
In very complex domains with large legacy applications, such a preventive maintenance e�ort would

be very costly and risky and therefore di�cult to justify. In this case, it would probably be better to
let the domain evolve in an evolutionary manner. This is the case to be checked in this experiment. Do
our reusable components become better as more applications are created from the domain? How does
the domain adapt under these circumstances?

35

5 �ortid Version 4.0

After successfully building an initial domain architecture and reusable components, it was time to
proceed to the next experiment stage. According to the experiment design, a new set of previously
unknown requirements must be devised for a new application in the domain.
The control had already created, as part of his research, a new version of �ortid according to a

set of requirements he devised. He used his own SOTP maintenance method to implement these
requirements. Only after the subject had �nished creating the domain, was he presented with this
new set of requirements, so they could not have a�ected in any way the architecture of the domain he
created.
The subject was to implement these new requirements using the ALRSLC model as his basis. As

previously described, the intention is that the domain develop in an evolutionary manner according to
external requirements. Therefore, no modi�cations were to be made to the domain unless they could
be completely justi�ed by new requirements, or perhaps, by errors found in existing components. The
new application is named �ortid Version 4.0.

5.1 SWU Modi�cations

Software modi�cations are a natural phenomenon of software evolution. We should however, attempt
to avoid ripple e�ects in which a modi�cation in one SWU causes modi�cations in other SWUs. Having
good domain abstractions with carefully planned interfaces that pass high-level information abstractions
helps to avoid ripple e�ects.

5.2 The New Requirements

�ortid version 4.0 was to have all the functionality of version 3.0 plus the capability to left and
right justify lines containing Arabic, Persian or related languages by stretching letters and not just by
inserting �llers between connecting letters. This requires the use of dynamic fonts [4] in which letters
can actually be stretched. Figure 20 (a), (b), and (c) show the current method of inserting a �ller
between two connecting letters, increasing the word's width. Parts (d), (e), and (f) of Figure 20 show
the new method of stretching a letter in a word to achieve the same e�ect. Note that not all Arabic
letters can be stretched. Only those letters with a large, mostly horizontal stroke, are stretched in
traditional Arabic calligraphy.
The new requirements were speci�ed as precisely as possible by Berry by writing a new manual

page describing the new version of �ortid. It can be found in Appendix C of the thesis [13]. From a
comparison of the old and new manual pages, we created a list of three required enhancements:

1. Change the command-line options, and add the capability to automatically stretch letters and/or
connections according to these options and the new stretch information in the width tables.

2. Add the capability to manually stretch letters.

3. Add the capability to control automatic stretching of words with manually stretched letters and/or
connections by two new command-line options.

Enhancement 1 modi�es the command-line options to express the new possibilities of automatic
stretching created by the use of letter stretching. In �ortid Version 3.0, all stretching was performed by
inserting �llers and the stretch style option speci�ed where to stretch. In �ortid Version 4.0, automatic

36

¼ q
¼q
¼·q
q
q
q

(a)

(b)

(c)

(d)

(e)

(f)

Figure 20: Connecting letters, �llers, and dynamic letters

stretching is speci�ed by two relatively independent dimensions: where to stretch (the stretch place) and
how to stretch (the stretch mode). The stretch place is similar to the previous stretch style. The stretch
mode allows the stretching of only connections; only letters; either letter or connection, whichever comes
later in the word; or both letters and connections.
This enhancement includes inserting the functionality that performs the actual stretching of the

lines according to the speci�ed options. This includes reading new width tables �elds that specify the
stretchability and connectivity of each character. This information is needed so �ortid can know which
characters are stretchable and connectable.
Enhancement 2 adds the functionality needed to accept new input tokens that specify manual letter

stretch commands. These enable the user to manually stretch speci�c letters by any required amount.
The manual stretch informationmust be stored in the character token as an integral part of the character.
Enhancement 2, thus, adds the capability to manually stretch letters in words. When automatic

line stretching is enabled, these words may be stretched even more in order to left and right justify a
line. In some cases, it would be desirable to prohibit automatic stretching of words already manually
stretched. Enhancement 3 adds two new command-line options to achieve this e�ect: the -msc option
prohibits the automatic stretching of words containing manual connection stretch commands, and the
-msl option prohibits the automatic stretching of words containing manual letter stretch commands.
The actual stretching of letters by �ortid is achieved by having �ortid precede each letter that it wants

to stretch by a new output token. This output token includes the amount of stretch of the character. An
application called psdit that reads ditro� output and translates it into postscript was modi�ed to accept
this new ditro� output token and translate it into postscript commands causing the actual character
stretching. This application is not part of �ortid as such and is, therefore, not part of the experiment.

37

We made sure the three enhancements cover all the new requirements by comparing the old and new
manual pages. Our main concern in the division of the new requirements into enhancements was to
make each enhancement as independent from the others as possible from the users point of view. All the
enhancements are independent except for Enhancement 3, which depends on Enhancement 2. The idea
is that, in principle, each enhancement could be performed separately and, therefore, could be tested
separately.

5.3 Subject's Implementation

We now have a domain and a set of requirements, which we must implement by adapting the domain
as necessary and generating a new application answering these requirements. Our new requirements
are enhancements to �ortid Version 3.0 on which our initial domain is based. In the domain's current
state, we can generate only applications with similar architectures because we have only one SWU that
represents an application. This SWU tells us how to build applications from our reusable components.
Having only one is not always the case, especially in more advanced domains in which families of
applications have been planned or in which applications with completely di�erent architectures could
be generated. In such domains, we would have several SWUs, each representing a di�erent application
or application architecture. We propose here a systematic method for domain adaptation according to
a new set of requirements. This method can be used to implement the requirements in an incremental
manner or in a single batch.
Usually requirements are expressed in a user-oriented, high-level fashion. Our �rst step is the ex-

pression of the requirements in a more detailed fashion by listing them at the lower software level as
interface and capability changes to the SWU representing the complete application. In our case, this is
SWU 1. The interface changes of SWU 1 are:

I{1 Modify the command-line options.

I{2 Modify the structure of the width table.

I{3 Add the acceptance of input manual stretch commands.

I{4 Add the printing to output of stretch commands.

Two of the changes, I{1 and I{2, are modi�cations to existing interfaces, and two, I{3 and I{4, are
completely new additions to the application interface. I{1, I{2, and I{3 are all access interface changes,
and I{4 is the only result interface change. The capability changes of SWU 1 are:

C{1 Add the ability to store manual stretch values as part of character tokens.

C{2 Add the ability to store automatic stretch values as part of character tokens.

C{3 Modify the automatic stretching algorithm to stretch according to the new command-line options
and width table information.

Two of the capability changes, C{1 and C{2, are completely new capabilities, and one, C{3, is a
modi�cation of existing capabilities.
The next step in the ALRSLC method is the implementation, �rst of the access interface changes,

and then of the capability changes, and �nally of the result interface changes. Capability changes can,
and usually do, depend on new information in the input interface and must therefore be implemented

38

only after we have designed and implemented the access interface changes. The result interface changes
can, and usually do, depend on the new capability changes and must, therefore, be implemented after
them.
The division of the changes into interface and capability changes serves several purposes. First, it helps

separate the internal and external changes to the application. Secondly, it permits the implementation
of the changes using the method described in the previous paragraph.
Each interface or capability change is implemented using the same technique. Using the domain

hierarchy of SWUs, we perform a top-down search for all the low-level SWUs that should be modi�ed
by the change. The search is a focused search, directed by the interface or capability description of each
SWU. If we are modifying an existing interface or capability, we search for the current low-level SWUs
that possess the to-be-modi�ed interface or capability. If we are adding a new interface or capability,
we search for the SWU to which it should logically be added. The example below of the method is
described in the �rst person of the subject.
For example, I-1 is a modi�cation of the current command-line options. According to the theory of

SWUs detailed in the thesis [13], there exists a sub-unit of SWU 1 that provides this interface service.
By interface service, I mean that there exists a sub-unit that reads in, parses, and stores the command-
line options for the use of other sub-units. In Figure 19, it can be seen that the top-down search ows
from SWU 1 to SWU 4 to SWU 15 and �nally to SWU 29. I therefore modi�ed SWU 29, which is
the \main" function, to implement I-1. The changes required modifying the parse mechanism of the
command-line to accept the new options and modifying the global variables to store the new options.
This modi�cation caused a series of modi�cation side-e�ects. SWU 29 requires SWU 28 for the

de�nition of the global variables holding the command-line options. These variables need to be changed
because of the change in SWU 29. SWU 18 holds external declarations of the same variables for the dump
module. Therefore, SWU 18 requires the de�nitions in SWU 28 and a modi�cation in them requires a
similar modi�cation in SWU 18. These external de�nitions are used only in SWU 41 where automatic
stretching is performed according to these options. Therefore, SWU 41 had also to be modi�ed.
A single modi�cation causing such a modi�cation side-e�ect chain reaction is something we generally

wish to avoid. In this case, the interface change in SWU 1 required a capability and interface change
in SWU 29. The global variable interface used to convey the command-line options is not a high-level
enough abstraction of this information. If I had used a user-de�ned type that abstracted the command-
line options, I would have needed to change only this type's capabilities, i.e., its �elds, in SWU 29 and
to change SWU 41 to use these �elds. No other SWUs would have been a�ected. It is clear that in
some cases, modi�cations are bound to have side-e�ects, but these side-e�ects should be kept to the
minimum.
It is interesting that some of the modi�cation side-e�ects can be detected automatically by a CASE

tool. For example, if in a SWU, a programmer changes the de�nition of variables used in other SWUs,
the CASE tool can warn the programmer that these other SWUs must be modi�ed as a consequence
of the de�nition change. The programmer can then change the other SWUs, perhaps causing other
modi�cation side-e�ects. Such a tool will help the programmer not to forget to modify a�ected SWUs
in the cases it can detect.
The SWU database should hold a tree of service dependencies between the SWUs. This tree should

be checked by the tool for possible modi�cation ripple e�ects. If a global variable is not used any more
in SWU 28 and it depends on SWU 29 for its de�nition, then the tool should notify the programmer of
this fact. When the de�nition of a global variable is deleted, as in SWU 29, then the programmer must
be noti�ed of all the SWUs that use this variable, such as SWU 41.
Modi�cation I-2 is an example of a modi�cation that caused a change in the domain hierarchy. The

39

top-down search led me from SWU 1 to SWU 6 to SWU 17, and �nally to SWU 36. There, I added
the functionality needed to read in the additional stretch and connectivity �elds in the width tables.
Keeping in line with the design philosophy of the modules, I added global variables to SWU 35 to store
this additional information. I decided however to provide functions that access this new information
so it does not have to be accessed through the global variables. I grouped these functions in a new
SWU 48 called \char info", and as they belong to width.c we made it a sub-unit of SWU 17. New
macros needed for the functions in SWU 48 were added to macros.h, SWU 9, and that new code was
included in width.c. Therefore, SWU 48 became a sub-unit of SWU 6, \Width". This modi�cation did
not generate any modi�cation side-e�ects, except in SWU 35, largely because it was an addition to the
current interface without any changes to the previous one.
Modi�cation C-1 calls for viewing the manual stretch value in a character token as part of the char-

acter. A top-down search of the domain architecture revealed that there is no character width concept
in the domain. The functions in \Width" return only the font-table width of characters. Therefore, I
created new concepts by creating two functions, \tokenBasicWidth" and \tokenStretch". The former
returns the width of a character token before it is automatically stretched and the latter returns the
total stretch amount of a character token. These were grouped in a new SWU \inquire token", SWU
42, and added as a sub-unit to SWU 13, lines.c. I then had to examine the complete code looking for
calculations based on a character's width and change them to call the function \tokenBasicWidth".
This modi�cation caused no side-e�ects.
Modi�cation C-3, implementing the new automatic stretching according to the new command-line

options, resulted in two fundamental changes to the domain architecture. The �rst fundamental change
was caused by the fact that I realized that SWU 41, which is the heart of the line stretching algorithm,
would require complete refurbishing in order to implement the modi�cation. It did not have the ab-
stractions necessary to represent the new required functionality. I, therefore, created a new SWU 43
instead with several sub-units, each performing part of the line stretching algorithm with the new letter
stretching functionality inside. Of course, this change did not mean I could not use some of the SWU
41 code in the new SWUs. I did. However, most of SWU 43's code was completely new.
The second fundamental change in the domain architecture as a result of modi�cation C-3 was that

of �nding a serious conceptual bug in the original �ortid while testing the modi�cation. I realized that
the original designers of �ortid made a serious mistake in deciding when to reverse part of the tokens
in a line. This mistake is evident only in certain test cases. This realization resulted in the deletion of
SWU 21, some modi�cations to SWU 19 and SWU 39 and the alteration of the domain architecture to
reect these changes.
I found several additional minor bugs in the original code, but I corrected them without any ripple

e�ects or major domain architecture changes.
Figure 21 shows the updated domain architecture of �ortidVersion 4.0 after all the above modi�cations

were performed. As �ortid Version 4.0 included only enhancements over �ortid Version 3.0, I saw no
need to preserve SWUs that have been deleted or replaced by better SWUs. In more advanced domains
in which there could be a choice between several components, this choice should be reected in the
domain architecture and scope diagram.
Table 4 shows all information on the SWUs in the updated domain.

5.4 Subject's Implementation Data

The initial domain had 28 low-level SWUs with 2510 lines altogether. The subject deleted from the
domain 3 low-level SWUs (10, 34 and 41) and one high-level SWU (21). He added 6 low-level SWUs
(42, 44, 45, 46, 47, and 48) and one high-level SWU (43).

40

ffortid
1

D
um

p
2

token.h
7

lex.h
8

m
acros.h

9
dum

p.c
11

dum
p_defin
18

dum
p_line
19

reverse_line
20

recalc_horiz
39

stretch
43

calc_total
40

stretch_a_line
44

stretch_candidates
45

stretch_a_w
ord

46
spread_stretch

47

print_line
22

L
ines
3

token.h
7

table.h
12

m
acros.h

9
lex.h

8
lines.c

13

lines_defin
23

new
_free_token

24
inquire_token

42
insert_token

25
put_token

26

M
ain
4

token.h
7

table.h
12

lex.h
8

lexer
14

lex.dit
27

m
acros.h

9
m

ain.c
15

m
ain_defin

28
m

ain
29

M
isc
5

token.h
7

table.h
12

m
acros.h

9
m

isc.c
16

new
_font

30
font_info

31
out_of_m

em
ory

32
yyw

rap
33

W
idth
6

m
acros.h

9
w

idth.c
17

w
idth_defin

35
init_dev_font

36
w

idth_calc
37

char_info
48

debug_error
38

Figure 21: Overview of �ortid Version 4.0 domain

41

ii
Num Name Type Size (lines) Low-Levelii

1 ffortid Program 3803
2 Dump Module 1020
3 Lines Module 493
4 Main Module 1457
5 Misc Module 204
6 Width Module 629
7 token.h Declarations source file 39 *
8 lex.h Definitions source file 31 *
9 macros.h Definitions source file 33 *

11 dump.c Source file 917
12 table.h Declarations source file 18 *
13 lines.c Source file 372
14 lexer Lex generated source file 705
15 main.c Source file 631
16 misc.c Source file 114
17 width.c Source file 596
18 dump_defin Definitions block 30 *
19 dump_line Procedure 125 *
20 reverse_line Procedure 87 *
22 print_line Procedure 21 *
23 lines_defin Definitions block 33 *
24 new_free_token Function group 91 *
25 insert_tokens Procedure group 74 *
26 put_tokens Procedure group 135 *
27 lex.dit Lex source file 38 *
28 main_defin Definitions block 73 *
29 main Function 558 *
30 new_font Procedure 42 *
31 font_info Procedure 42 *
32 out_of_memory Procedure 17 *
33 yywrap Function 13 *
35 width_defin Definitions block 51 *
36 init_dev_font Procedure group 260 *
37 width_calc Function group 151 *
38 debug_error Procedure group 82 *
39 recalc_horiz Procedure 47 *
40 calc_total Function 55 *
42 inquire_token Function group 45 *
43 stretch Function group 607
44 stretch_a_line Function group 182 *
45 stretch_candidates Function group 131 *
46 stretch_a_word Function group 116 *
47 spread_stretch Function group 123 *
48 char_info Function group 52 *iicc

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

Table 4: �ortid Version 4.0 software units

42

The 3 low-level SWUs deleted had altogether 634 lines (lines include comment lines). Of the 25
low-level SWUs carried on to the modi�ed domain, modi�cations were made to 18 of them. Altogether
320 lines were added, 50 were deleted and 22 modi�ed. The 6 new low-level SWUs have altogether 649
lines. The new domain therefore has 31 low-level SWUs and 2795 lines.

5.5 Control's Implementation

The control implemented the same requirements using the same original �ortid version as his basis.
He used his own systematic SOTP maintenance method to implement these requirements. The major
steps in his method were:

� Make a list of all the changes.

� Mentally plan the changes to the implementation to achieve these changes, mainly in data struc-
tures and key new algorithms.

� Add to each change on the list, a list of modules a�ected by the change.

� Make hard copies of each of the modules and write in all the changes by following the list and
going to each a�ected module. As this is done, discover additional changes necessary, so-called
ripple e�ects, and either do them immediately if they are small and in the same module or add
them to the list of changes to be done with the right modules listed next to them.

� Desk check the changes by going module by module trying to make sure that the module is
consistent.

� Enter all the changes and recompile after each change.

� If you can see an order to doing the changes, i.e.

{ all changes that do not invalidate current functionality

{ all changes that change current functionality

{ all changes that add new functionality

and each such set makes a testable program, follow that order of adding the changes and compiling
and testing.

Note that this method did not include any form of reverse or reengineering. Using this method to
implement the above requirements, the control found it was possible to create an order of implementation
that enabled the implementation of each modi�cation and its subsequent testing. The control found
that a typical test would expose two or three bugs and about half of these were unforeseen ripple e�ects.

5.6 Subject's Implementation Data

To the original 2510 line �ortid program, the control added 1997 lines, deleted 784 lines and modi�ed
36 lines. Therefore, his implementation of �ortid Version 4.0 had altogether 3723 lines.

43

5.7 Implementation Comparison

The most striking di�erence between the two implementations is in the number of added lines, 321
by the subject compared to 1997 by the control. This di�erence requires some explanation. Both
implementors had the same goal in mind, to perform the minimum amount of modi�cations needed to
implement the new requirements. However, as happens so often with programmers, they chose di�erent
designs for their implementation. The control chose to store any information calculated in appropriate
data stores so it will never need to be calculated twice. This required the addition of new data types
and was not in keeping with the original design of �ortid.
The subject on the other hand, as a consequence of the reverse engineering and modi�cation method

used, based his design largely on the original design. The focused search method used to �nd the SWU
to be modi�ed tends to focus the programmer on the current abstractions when they exist and not on
creating new abstractions. Only when these do not exist in the current architectures must one justify
and then add the new abstractions with as much coherence with the current design as possible. In other
words, we claim that the di�erence in the number of added lines between the two implementations is
not an accident of di�erent programming styles, but a consequence of the methods used. Clearly, one
could do exactly the same changes as the subject had done without reverse engineering �ortid. However,
by using the ALRSLC method, these changes came naturally and easily.
As a general remark, we want to point out another lesson we had learned during this phase of the

experiment. The fact that we decided to have a written contract for the requirements, i.e., the manual
page, brought to the surface mistakes and misconceptions the control had of his program. The fact that
another person, ignorant at that, had to implement the same manual page, resulted in the clari�cation
of many points that had seemed clear to the control, but were, on second thought, not well de�ned.

44

6 �ortid Version 5.0

After we had successfully compared both implementations of the �rst set of requirements, we pro-
ceeded to the �nal experiment stage. Another set of more advanced requirements were to be devised
and implemented by the subject and the control on their individual latest application versions. These
requirements were from the control's mind and were not yet known to the subject.

6.1 The New Requirements

The new requirements were speci�ed as precisely as possible by Berry by writing an additional manual
page describing the new version of �ortid. It can be found in Appendix D of the thesis [13]. From a
comparison of the previous and new manual pages, a list of 7 required enhancements was created:

1. Use new font width table information on type of connection stretching requested and accept new
manual connection stretch commands.

2. Arrange words in slantable fonts on a slanted base line.

3. Use new ditro� commands to properly handle embedded text of the the opposite direction con-
taining sub-text, e.g., numerals, of the original direction.

4. Add -msw option to prevent the automatic stretching of words containing manual stretch of any
kind.

5. Use new font width table information on type of stretching requested.

6. Allow stretching of all types of characters, not just nN-named characters.

7. Change -a command-line option to --.

Enhancement 1 allows fonts to specify the type of automatic connection stretching to be performed
when connection stretching is needed according to the current stretch mode and place command-line
options. There are 3 possible types of connection stretching:

� Fixed �ller | is the type of connection stretching used in �ortidVersions 3.0 and 4.0. Connections
are �xed size �llers inserted between connecting letters.

� Stretchable �ller | the use of stretchable letters allows the use of a stretchable �ller character.
This character is usually and normally of width zero but can be stretched to any needed length
and then inserted between connecting letters.

� Stretchable connections | the connecting portions of all connecting letters are themselves stretch-
able in the same way as stretchable letters are. In this case, to achieve a total connection stretch
of size x, one would pass x=2 to each of the connecting-after portion of the before letter and the
connecting-before portion of the after letter.

The stretchable �ller solves the problems caused by the fact that the amount of a given connection
stretch may not be integrally divisible by the width of the �xed size �ller. The use of stretchable
connections improves the appearance of the connection stretch by replacing the at straight �ller with
a smooth curved connection.

45

····

(a)

(b)

(c)

(d)

Figure 22: Stretchable letter connections and �llers

For example, �gure 22 (a) shows two regular connecting letters. Part (b) shows how their connecting
parts are dynamically stretched by a given amount and part (c) how the stretched letters are joined.
Part (d) of the same �gure shows the same connecting letters stretched by inserting a stretched �ller
between the letters. Note the more pleasing result using the �rst method in (c) than using the second
in (d).
This enhancement includes the acceptance of new manual connection commands for the two new

types of connection stretching, i.e., manual stretchable �ller commands and manual letter connection
stretch commands.
Enhancement 2 enables �ortid to handle slantable fonts. These fonts have a �xed character slant,

which requires special handling in laying out words and lines. Each word in such a font is printed on a
slanted baseline that crosses the original baseline of the line at the center of the word. Figure 23 shows
each word's baseline as a solid arrow and the line's baseline as a dotted arrow.
Figure 24 shows a sample slanted output created by �ortid. Note how it handles correctly a com-

bination of slanted, unslanted, left-to-right, and right-to-left fonts. All the command-line options and
di�erent types of stretching are available with slanted fonts as well.
Sometimes right-to-left text contains some embedded left-to-right text, such as a street address in

Hebrew that contains a numeral using traditional western digits with the most signi�cant digit to the left.
If this right-to-left text were embedded inside left-to-right text, e.g., an English sentence announcing a
Hebrew street address, inside a left-to-right document, then the numeral, being left-to-right text, would
be treated as left-to-right text that separates two right-to-left chunks inside a left-to-right document.
Enhancement 3 solves this problem by providing for two ditro� commands that surround the embedded
left-to-right text and that cause �ortid to recognize that the surrounding text should be treated as a
single right-to-left unit.

Figure 23: Layout of slanted font words on line

46

Ö�¸yÖ¹q¢¬
�BÖ³�B ¹®¨rj

Ö���ª
� ���B¡�

Ö�¢�¬
�Bj

(English)Ö�£¹³
�Ý� ¢wC ��Ê�

¹q ¢®�BÁ�¸rl�ª¬ìB Ö³��ÝC.(עברית)

. �´³ �B �j ¹®¨��B ¹��yC � vBj

Figure 24: Sample slanted output

Enhancement 4 adds a new command-line option -msw that prevents the automatic stretching of
words containing manual connection or letter stretch commands. This feature is useful for preventing
the automatic stretching mechanism from messing up �nely tuned manual stretch commands.
Enhancement 5 allows better control over the type of stretching fonts provided. A new line in each

font's width table describes the stretchability of the font as either connections only, letters only, or
letters and connections. This enables the font to limit the type of automatic stretching allowed on
the font despite the actual available stretchability of each character. Therefore, the same font can be
mounted several times, each time with di�erent stretch properties.

�ortid Version 4.0 allows the stretching of only characters entered by their numerical code as the
argument of a nN escape. Enhancement 6 enables the stretching of characters also entered by their
ASCII or two letter synonym.
Enhancement 7 is a trivial enhancement that simply changes the syntax of the -a command-line

option, specifying the stretchable fonts, to the more intuitive -- syntax.

6.2 Implementation

The most substantive enhancements in �ortid 5.0 are the two new types of connection stretching,
slanted fonts, and the handling of embedded reversed text. These enhancements represent completely
new functionality in �ortid. The rest of the enhancements are mostly technical because they only alter
or improve current functionality without adding something completely new.
The subject implemented these requirements using the same method described in the previous chap-

ter. He implemented them serially, one by one, testing each new enhancement as it was implemented,
and found no problem in doing this.
The control implemented the same requirements using his own SOTP method described in the pre-

vious chapter. He had found that unlike the �rst set of requirements, it was not possible for him to
implement each enhancement separately. He implemented the whole program all at once. He then
tested the old features �rst to make sure that they have been preserved, and then he tested the new
features.

47

Deleted Modified Reused Added

Original
Application

Product
Application

Figure 25: Relationship between original and product applications

Reuse Ratio =
reused lines

original lines
(1)

Modi�cation Ratio =
modi�ed lines

original lines
(2)

Addition Ratio =
added lines

product lines
(3)

7 Experiment Results

Before giving the results and conclusions from the experiment, it is necessary to describe how to
compare di�erent application versions for their amount of reuse and modi�cation.

7.1 Measuring Reuse

Figure 25 shows as a Venn diagram what happens when we create a new, product application from
some original application. Part of the original code is deleted and is not included in the product
application. Another part of the original code is modi�ed and included in the product application.
Finally, still another part of the original code is reused as is in the product application. The �nal product
application consists of the modi�ed and reused code from the original application and of completely
new code, which is added to the existing code. This analysis is true not only of applications but also of
any other type of SWU.
In order to qualitatively measure the amount of reuse achieved in a project based on some original

application producing some product application, we have de�ned three important ratios. These ratios
use as the basic unit of their numerator and denominator, the number of code lines including comments.
It is of course possible to choose some other basic unit such as lines without comments, statements
etc. However, code lines have been shown to be an acceptable measure of code size over the years.
Additionally, comments are also reused in projects and not only program statements; therefore, it is
logical to count them as well in measuring program size.
The reuse ratio, de�ned in Equation 1, measures the number of directly reused lines in the product

application relative to the original application size. This ratio tells us how much of the original appli-
cation was reused as is.8 Clearly, a small reuse ratio means that little code was reused from the original
application, and a large reuse ratio means that much code was reused from the original application.
The modi�cation ratio, speci�ed in Equation 2, is similar to the reuse ratio except that it measures

8Some use a reuse ratio that includes not only directly reused lines but also modi�ed lines. This measures what is

known as leveraged reuse.

48

iii
Del. Mod. Added Final Implementation
Lines Lines Lines Lines Timeii

Experiment 4.0 684 22 969 2795 —
Control 4.0 784 36 1997 3723 —iii
Experiment 5.0 126 23 947 3616 39
Control 5.0 44 82 789 4468 77-94.5iiic
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c

Table 5: Experiment results

the number of modi�ed lines in the product application relative to the original application's size.9

The addition ratio, speci�ed in Equation 3, measures the number of new lines in the product applica-
tion relative to the original application's size. This measure is important because it tells us how much
of the �nal application, (1�addition ratio), is from completely new code and how much is from directly
reused and modi�ed code. It is possible to have a case with a high reuse ratio and a high addition
ratio. This situation indicates that although we reused a large proportion of our original application,
the reuse amounts to only a small fraction of our �nal product application. Therefore we cannot say we
have reached a high level of reuse altogether. In fact, such a situation would probably imply that the
whole reuse e�ort was futile and that perhaps it would have been better to create the complete product
application from scratch, as most of it was written from scratch in any case.
Therefore, in order to state that a high level of reuse was achieved in a certain project we should

have a large reuse, or leveraged reuse, ratio and a small addition ratio. How much is large and small?
That depends on the speci�c project and its goals. If we implement two di�erent versions of the same
application, the comparison is simpler because we can compare the ratios of each version and decide
accordingly which had a higher level of reuse.

7.2 Results

For each application version of the subject and the control, we recorded the number of deleted,
modi�ed, and added lines from the original application it was derived from. Additionally, for the second
version of each, we recorded the �nal number of lines in the product application and the implementation
time in hours, including testing. The results for all the di�erent applications in the experiment can be
found in Table 5.
Both the subject's and the control's versions of �ortid 4.0 started from the same application { �or-

tid 3.0, which had 2510 lines. Both deleted approximately the same number of lines and modi�ed nearly
the same insigni�cant number of lines. The major di�erence between the versions is the number of
added lines. The control added more than twice the number of lines the subject added in order to
achieve the same functionality, and therefore, the control's version was much larger, almost 1,000 lines
more, than the subject's. (See Section 5.4.)
The reason for this wide di�erence is that the control took a design decision di�erent from that of the

subject, adding a new complex data structure and all the code needed to initialize, handle and extract
the information in this new data structure. Clearly, this decision was not mandatory, as the subject
achieved the same functionality without adding this new data structure.
Remember that both implementors had the same goal in mind: to perform the minimum amount of

modi�cations needed to implement the new requirements. However, as happens so often with program-
mers, they chose di�erent designs for their implementation. The control chose to store any information

9Therefore adding the reuse and modi�cation ratios gives us a leveraged reuse ratio.

49

ii
Reuse Modification Addition
Ratio Ratio Ratioii

Experiment 4.0 72% 1% 35%
Control 4.0 67% 1.5% 54%ii
Experiment 5.0 95% 1% 26%
Control 5.0 97% 2% 18%iic
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c

Table 6: Experiment results analysis

calculated in appropriate data stores, so that no item will need to be calculated twice. This required
the addition of new data types and was not in keeping with the original design of �ortid.
The subject, on the other hand, as a consequence of the reverse engineering and modi�cation method

used, based his design largely on the original design. The focused search method used to �nd the SWU
to be modi�ed tends to focus the user on the current abstractions when they exist and not on creating
new abstractions. Only when the needed abstractions do not exist in the current architecture must one
add them with as much coherence with the current design as possible. In other words, it is claimed
that the di�erence in the number of added lines between the two implementations is not an accident
of di�erent programming styles but a consequence of the methods used. One could have done exactly
the same changes the subject had done without reverse engineering �ortid. However, with the ALRSLC
method, these changes came naturally and easily.
No implementation time is recorded for either version of �ortid 4.0 for two reasons: First, the control's

version was written before this experiment was conceived, and no time data had been recorded. Secondly,
the subject was learning and inventing his method as the application was being created, and therefore,
it would not be fair to compare the two versions' implementation times. This lack of time data was one
reason for including the creation of �ortid 5.0 in the experiment; that creation could be timed from the
beginning by both the subject and the control.
The analysis of these results can be found in Table 6. As expected from the collected data, the direct

reuse ratio of both versions was more or less the same, as both deleted and modi�ed more or less the
same number of lines. The modi�cation ratio of both versions was small and insigni�cant. Finally, the
addition ratios of both versions were quite di�erent. The subject's addition ratio, 35%, is much lower
than the control's addition ratio, 54%, because the subject added signi�cantly fewer new lines to the
code than did the control.
According to the analysis in the previous section, the subject's version 4.0 had a higher level of reuse

of the original application, �ortid 3.0, than the control's, because it has a slightly larger reuse ratio and
a signi�cantly lower addition ratio. In order to judge which �ortid 4.0 version was more reusable, i.e.
which method resulted in a more reusable application, we must compare the level of reuse achieved by
each method in the second experiment step.
Each of the subject and the control started his version of �ortid 5.0 from his own version of �ortid 4.0.

Each deleted very few lines from his original application, although, as shown in Table 5, the subject
deleted more lines than the control. These data indicate that each implementor added good code to
his version of �ortid 4.0, because each reused most of his own �ortid 4.0 in his �ortid 5.0. Neither the
subject nor the control modi�ed many lines, with the control modifying a few more lines, and both
adding nearly the same number of new lines. The �nal application of the control, therefore, still had
signi�cantly more lines than the subject's because the control started with a larger original application.
Implementation time was recorded in this experiment step. The control recorded a minimum and

maximum implementation time because he could not give exact hours due to the nature of his working
environment. He was interleaving other professional duties while coding and found himself thinking

50

about the coding in the background while doing other activities totally unrelated to the coding. The
subject worked more contiguous hours and rarely thought about the coding during the other hours,
having had his full during the regular working hours. Even if we take the minimum hours recorded
by the control, they are approximately twice the implementation hours of the subject. This can be
attributed to the fact that the subject's original application was documented in the form of a domain,
while the control had only the commentary in the code itself. The domain documentation allowed the
subject to quickly trace where each modi�cation needs to be performed using the SWU architecture.
The control, on the other hand, had only the decomposition of his application into modules to guide
him. In the subject's view, the overall result of this was better software understanding by the subject
and the ability to perform modi�cations quicker.
The analysis of these results using these ratios can be found in Table 6. The direct reuse ratios

of both versions are similar and very high. The modi�cation ratios of both versions are similar and
insigni�cantly small. The addition ratio of the subject is higher than that of the control, because
the subject added slightly more lines but had a smaller �nal application size therefore resulting in the
higher addition ratio. If we take the di�erent original application size into account, there is no signi�cant
di�erence between the versions' addition ratios.

7.3 Conclusions

There was no signi�cant di�erence between the reuse and modi�cation ratios of both methods in both
experiment steps. There was a signi�cant di�erence in the addition ratio of the methods in �ortid 4.0.
This di�erence, we believe, shows the advantage of using the proposed ALRSLC method, which directs
the implementor to use existing SWUs over creating new abstractions.
Although there was no signi�cant di�erence in the ratios of the di�erent implementations of �ortid 5.0,

if we examine the overall results, we claim that they indicate clearly that the subject's version of
�ortid 4.0 was more reusable than the control's because

� it took a signi�cantly shorter time to perform the necessary changes on it;

� it has a signi�cantly smaller application size;

� it is better documented; and

� it has higher quality code.10

It is, however, necessary to put some hedges over these results. Although we had taken several steps
to make sure the results of the experiment are valid and that we had taken into account the possible
di�erence between the implementors' capabilities, it is still possible that the subject was a much better
programmer than the control and this di�erence explains the di�erence in the implementation time, etc.
We do not believe this to be the case, but in any case further case studies and formal experiments are
needed in order to strengthen these results.
Another point to keep in mind in such experiments, is that there is a possible di�erence between the

actions of an ignorant and knowledgeable person. It is well known that an ignorant person performs
better on some tasks because of a lack of tacit assumptions a knowledgeable person makes due to his

10This conclusion was reached by examining both applications source code and comparing basic principles of software

engineering such as function length etc. This is clearly a subjective conclusion. However, both authors agree with this

conclusion!

51

increased knowledge [7]. This can also be a possible explanation for the di�erent design decision taken
by the control in his implementation of �ortid 4.0.
The subject has used the ALRSLC method to produce an initial domain, and has carried out a

systematic method for the implementation of requirements in such a domain. In the current case study,
this method did result in a high level of reuse and low level of modi�cation. This method can be highly
automated using dedicated CASE tools.
In the subject's view, only the use of such methods with automated tools o�er hope of handling the

problem of maintaining and reusing the large number of legacy systems that exist. Further experiments,
perhaps with real, full scale, legacy systems, using state-of-the-art CASE tools will help re�ne the
proposed methods and advance the technology of software reengineering. Only with such experiments
will we be able to realize the full potential of these technologies.
A remark made by Berry while reading Hornreich's �rst draft of Section 5.3 recognizes the potential

of the methods studied in this experiment. \Now I am beginning to understand the advantage you had
in tracking things down to avoid ripple e�ects and to just plain �nd what to change and the sources of
bugs!".

7.4 CASE Tool Requirements

In general, a CASE tool should automate everything that can be automated and leave to the human
operator that which cannot be automated well. The same is true for a reverse engineering CASE tool. It
does not need to, and should not, replace the human decisions needed in the process. The documentation
of SWU interfaces and SWU requirements, extraction of relevant comments, and generation of SFDs
can all be automated. Precise partitioning of a SWU and documentation of capabilities must still be
performed mostly manually. The desired tools are therefore semi-automatic, reverse-engineering tools.
With the use of expert knowledge, a reverse engineering tool could provide suggestions to help the

human operator make faster and more knowledgeable decisions. For example, it could suggest one or
several options for partitioning a SWU according to its syntactic structure or the resulting service ow
dependencies between the sub-units. The human operator could then decide to accept one or more of
the suggested decompositions or to provide one of his or her own. More advanced tools could even try
to learn new partitioning criteria from previous human partition decisions.
To summarize, a CASE tool would help reverse engineering by

� suggesting criteria, alternatives, implications, and places to partition a SWU, perhaps using AI
knowledge expert technologies,

� generating automatically the SFDs,

� generating automatically all or most of the side-e�ects of a SWU,

� generating automatically the requirements of a SWU,

� handling most of the paperwork involved; a change in one SWU should propagate automatically
to all a�ected SWUs,

� extracting or pointing to comments in the code that might be of use in documenting a SWU,

� building a database of the SWU architecture on which di�erent queries can be performed, and

� allowing the addition of new comments to the source code as additional comments and not as part
of the code.

52

The desired CASE tool should not only provide assistance in the reverse engineering process itself,
but it should also provide an environment in which the discovered architecture can be navigated, e.g.,
to move from one SWU to its parent SWU or to one of its sub-units, to view a SWU's attributes, to
transfer between the abstraction and the source code, and to see di�erent views of the stored information
such as all uses of a global variable, function calls, etc. The reverse engineering tool should build a
SWU database that can be viewed and easily changed as we change previous decomposition decisions.
This database would serve later a basis for changing the source code or SWU structure.
Storing the complete SWU architecture in a database would greatly help changing the di�erent

components and realizing the e�ects of these changes.

7.5 Acknowledgments

The authors thank Prof. Noah Prywes for describing his methods and for exchanging ideas during
the experiment.

53

References

[1] J.D. Ahrens and N.S. Prywes. Reengineering the software life cycle and enabling technology.
Technical report, Computer Command and Control Company, July 20 1994.

[2] J.D. Ahrens and N.S. Prywes. Transition to a legacy and reuse-based software life cycle. Computer,
28(10):27{36, October 1995.

[3] J.D. Ahrens, N.S. Prywes, and E. Lock. Software process reengineering: Toward a new generation
of case technology. Journal of Systems and Software, 30(1 and 2):71{84, July{Aug 1995.

[4] J. Andr�e and B. Borghi. Dynamic fonts. PostScript Language Journal, 2(3):4{6, 1990.

[5] ANSI/IEEE. IEEE standard glossary of software engineering terminology. IEEE, 1983. ANSI/IEEE
standard 729.

[6] L.A. Belady and M.M. Lehman. A model of large program development. IBM Systems Journal,
15(3):225{252, March 1976.

[7] D.M. Berry. The importance of ignorance in requirements engineering. Journal of Systems and

Software, 28(2):179{184, February 1995.

[8] B.W. Boehm. A spiral model of software development and enhancement. Computer, 21(5):61{72,
May 1988.

[9] C. Buchman and D.M. Berry. User's Manual for ditro�/�ortid, An adaption of the UNIX Ditro�
for formatting bi-directional text. Berry Computer Scientists, Los Angeles, CA, 1987.

[10] E.J. Chikofsky and J.H. Cross II. Reverse engineering and design recovery: A taxonomy. IEEE
Software, 7(1):13{17, January 1990.

[11] Software Productivity Consortium. Software reuse: The competitive edge. Technical Report SPC-
91047-N, Software Productivity Consortium, Herndon, Virginia, 1991.

[12] Software Productivity Consortium. Reuse-driven software process guidebook. Technical Report
SPC-92019-CMC, Version 02.00.03, Software Productivity Consortium, Herndon, Virginia, 1993.

[13] H.I. Hornreich. A case study of software reengineering. Master's thesis, Technion, Haifa 32000,
Israel, 1996. Available in Adobe Acrobat PDF format from
ftp://ftp.cs.technion.ac.il/pub/misc/dberry/hornreich.work/.

[14] H.I. Hornreich. �ortid version 3.0 decomposition manual. Technical report, Technion, Haifa 32000,
Israel, 1996. Available in Adobe Acrobat PDF format from
ftp://ftp.cs.technion.ac.il/pub/misc/dberry/hornreich.work/.

[15] R. Joos. Software reuse at motorola. IEEE Software, 11(5):42{47, September 1994.

[16] B.W. Kernighan. A typesetter-independant TROFF. Computing Science Report 97, Bell Labora-
tories, Murray Hill, NJ, March 1982.

[17] B.W. Kernighan. Pic | a graphics language for typesetting, revised user manual. Computing
Science Report 116, Bell Laboratories, Murray Hill, NJ, December 1984.

54

[18] B. Kitchenham, L. Pickard, and S. Lawrence Peeger. Case studies for method and tool evaluation.
IEEE Software, 12(4):52{62, July 1995.

[19] W.C. Lim. E�ects of reuse on quality, productivity, and economics. IEEE Software, 11(5):23{30,
September 1994.

[20] G.A. Miller. The magical number seven, plus or minus two: Some limits on our capacity for
processing information. The Psychological Review, 63:81{97, March 1956.

[21] J.F. Ossana. NROFF/TROFF user's manual. Technical report, Bell Laboratories, Murray Hill,
NJ, October 11 1976.

[22] R.S. Pressman. Software Engineering: A Practitioner's Approach. McGraw-Hill, 3rd edition, 1992.

[23] H. Sackman, W.J. Erickson, and E.E. Grant. Exploratory experimental studies comparing online
and o�ine programming performance. Communications of the ACM, 11(1):3{11, January 1968.

[24] J. Srouji and D.M. Berry. Arabic formatting with ditro�/�ortid. Electronic Publishing, 5(4):163{
208, December 1992.

55

