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Formal Specification and Verification of
Concurrent Programs

not be used in a software development unless theyCapsule Description
are perceived as reducing the total cost of the devel-
opment. That is, they must be perceived as reducingThis module introduces formal specification of con-
the number of eventual errors, and the perceived costcurrent software and verification of the consistency
of the residual errors were they not done must bebetween concurrent programs and their specifica-
higher than the cost of carrying them out.tions. First, what one might want to be able to prove

about a concurrent program is discussed.  Then, a Consistent with this utilitarian view is the obser-
number of formal descriptions of the concept are vation that very often the process of writing the for-
presented. These vary in their coverage of the mal specification of a system is the same as the proc-
phenomena, and some can be used as the bases of ess of designing the system’s functionality.  That is,
formal specifications of programs.  Next, techniques the act of writing the formal specification is simply
for carrying out the proof of consistency between the recording the requirement decisions that have been
specification and the program are described. made, and most changes taking place in a specifi-
Finally, it is noted that some of these techniques cation before the first verification attempt are made
have automated tools such as verifiers associated for the purpose of getting the function of the system
with them. right.

This philosophy dictates what material is included in
this module. Material is included if, in the opinion of
the author, it is oriented toward the practice of soft-Philosophy ware development, that is, if the author believes that
the material can be used to help the software engi-

Programming concurrent software is a complex, neer develop systems or applications that exhibit
error-prone task. Because of the inherent nondeter- concurrency. Hence material describing develop-
minism, it is difficult for the programmer to under- ment methods and specification and verification en-
stand the effect of his or her own program.  It is even vironments is included. Theoretical work is de-
more difficult for others, such as the client and the scribed to the extent that it provides the logical basis
maintainer, to understand this effect. for practical work. Deep theoretical issues—such as

axiomatic completeness, formal modeling of fair-Formal specification of concurrent software and ver-
ness, which are important in their own right—are notification of the consistency of the software with
covered here because they do not have an impact onrespect to these specifications are useful if for no
the applicable work.other reason than they force a closer examination of

the software.  Sometimes, the formal models exhibit Another issue dictating what is covered herein is the
aspects of the nondeterministic behavior that were simple fact that as this module is being written, the
not otherwise apparent.  Other times, just the plain field is expanding! Indeed, the release of this module
fact of redundancy—the specification and the pro- has been delayed more than once by the discovery of
gram are two statements of the same thing, but in recent new material. An arbitrary decision was taken
different languages—is what is useful. to release the module now with what is already in it.

Surely, the document is thick enough!It is clear that the cost of carrying out formal specifi-
cation and consistency verification is high. It is so ℵ
high that formal specification and verification will
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Formal Specification and Verification of Concurrent Programs

Finally, there is still other not-so-recent material that • verifications of consistency carried out in
is consistent with the philosophy and is nevertheless any of the proof systems
not covered in more detail than a mere mentioning Synthesize
with a bibliographical citation. These citations point

• a specification of a program in at leastto approaches that are so similar to approaches
one specification languagecovered in detail, that not enough would be gained

• a verification of the consistency of a pro-by discussing them in detail. The choice of which
gram to specifications in the above lan-approach to cover among similar approaches was ar-
guagebitrary, reflecting what was known first to the au-

thor, and should not be construed as saying that the Evaluate
presented approach is any better than the others. • the coverage of any of the above or new

formal models, specification languages,In any case, this module discusses neither VDM
and environments[Bekic74] nor Z [Hayes87] because

1. VDM is covered in another module
[Pedersen89] in detail, and

2. neither is really intended for use in deal-
Prerequisite Knowledgeing with concurrency; they both aim at

treating programs as functions, and most
The student should be fully familiar with the mate-concurrent programs, being nonhalting
rial of the curriculum module Formal Verification ofsystems, are just not describable as func-
Programs [Berztiss88] and of all of its prerequisites,tions.
especially those of programming and mathematical
maturity. The student should also be familiar with
the of the curriculum modules Concepts of Concur-
rent Programming [Bustard90] and Languages andObjectives
System Support for Concurrent Programming
[Feldman90] and their support materials.

The student who has absorbed the material of this
It is useful, but not essential, to have somemodule can be expected to
familiarity with the material in the curriculum mod-

Know ules Formal Specification of Software [Berztiss87],
• of the various tools and environments of Software Specification: A Framework [Rombach87],

tools for carrying out specification and and Software Development using VDM
consistency verification [Pedersen89].

Comprehend
• the basic terminology of concurrency

• the various properties that concurrent
systems may or may not satisfy and the
meanings of and differences between
these properties

• the various formal models of concur-
rency and their relations to each other
and their coverage

• the various formal specification lan-
guages

• the methods for proving programs con-
sistent with specifications

Apply
• at least one of the specification lan-

guages to a problem of moderate size
Analyze

• specifications in any of the various speci-
fication languages
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Module Content

Outline

I. Unifying Model

II. Properties of Concurrent Programs
1. Safety Properties

a. Deadlock Freeness

b. Mutual Exclusion

c. Data Security

d. Proper Termination

e. Partial Correctness

2. Liveness Properties
a. Fairness

b. Receiving Requested Data 4. Denotational
c. Sent Message Will Arrive 5. Comparisons of the Coverage of the

Approachesd. Each Request Serviced
IV. Actual Specifications of Softwaree. Termination

1. Operating System Securityf. Total Correctness
2. Database Integrity3. Others
3. ProtocolsIII. Formal Models

1. Operational — NDISM
a. Description of NDISM by Program

b. Formal Mathematical Descriptions of
NDISMs

c. Redundant Specification of Properties 4. Other Problems
d. Formal Verification of Redundantly V. Doing the Verifications

Specified Properties VI. Specification Languages and Verification
e. Graph Models of Concurrent Computation Environments

1. AFFIRM2. Axiomatic
2. FDM

3. Gypsy

4. HDM

5. P-NUT

6. SARA

7. PAISLey

8. STATEMATE

9. Process Algebras
3. Temporal Logic

10. ASTRAL

VII. Current Status
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Formal Specification and Verification of Concurrent Programs

left represents an initial snapshot, and each forkingAnnotated Outline
point represents the choice of successor snapshots.  A
computation is a path from left to right along the tree.

I. Unifying Model Note that the nondeterminism that represents concur-
rency is different from the traditional automataFor the purpose of unifying the discussion of all of the
theoretic nondeterminism [Hopcroft79]. Automataformal models of concurrency covered in this module
theoretic nondeterminism is an abstraction of either (1)and for providing a basis for comparing them with each
trying all possible computations at once until one isother, this module uses the formal model of compu-
found that gives an answer to the problem that thetation, known as the Nondeterministic Information
automaton solves or (2) always choosing the right suc-Structure Model (NDISM) [Wegner68]. It is a state
cessor snapshot that leads directly to an answer.  Inmachine formalism in which the content of the state is
concurrency, one is choosing only one path, and thereleft unspecified but can be made as simple or as com-
is no notion that any one is more correct than the other.plex as desired.  The same pictorial version of this

formal model is used in the textbook Programming A computation C=(s , . . . , s , s , . . . ) in an NDISM0 i−1 iLanguage Structures [Organick78] and in “A Visual
M=(I, I , F) is said to halt at snapshot s if and only if0 nExecution Model for Ada Tasking” [Dillon92].

1. s is in Cn
In NDISMs, concurrency is modeled by supposing the 2. F(s )=∅nexistence of process items in the state and nondeter-
ministically selecting one such process to execute one Note that Condition 4 of the definition of a compu-
instruction at each state transition.  In other words, con- tation guarantees the uniqueness of s ; it is the first andn
currency is modeled by interleaving process computa- only snapshot in C that can satisfy Condition 2 of the
tions at the granularity of the single instruction. same definition.

For the purpose of establishing the notation used in this The execution of a program p in the presence of input i
module, the basic definitions given in the support is a computation beginning from an initial snapshot s ,0
materials are repeated in this section. which contains some representation of p and i. For a

given p and i, there may be more than one compu-The formal model is that of a nondeterministic infor-
tation, some of which halt and some of which do notmation structure model (NDISM) [Wegner68].
halt. If a computation halts, the computation is said to
yield an output, namely a portion of the final snapshotM=(I, I , F) is an NDISM if and only if0
designated as the output o. There are some special1. I is a countable set
situations that have special names.

2. I ⊆I0 • If for all input i, all computations arising from i and
3. F:I→P (I) a program p halt, then p is said to be a halting

program.The elements of the set I are called snapshots.
• If for all input i, all computations arising from i and

A possibly infinite sequence C=(s , . . . , s , s , . . . ) is a program p do not halt, then p is said to be a0 i−1 i
a computation in an NDISM M=(I, I , F) if and only if looping program.0

1. ∀s in C, s ∈I • If for all input i, the initial snapshot built from i andj j
a program p gives rise to at most one computation,2. s ∈I0 0
then p is said to be a deterministic program.3. ∀i>0, s ∈F(s )i i−1 Note that a program that is not a halting program is not

4. C is a proper initial subsequence of no other se- necessarily a looping program, as it may have some
quence meeting conditions 1-3 computations that do halt and some that do not halt.

thNote that the i snapshot is one of the elements yielded A deterministic halting program, which is actually notthby applying the transformation F to the i−1 snapshot. the subject of this module, is said to implement a
Herein lies the nondeterminism; in each step of each function because for each input, the program yields a
computation, the next step is chosen from among pos- unique final snapshot from which a unique output may
sibly several candidate next steps.  Condition 4 assures be extracted.  A deterministic non-halting program is
that no finite subcomputation of a computation is con- said to implement a partial function; one assigns
sidered a computation; thus infinite computations must undefined as the result of the function for those inputs
be carried out forever. giving rise to non-halting computations.  A nondeter-

ministic halting program can also be considered a func-Because of this nondeterminism, one may view an
tion, on the inputs to sets of all possible outputs for theNDISM M as giving rise to a tree of potential computa-
inputs. A nondeterministic non-halting program cantions from each initial snapshot, as Figure 1 illustrates.
likewise be considered a function to sets some of which(All figures and tables are gathered at the end of this
may contain undefined as elements corresponding todocument starting on page 100.) The point in the far
non-halting computations.

4 SEI-CM-27-1.0
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A looping program considered as a function is a very Any property that one may wish to verify about con-
uninteresting function, as all of its results are undefined current programs may be categorized according to the
or singleton sets containing undefined. More usually, nature of the property involved.  The property may
looping programs are called systems. Normally an usually be classified as a safety property or a liveness
operating system is supposed to be a looping program. property. The difference between them, as described in
In reality, operating systems are really non-halting, detail below, is in the nature of the quantifiers used
non-looping, nondeterministic programs. Their halting over snapshots in their formal expression. This classi-
computations are considered erroneous! A challenge of fication captures most of what is desired to prove.
program verification is to prove that programs that are There are other properties that cannot be classified as
supposed to implement functions do and that programs either safety or liveness properties.
that are supposed to implement systems do.

For each property described below, enough of a formal
In the usual formal model of concurrency, the snap- statement is given to show why it is a property of the
shots contain some structure representing processes, type claimed.  The only quantification shown explicitly
each of which is in one of the three abstract statuses, is that over snapshots.  The assertions in the scopes of
awake, asleep, and terminated.  When F is applied to a these quantifiers are given in English.  These assertions
snapshot s , the resulting set of snapshots contains one may obviously contain implicit quantifiers, but none ofi

them are over snapshots; rather they are over elementselement for each awake process in s . The result snap-i
within a snapshot.  Such quantification does not changeshot for a given process shows the changes caused by
the nature of the property.having that process execute one instruction.  Thus

choosing an element of F(s ) amounts to selecting onei All the kinds of properties are described in terms of the
process in s to have it execute one instruction.  Thei NDISM model introduced earlier.
formal model then models the concurrency with an in-
terleaving at the level of one instruction. 1. Safety Properties

A safety property is one that can be expressed in anThe question can be asked “Is this interleaving model
assertion involving universal quantification overan accurate depiction of concurrency that may include
snapshots. Examples, in the abstract, of suchgenuine parallelism?” To see that the answer is “Yes!”
properties are those that can be expressed thuslyobserve that if the processes shared no data objects

(communications channels included) then no process • P is true in all snapshots, i.e., ∀s in C (P(s))
can affect another, and the results of a computation • P never happens, i.e., ∀s in C (¬P(s))involving these (independent) processes is indistin-

• Whenever P happens Q is true, i.e.,guishable from those of any, even serial, ordering of
∀s in C (P(s)⊃Q(s))the processes. The only way processes can affect each

other is through shared data objects.  As an example of Note that the C mentioned is implicitly universally
access to shared data, consider now two processes, quantified over all computations of the program
being run by two processors, trying to write to the same about which the property is being proved.  The pro-
memory location.  In all machines known to this au- gram together with any set of input files determines
thor, there is some hardware arbiter that prevents two an initial snapshot which, in turn, determines a set of
processors from writing to the same memory location computations of that initial snapshot.
at the same time and serializes these writes so that one

Historically these properties are quite familiar, be-is finished entirely before the other begins.  The net
cause they can be demonstrated by inductive meanseffect will be the effect of the second write.  This arbit-
[King80, Cousot82, Manna72]. That is, they areing occurs on every device and guarantees that every
shown to hold for initial snapshots and then they arepossible interaction of otherwise independent processes
shown to be preserved by the transition function Fis serialized to the level of the machine instruction.
of the NDISM.  They are very often expressed with-Thus, any possible concurrent, even parallel, behavior
out the quantifier, relying on implicit universalcan be simulated by an interleaving model that inter-
quantification of free variables.leaves at the instruction level. This unit of interleaving

is called the granularity of the interleaving.  Thus, it is a. Deadlock Freeness
legitimate to use an interleaving formal model to repre-
sent concurrency. In no snapshot are all processes asleep or ter-

minated, i.e., ∀s in C, there is at least one awake
II. Properties of Concurrent Programs process in s.

Recall the discussion about safety and liveness b. Mutual Exclusion
properties in [Bustard90]. Here, this discussion is
recast in terms of the NDISM model.  Later, when In no snapshot are two or more processes in their
other formulations of these properties are given in critical region, i.e., ∀s in C, if one process in s is
other formal models, these formulations will be seen as in its critical region then no other process in s is
expressing the same ideas. in its critical region.

SEI-CM-27-1.0 5
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1. within every n steps, with n fixed, the vari-c. Data Security
ables decrease with respect to that ordering,

In no snapshot are there unauthorized disclosures, and
i.e., ∀s in C, if a process in s is writing data to a

2. that the variable has reached the minimum im-file in s, then the data it is writing is from an
plies that the desired property holdsobject in s to which the process has access.

Since a well ordered set has a least element, it is
d. Proper Termination inevitable that the computation will eventually reach

a snapshot with the desired property.  One typicallyIf and when the computation halts, then all proc-
shows that the variables decrease by appeal to someesses are terminated (i.e., none are asleep), i.e.,
safety, i.e., invariant, property.  There is the need for∀s in C, if F(s)=∅ then no process in s is asleep.
considerable creativity in finding variables, someNote that if F(s)=∅, then no process in s can pos-
function of them, and a relation over the range ofsibly be awake.  Were there an awake process in
that function that allow one to carry out the proof.  Its, it would be selected for execution to yield a
should be clear from the complexity of the abovenext snapshot.
description that showing liveness is considered
much harder than showing safety.e. Partial Correctness

Because proofs of liveness properties usually requireIf at the beginning of the computation, the input is
showing some invariant properties along the way, itlegitimate, and if the computation halts, then the
is no problem if the existential quantifier is withinoutput is what is required.  In other words, if at
the scope of a universal quantifier.the beginning of the computation, the input is

legitimate, then in any final snapshot, the output
a. Fairnessis as required. In other words, if the input of

s in C satisfies input condition I and ∀s in C, if In all snapshots for all ready processes, eventually0 i
F(s )=∅, then the output of s satisfies output con- the process will become running; i.e., ∀s in C, fori i i
dition O. all Π, a ready process in s, ∃s in C, such that j ≥ij

and Π is running in s .jAlternatively if at the beginning of the compu-
tation the input is in the range of the function to b. Receiving Requested Data
be implemented and if the computation halts, then

In all snapshots, if a request for information hasthe output is the result of applying the function to
been received, then there is a future snapshot inthe input, i.e., if the input i of s in C is in the0
which this information, if legitimate to do so, isdomain of the function f, and ∀s in C, if F(s )=∅,j j released, i.e., ∀s in C, if Π in s has requestedi ithen the output o of s is such that o∈f(i).j data from an object o in s and Π has access to thei

Note that the second definition accommodates object o, then ∃s in C, such that j ≥i and Π in sj j
nondeterministic functions. receives the data.

2. Liveness Properties c. Sent Message Will Arrive

A liveness property is one that can be expressed in In all snapshots, if a message is sent, then in some
an assertion involving existential quantification over future snapshot, the message will be received, i.e.,
snapshots. Examples of such properties are those ∀s in C, if a message m is sent in s then ∃s in C,i i j
that can be expressed as the following: such that j ≥i and m is received in s .j

• There exists a snapshot in which P is true, i.e.,
d. Each Request Serviced∃s in C (P(s))

• There exists a snapshot in which P is not true, In all snapshots, if a service is requested, then
i.e., ∃s in C (¬P(s)) there is a future snapshot in which this request is

granted, i.e., ∀s in C, a service is requested in s ,• Whenever P happens then at some later time Q is i i
then ∃s in C, such that j ≥i and the request istrue, i.e., ∀s in C (P(s)⊃(∃s in C (j>i∧Q(s )))) ji j j
granted in s .The difficulty with liveness properties is that they j

cannot be demonstrated directly by the familiar in- e. Termination
ductive methods.  They must be demonstrated by
showing that each step in the computation brings the Eventually the computation halts, i.e., ∃s in C,i
computation closer to a snapshot in which the de- such that F(s )=∅isired property is true.  One typically finds a well
ordering (that is, a partial ordering with a least f. Total Correctness
element) [Manna74] and program variables, or a

If at the beginning of the computation the input isfunction thereof, such that the variable or function
values are related by that well ordering such that

6 SEI-CM-27-1.0
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legitimate, then eventually the computation halts behaviorally, that is by describing what happens dur-
and the output is what is required, i.e., if the input ing its computations.  In every operational model is
of s in C satisfies input condition I, then ∃s in C, lurking an NDISM of some form.  That is, in every0 i

operational model one will find a description of thesuch that F(s )=∅ and the output of s satisfiesi i snapshots or states, a description of initial snapshots,output condition O.
and a description of how to obtain a next snapshot

Alternatively if at the beginning of the compu- from the current one.  Some operational models are
tation the input is in the range of the function to described with programs and others are described by
be implemented, then the computation halts and other formal means.
the output is the result of applying the function to

a. Description of NDISM by Programthe input, i.e., if the input i of s in C is in the0
domain of the function f, then ∃s in C, such that When one uses a program to describe an opera-j

tional model, one is in effect writing an inter-F(s )=∅ and the output o of s is such that o∈f(i).j j
preter program which computes from initial snap-

3. Others shots. The snapshots are described by the
declarations of the data structures needed by theThese properties cannot be described either as uni-
interpreter; the initial snapshots are described im-versal quantification over unquantified snapshot
plicitly as that configuration of the snapshot dataassertions or as possibly universally quantified ex-
structures that are accepted by the interpreter asistential quantification over snapshot predicates. A
being legitimate to begin a computation.  Thenon-exhaustive list follows:
transformation is defined implicitly as what the

• P happens infinitely often — for all snapshots, interpreter does in modifying one snapshot into
there exists a later snapshot such that P, i.e., the next.  Usually, in the interpreter there is a
∀s in C (∃s in C (j>i∧P(s ))) . single identifiable point at which the configura-i j j

• Whenever P happens, within n steps, Q happens, tion of the snapshot data structures are considered
i.e., ∀s in C (P(s )⊃∃s in C (j ≥i+n∧Q(s ))) . to form a new snapshot; in a normal interpreteri i j j

this would usually be at the top of the loop in• Whenever P happens, within x seconds, Q hap-
which instructions are fetched and executed.  Ex-pens, that is, ∀s in C (P(s )⊃ ∃s in Ci i j amples of these kinds of definitions are the orig-(|Time(s )−Time(s )|≤x∧Q(s ))) .j i j inal and several later LISP definitions

• The transition satisfies constraint P [Locasso80, [McCarthy65] [Reynolds72] and the definition of
Scheid86a] — every transition satisfies P, i.e., Euler [Wirth66]. Such definitions are in general
∀s , s in C (P(s , s )) hard to use for verification. The transformationi i+1 i j

function is only implicit.  Thus, one is forced toIII. Formal Models
use the formal methods of verifying normal, se-
quential program behavior [Berztiss88] just toThis section describes several well-known formal
show that the interpreter is doing what it ismodels of concurrency. Each of these is intended for
claimed to, so that one can show that the inter-and has been used for formal verification of properties
preted program is doing what it is claimed to.  Anof concurrent programs. A later section details the
NDISM in which the transformation function isproofs that have been done with each. In this section,
expressed more directly is preferable.each is described in terms of its relation to the NDISM

model described in Section I. Two considerations dic-
b. Formal Mathematical Descriptions oftated the choice of the NDISM as the model of Section

NDISMsI.
1. The NDISM, which turns out to be an operational The other languages for writing NDISMs have

model, is one of the most fundamental in that it more mathematical notations for expressing the
can capture all known phenomena, it corresponds transformation in a manner that allows a more
to what is implementable and thus what will be direct use of parts of its definition in proofs.
found in implementations, and it can be used to These languages provide some notation for de-
model all the others. scribing the set of all snapshots and the set of

initial snapshots as a subset of the set of all snap-2. In fact, models similar to NDISMs are used by
shots. In these languages, snapshots have beenother authors to describe their formal systems.
described as trees with labeled nodes and/orFor each formal model, the description includes defini-
edges, lists, ordered tuples, sets, functions, etc.tions of the basics and a brief discussion of what can be

proved using it. There are a number of different ways of speci-
fying the F of a particular NDISM.  These ways1. Operational — NDISM may be classified by a number of different dimen-
sions. There are direct methods in which F itselfOperational models attempt to specify the system

SEI-CM-27-1.0 7
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is described and there are indirect methods in memory location by one, the statement might
which a program P which computes F is de- indeed be compiled into a single indivisible
scribed. A program P computes F if and only if step,
each computation of P is a computation induced +1 x .
by F and vice versa.

Lamport [Lamport80a] has suggested a way to
indicate indivisible operations at the source(i) Direct Description of F of NDISM
language level by use of angle brackets, “<, >”,

Within the former methods, there are two dif- around indivisible steps.  A decomposition
ferent approaches to directly describing F: equivalent to the first translation above would

be specified as• Write a function which given a snapshot
yields the set of next snapshots, and

<x:=<<x>+1>> ,
• write a predicate satisfied by legitimate

while a decomposition equivalent to the secondpairs of successive snapshots.
translation would be specified asIn these approaches of direct specification of F,

it is easy to see the individual snapshot transi- <x:=x+1> .
tions but hard to visualize a program P com-

c. Redundant Specification of Propertiesputing the transitions.  It may, however, be ex-
plicitly stated along with the NDISM that the In all of these methods of specifying F, it is some-
transition F is not intended to represent primi- times allowed to specify non-algorithmic
tive or indivisible transitions of the specified properties as a redundant description of what the
system. In this case, one cannot know the indi- computation is supposed to be doing.  For ex-
vidual primitive snapshot transitions.  Some ample, one may have specified in F a database
examples of languages of the first kind are system in which each transition represents an up-
VDL [Lucas69, Wegner72], and SPECIAL date of or a query to the database.  The redundant
[Silverberg79]. Some examples of languages of description might describe integrity propertiesTM3the second kind are Ina Jo [Locasso80, that the data of the database always satisfy.  The
Scheid86a], and AFFIRM [Thompson81]. purpose of this redundant specification is to allow

checking or even verification that the operations(ii) Indirect Description of F of NDISM
as specified preserve these properties.

Within the latter method, any programming
Redundant Propertieslanguage, either of the implemented or

gedanken variety can be used.  In the gedanken In the direct methods of specifying F, one might
variety, e.g., the language of the Euler defini- give assertions that are to be satisfied by initial
tion [Wirth66], one finds languages with sets as snapshots, by all snapshots, and by final snap-
data types and not-so-easily-implemented set shots. In the indirect methods, one might give a
theoretic operations, including quantification, number of program point-assertion pairs such that
as operations.  In these methods of writing a every time execution goes through a point, its
program P, the program computing F is ex- assertion is to hold. For example, consider a pro-
plicit, but it is hard to see the individual transi- gram to sort the elements of an array into ascend-
tions. Indeed, it is usually left unspecified as ing order.  Attached to the entry point of the out-
to what are the indivisible operations in order ermost loop, which steps through the array in as-
to give the compiler the right to choose the cending order, might be an assertion claiming that
primitive operations.  For example, for the portion of the array between the beginning

and the element indexed by one less than the cur-x:=x+1
rent loop index value are sorted and are less than

the indivisible steps depend on the machine for all elements in the rest of the array.
which the code is generated. Usually the code
is something like Many of the methods of verifying what systems

or programs do consists in verifying that the F orLD 1,x
P are consistent with their redundant descriptions.AD 1,=1
Typically for the direct methods of specifying F,ST 1,x ,
an inductive approach is taken to prove that aresulting in three indivisible steps for the as-
specified property holds in all snapshots.  It issignment. On the other hand, if the machine
shown that the property holds in all initial snap-has a special instruction for incrementing a
shots, and then it is shown that if the property
holds in any snapshot S, then it holds in any snap-
shot yielded by applying F to S.

3 ℵIna Jo is a trademark of Unisys Corporation.
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Safety Properties If F is specified directly, the usual interests are
either of the following:

In principle any expressible property can be
• Verify certain properties hold about theproved in these operational models.  However,

NDISM specified by F, orbecause of the inductive nature of the typical
• verify that an implementation of theproof, they have been used primarily for safety

NDISM is correct.properties. It is quite straightforward to express a
safety property as an assertion that must be true in

If one is to verify a property of the NDISMevery snapshots.  One proves the property induc-
itself, one states the property in the language oftively by showing that all initial snapshots satisfy
the NDISM, say as an assertion involving ele-the assertion and then showing that if it holds at
ments of the snapshot or as a property that Fany snapshot, it will hold again at any next snap-
must satisfy or a combination of both.  Thenshot. Showing the latter amounts to showing that
the assertion is proved by induction over thethe transformation preserves the holding of the
length of the computation.assertion.

If one is to prove that an implementation of theLiveness Properties
NDISM is correct, then one must first specify
the implementation either as another NDISMGenerally, liveness properties are not specified
or as a program P implementing the compu-and proved.  In some cases, the formal basis is not
tation induced by F.even in the model.  For example, in the Ina Jo

language, there is explicitly no requirement that
If the implementation of an NDISM M isdany transform (the transformation of the NDISM

4given as another NDISM M , then the proof isis the disjunction of the transforms) be done.  All g
one is allowed to show is what will happen if a carried out by showing that M simulates Mg d
transform is done. Moreover, at any snapshot, by a proof technique [McGowan71, Berry72]
there is no guarantee that any transform will be that is similar to that used in automata theory
applied. In any case, even if the necessary as- work.
sumptions are present, liveness properties require

One shows that for each computation C in M ,existential quantification over snapshots. This is d d
there exists a computation C in M which be-considered more difficult than plain universal g g
haves the same way. By behaving the samequantification. Indeed if one has only universal
way is meant that there is a function ψ: I →Iquantification over snapshots, one is not obliged g d

to work with any quantification over snapshots; which builds each snapshot of C from its cor-d
the properties that hold on these universally quan- responding snapshot in C . That ψ has thisg
tified snapshots are proved invariant by inductive property is shown by mathematical induction
means. In fact in the cases of the Ina Jo language, on the length of the computation C .dAFFIRM, and SPECIAL, the accompanying in-

Many times, C simulates C in a lock-stepteractive or semi-automatic proof system simply g d
cannot handle quantification over snapshots; and snapshot-by-snapshot fashion.  However, many
there is no way to express them in the language of times, this lock-step simulation is not possible;
the system. it takes several steps in C to implement ag

single step in C . The meaning of correspon-dOperational models can handle both halting and
dence can be changed to allow ψ to build onlylooping programs.  Unlike a functional treatment
some of the snapshots of C out of only somedwhich assigns undefined to each non-halting com-
of the snapshots of C . The constraint is that agputation, operational models consider the se-
gap of no more than some fixed number is al-quence of snapshots in a computation as the
lowed between successive building snapshotsmeaning of any initial snapshot.  Hence non-
in C and between successive built snapshotshalting computations are distinguishable by the g
in C .individual infinite computation sequences. d

The lock-step situation is illustrated in Figured. Formal Verification of Redundantly
2. The Support Materials for Concepts of Con-Specified Properties
current Programming has a full formal defini-

There are a number of approaches to verifying tion of simulation of one NDISM by another.
properties of NDISMs.  The approaches depend

ℵon how the F of the NDISM is specified, either
directly or indirectly.

(i) For Directly Specified F of NDISM
4The subscript “d” signifies implementeD, and the subscript “g” signi-
fies implementinG.
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If on the other hand, the implementation of the rect, and it is not required to be able to do
NDISM is not another NDISM, but is in fact them all, then standard methods for non-
code in some programming language, then two concurrent programs are to be used.  These
possibilities exist: are outside the scope of this module and the

reader should consult [Berztiss88] for more• The whole NDISM is implemented by a
details.single program P. The correctness issue is

whether P implements the whole of F down (2) NDISM Implemented by a Collection
to the nondeterministic choices and the po- of Invokable Procedures
tential unbounded computation length.

In the second possibility, the problem has• The F can be decomposed into a collection
been reduced to showing the correctness of aof individual operations, each of which
collection of non-concurrent subroutines im-does one of the possible transformations.
plementing non-concurrent transitions,The operation of F consists, in each appli-
whose only non-determinism is for the pur-cation, of selecting one of these transfor-
pose of allowing any one of several possiblemations and executing only it. In this case,
results. The concurrency has been pushedthe usual implementation is built of a col-
down into the process of selecting which oflection of procedures for the individual
the available transitions will be invokedoperations and of a previously cooked shell
next. If one verifies that the procedures dowhich chooses the right operation at each
implement the transitions, then to the extentstep and invokes the corresponding proce-
that the basic invoking shell works, the col-dure. The correctness issue is then whether
lection of procedures plus the shell imple-the individual procedures implement the in-
ments the NDISM. The meaty part of thisdividual operations, the shell being
verification has been reduced to the standardpresumed correct.
non-concurrent variety which is outside theIn either case, one ends up using the various
scope of this module.program verification techniques, such as that of

Hoare [Hoare69] in which one shows an actual (ii) For Indirectly Specified F of NDISM
program to satisfy certain properties

If F is specified indirectly with a program P,[Berztiss88].
the interests are the same as for a directly spec-

(1) NDISM Implemented by Single ified F, i.e.,
Program • to verify that an implementation of the

NDISM is correct, orIn the first possibility, if the NDISM truly
exhibits non-deterministic behavior and the • to verify certain properties hold about the
non-determinism is part of the specified be- NDISM specified by P.
havior, e.g., to specify concurrency as op-

It is rare that one has to prove the correctnessposed to possible allowed non-concurrent
of an implementation of an NDISM specifiedcomputations, then the program will have to
by a program, particularly when the specifyingexhibit the same non-determinism in the
program is executable.  However, when it isform of concurrency.  The NDISM specifi-
done, particularly when the specifying programcation will have to be converted somehow
is not executable, it is done by proving the im-into a specification that is used by one of the
plementing and the defining programs equiv-various methods to prove program behavior.
alent. This proof can be done by showing thatIf the NDISM halts for all desirable com-

putations, then input, output, and most likely • both compute the same function,
invariant assertions will have to be gener- • both satisfy the same formal specifications,
ated to describe the program’s behavior. If albeit input/output or temporal logical,
the NDISM intentionally does not halt for

• a series of correctness preserving transfor-all desirable computations, then output
mations [Balzer81, Balzer85] modifies oneassertions are useless, as they vacuously
(usually the defining one) into the other, orhold. Moreover, invariant and so-called

“eventually” assertions, i.e., liveness asser- • one is compiled into the other.
tions, will have to be generated to describe

Verifying that certain properties hold involvesthe program’s behavior. Then the chosen
specifying these properties in the form of asser-proof method is used to verify that the pro-
tions which are attached to the program as agram has the desired behavior.  If on the
whole or to various places in the program, de-other hand the NDISM’s non-determinism is
pending on the method being used. Then themerely to state allowable computational or-
code is proved consistent with the assertions byders, any allowed order is considered cor-
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the method being used.  For example, if one is objects. However, one can express proper ter-
using Hoare logic, the assertions will be mination as termination, i.e., having no fireable
sprinkled around the program, while if one is node (no node has tokens on all of its input arcs)
using temporal logic, the assertions will be at- while having less than some fixed number of
tached to the program as a whole.  Assertions tokens on each arc.  For such control flow
attached to the program as a whole describe schemes, proper termination is even decidable.
properties of the program’s computation as a

2. Axiomaticwhole in terms of particular snapshots that ex-
ist at various times during the computation. Axiomatic systems for dealing with concurrency
Assertions attached to points in the program provide three main ingredients,
describe the snapshot at any time execution

1. an assertion language for describing snapshotspasses through that point.
at arbitrary points in a program’s execution,
usually the language of first order predicatee. Graph Models of Concurrent Computation
calculus with equality,

The various graph-based systems such as control-
2. a set of axioms for describing the behavior ofand data-flow schemes, Petri nets [Peterson81],

primitive statements,etc. are also operational.  However, the language
3. rules of inference for combining behaviors offor expressing the parts of the NDISM is pictorial.

constituent statements into behaviors of theAssociated with each is a description of how a
containing constructs such as loops, condition-diagram is to be interpreted as specifying a com-
als, programs, etc.putation. Usually this description says something

to the effect of Hoare Logic and its Limitations
Select some process node, all of whose in-

put arcs contain tokens.  Fire that node, Axiomatic systems for dealing with concurrency are
remove one token from each input arc, and generally based on Hoare’s logic [Hoare69] or
deposit one token on each output arc. Dijkstra’s weakest precondition logic [Dijkstra76].

The main difficulty in using these logics directly forThat description may be stated in natural lan-
dealing with concurrent programs is that because ofguage, some programming language, some math-
the potential of interference, their axioms do notematical language or some mixture of all of these.
work. For example, the axiom for assignment isGenerally what the processes in the nodes do is

left unspecified or, to use the terminology, of the
xmodels uninterpreted. Those that model data {P } x:=e {P}e

flow as well as control flow state which data ob-
which when adapted to the assignment statementjects are used, but in the uninterpreted domain,

they say nothing about the actual values of the x:=x+1
data. Because there are no interpretations as to

under the condition thatwhat the processes do, the set of computations
that can be described is limited. One uses such x=1
models strictly to focus on the concurrency and prior to the assignment yields
synchronization issues. The philosophy behind

{x=1}x:=x+1 {x=2} .these uninterpreted models is that if a property
can be proved of an uninterpreted model then it However, as mentioned in Section II.3.d, when this
holds for all interpretations of that model.  One assignment is executed in the presence of other in-
might be able to prove mutual exclusion for a terfering processes, the value used to compute x+1
program just on the basis of its control structures, may not be the same as is mentioned in the input
independent of any values of any objects.  Be- assertion.
cause of the limited functionality in the models, it
is generally easier to carry out proofs; there are The various extensions to the axiomatic logics deal
fewer operations to consider.  On the other hand, with this interference problem in different ways.
this lack of functionality may prevent proving The axiomatic systems surveyed are
properties that hold only because of the values of • the Owicki-Gries extension of Hoare logic,
objects and not strictly because of the structure of

• the Lamport extension of Hoare logic, andthe programs.
• the Lamport extension of Dijkstra’s weakest

Because of the limited functionality, not all precondition logic.
properties expressible in other operational models
are expressible in these pictorial models.  For ex- Owicki-Gries’s Extension of Hoare Logic
ample, it is impossible to demonstrate partial or

Owicki and Gries [Owicki76a, Owicki76b] use ordi-total correctness without knowing the values of
nary Hoare logic axioms but put non-interference
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requirements into the antecedents of rules of in- Because these axiomatic methods prove that asser-
ference. For example, the rule they give for the tions which are attached to specific places in the
parallel-execution statement program are invariant, they really address only

safety properties.resource r (variable list), ... , r (variable list)1 m
cobegin S || ... || S coend Dijkstra’s Weakest Precondition Logic1 n

is as follows. Dijkstra introduced a variation of the Hoare
axiomatic system when he introduced a proof-If {P }S {Q } and ...  {P }S {Q } and no variable1 1 1 n n n directed discipline of programming [Dijkstra76]. Thefree in P or Q is changed in S with i≠j, and alli i j approach, that of weakest precondition, attempts to

variables in I(r) belong to resource r, then find the weakest conditions under which a given
statement is guaranteed to halt and to yield a snap-{P ∧ . . . ∧P ∧I(r)}1 n
shot satisfying a given postcondition.  For example,resource r (variable list), ... , r (variable list)1 m

cobegin S || ... || S coend wp(x:=x+1,x=2)1 n
{Q ∧ . . . ∧Q ∧I(r)}.1 n is
This rule says that in the case of parallel execution x=1 .
of statements, the normal axioms and rules may be

because only when x=1 is x:=x+1 guaranteed toused for the individual statements if there is no
halt and yield x=2. The general rule for the assign-chance of interference between them.  The rule puts
ment statement isupon the prover the obligation to show non-

interference.
x

wp(x:=e, P) ≡ P ,eLamport’s Extension of Hoare Logic
the obvious correspondent to the Hoare rule,

Lamport takes sort of an opposite approach, of
xchanging the meaning of the assertions and the {P } x:=e {P} .eaxioms for primitive statements so that they catch

interference in a slightly different way.  In the Lam- There is a dual for the weakest precondition called
port logic, the strongest postcondition. The strongest postcon-

dition, sp(S, P), of a statement S and a precondition{P} S {Q}
P is the strongest condition describing any snapshot

means, “if execution is begun anywhere in S with yielded by the execution of S from any snapshot
the predicate P true, then executing S will leave P satisfying P.
true while control is inside S, and will make Q true if

The Hoare rule is a partial correctness rule, as itsand when S terminates.” Thus, Lamport’s treatment
meaning carries no requirement that the statementof the assignment
halts. It provides only that if the statement halts then

x:=x+1 the postcondition is true; if the statement does not
halt, then any postcondition is accepted as vacuouslyunder the condition that
true. The weakest precondition formulation, on the

x=1 other hand, finds preconditions which guarantee
halting as well.prior to the assignment is

Lamport’s Extension of Weakest Precondition{x=1∧[after(′<x+1>′)⊃value(′<x+1′>)=2]}
Logic<x>:=<x+1> {x=2}

In this, angle brackets are used to surround opera- Recall that most concurrent programs are systems
tions that are atomic, i.e., cannot be interrupted and that are supposed never to halt.  For such programs,
are guaranteed to be done within a single NDISM the weakest precondition would be false for any
step both in the abstraction and in any implemen- postcondition. Therefore, Lamport has developed a
tation. The rule says that if x starts off as 1, and variant of the weakest precondition approach that is
after doing x+1 the value of that subexpression, more useful for concurrent non-halting systems. For
x+1, is still 2, then the assignment causes x to get 2. concurrent programs that do not halt, the interest
In other words, if there was no interference with x would be to prove some invariant property, i.e., a
during the assignment, it behaves as an assignment safety property.  Accordingly, Lamport [Lamport87]
in the normal nonconcurrent situation.  Of course, it defines the concepts of weakest invariant, win, and
is on the prover to demonstrate that there is no inter- strongest invariant, sin, and gives rules for deriving
ference. In this sense, this approach is equivalent to them for programs given the wp, sp, win, and sin for
Owicki’s. constituent statements.
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I is an invariant of S if ℵ P≡ ¬ 〈〉 ¬P
{I} S {I} . 〈〉 P≡ ¬ ¬ℵ P

Lamport then defines S as leaving an assertion I
invariant if and only if It is useful to define some other operators that cor-

respond to often used temporal relations.  One suchI⊃wp(S, I) ;
useful relation is “leads to” (~~~>).

it is also the case that
A~~~>B≡A⊃ 〈〉 B

sp(S, I)⊃ I .
With these temporal operators it is easy to express

Then, win(S,Q) is the disjunction of all predicates I both safety properties and liveness properties.  To do
such that I ⊃ Q and S leaves I invariant, and these, it is necessary to let INIT be an assertion that

is true at all and only proper initial snapshots; thatsin(S,P) is the conjunction of all invariants I of S
assertion is needed to anchor the time to the start ofsuch that P ⊃ I.
the computation rather than to any arbitrary current
snapshot.Lamport is able to extend the Owicki-Gries method

to be able to reason about programs for which the Expressing Properties with Temporal Operatorsatomic operations are not specified. However, note
that the weakest and strongest invariants do not give Recall the general safety properties introduced in
the power to work with liveness properties. Section II.4.a.i.

3. Temporal Logic • P is true in all snapshots, i.e., INIT⊃ ℵ P

Temporal logic [Pnueli77, Pnueli81] is an attempt to • P never happens, i.e., INIT⊃ ¬ℵ P
deal with the logic of computation sequences with-
out succumbing to the difficulties of quantification. • Whenever P happens Q is true, i.e.,
One is able to talk directly about sequences of snap- INIT⊃ ℵ (P⊃Q)
shots, all snapshots, and the existence of a snapshot
that have desired properties.  The direct expression

Recall also the general liveness properties intro-is based on an axiomatized logic of time that ob-
duced in Section II.4.a.ii.viates the necessity to quantify over snapshots.

• There exists a snapshot in which P is true, i.e.,
In temporal logic, one is provided temporal INIT⊃ 〈〉 P
operators, “henceforth” ( ) and “eventually” (ℵ 〈〉) • There exists a snapshot in which P is not true,

i.e., INIT⊃ 〈〉 ¬Pwhich can be applied to the standard assertions
about snapshots.  While they can be defined relative • Whenever P happens then at some later time Q is
to each other axiomatically, any model of them true, i.e., INIT⊃ ℵ (P~~~>Q)
makes use of some underlying NDISM. Hence, they
are described here in that manner. Temporal logic can even capture some properties

that are neither safety nor liveness, such as the con-Basic Temporal Operators
cept of P happening infinitely often.

Temporal semantics talks about assertions that hold
INIT⊃ 〈ℵ 〉 Ptrue in the current snapshot or all or some future

snapshots. Therefore, it will be necessary to identify
which snapshot in a computation is the current one. Provided with the temporal logic is a system of
The current snapshot will be called s in the follow- axioms and rules of inference for reasoning directlyc
ing discussions. in the temporal domain without having to fall back

on a model.  In order to be able to prove things
ℵ P≡∀s (i ≥c⊃P(s )) about a program using temporal logic it is necessaryi c

to provide a temporal logic-based semantics of one’s
programming language. Besides saying what each〈〉 P≡∃s (i ≥c∧P(s ))i c kind of statement does, the semantics provides a ba-

Note that occurring henceforth includes occurring in sic liveness property for each primitive statement
the current snapshot. That something eventually oc- that says that it eventually finishes.  From this live-
curs includes the possibility of it occurring in the ness property and the semantics of the various con-
current snapshot. structs, the prover is able to prove liveness

properties of whole programs.Just as the universal quantifier and the existential
ℵquantifier are duals of each other so are andℵ 〈〉.
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Linear and Branching Time the correctness of programs implementing a number
of network protocols and resource allocation sys-

There are, in fact, two alternative models of time in tems.
temporal logic, linear time and branching time.
Both are intended to be used with nondeterministic In VALET, processes and monitors are written in
computations. Recall in Section I, that two kinds of the form of separate modules that may see and in-
nondeterminism were identified, the kind that voke each other.  The form of a process module is
models concurrency and the kind that is used for similar to that of a Pascal program. It declares local
automata-theoretic investigations of algorithms. variables and has a body consisting of a sequence of
Linear time corresponds to the concurrency- statements which may contain calls to procedures
modeling nondeterminism, and branching time cor- offered by the monitor modules. Generally, the
responds to the automata-theoretic nondeterminism. body of a process module is an infinite loop.  A
The temporal logic described above is in fact linear monitor module declares local variables and a col-
time, as it was stated that lection of procedures invokable from outside the

monitor; in fact, in general, no module’s local vari-
〈〉 P≡ ¬ ¬ℵ P ables are visible from outside the module.  The

semantics of these modules is that all process mod-
That is, if it is not true that P never occurs, it even- ules are invoked to run concurrently at the beginning
tually occurs.  This statement is true only if there is of the computation.  All monitors are invoked also in
only one possible future, namely a single path down order to have their initialization code executed.
the tree of computations.  “Not occurring never” Then the monitors sit and wait until monitor proce-
means that it must eventually occur. However, in dures are called by the processes. The operational
branching time, automata theoretic nondeterminism, rule is that no more than one process can be execut-
the fact that it is not true that P never occurs means ing the body of any procedure inside a given moni-
that there exists some computation in which P does tor. The at most one process that is executing inside
occur; it may not occur in all possible futures, i.e., a monitor procedure is said to currently own the
all possible computations from now.  The formal monitor.
treatment of branching time is to distinguish be-

For a particular system involving process and moni-tween the “eventually” and the “not never”
tor modules one gives specifications as follows foroperators. The former has the meaning implied by
each module:the operational model and the latter is the dual of the

“henceforth” operator.  However, since branching 1. For each process, one gives an invariant and a
time is not really a good model of concurrency, it commitment.
will be discussed no more in this module. 2. For each monitor as a whole, one gives an in-

variant.Another Temporal Operator
3. For each monitor procedure, one gives a ser-

There is a third temporal operator used by some au- vice specification and a commitment.
thors, e.g., Ben-Ari, Manna, and Pnueli [Ben-Ari81]

Invariantsand Hailpern [Hailpern82], namely the “next” (o) op-
erator. It applies its argument predicate to the next

Among the invariants above, there are two kindssnapshot.
which are somewhat different from the more

oP ⊃ P(s ) familiar loop invariant, which is true each time con-c+1
trol passes through the loop cut point and which mayAs the use of o implies an explicit time scale or an
not be true at other points in the loop.  A loop in-explicit sequential progression of time, the tendency
variant would be specified as the following kind ofis not to use it.  Using it would overspecify a compu-
safety property:tation to the point of saying that a certain event has

to happen in the next snapshot and would not be
ℵ (at CutPoint ⊃ I)acceptable if it were implemented as a multi-step

procedure.
where I involves only variables visible at the cut
point. The invariant of a process is a property ofTemporal Logic Specification of Concurrency
variables visible to the process which is true at all

Hailpern’s Ph.D. thesis [Hailpern82] defines a use- times. It would be specified more simply:
able version of temporal logic, describes a program-
ming language, VALET, with processes and moni- ℵ (I)
tors, gives a temporal logic semantics for the lan-

where I involves only variables visible to the proc-guage, and demonstrates how properties of programs
ess. A monitor invariant is a property of the localin this language may be specified and verified.
variables of the monitor which is true at all times,These ideas are then applied to specify and verify
except possibly during the execution of the body of
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a monitor procedure.  This exception allows monitor monitor procedure bodies are verified by composi-
procedure bodies to make temporary changes that tion of the liveness assertions of their constituent
may invalidate the invariant so long as they restore statements.
the holding of the invariant upon exit.  For example,

Advantage of Temporal Logicin a monitor which keeps a linked list of the
resources it is managing, the invariant would de- The advantage of temporal logic in working with
scribe a well-formed linked list.  The monitor proce- concurrency is that temporal logic expressions read
dure to remove an item from the list would tem- more like the natural language temporal statements
porarily invalidate the invariant as it performed the than do the equivalent snapshot quantified asser-
pointer manipulations to rebuild the list after remov- tions. For example, the temporal logic expression
ing the item.  However, after the list is rebuilt, the

sent(M) ⊃ # 〈〉 #(arrive(M))invariant would once again hold.  It is safe to let the
monitor procedures invalidate the invariant tem- captures the natural language statement
porarily because it is guaranteed that at most one

“If a message is sent then eventually it will arrive”process can be inside any procedure of a monitor at
any given time.  Therefore, it is not possible that any much more naturally than does
other process’s concurrent operation can mess up the

sent(M,s ) ⊃ ∃s (i≥ c∧arrive(M,s ))list while it is not in proper form.  It is on the moni- c i i
tor writer to insure that all invariants still hold when- Certainly, the temporal logic expression is more
ever a process can relinquish ownership of the moni- readable than is the quantified assertion.  This more
tor, namely upon a wait statement or upon return natural flavor of the temporal logic allows it to be
from a monitor procedure.  It is this invariant that is more abstract concerning the passage of time.  Even
called I in the rule for the monitor procedure body. if the logic is that of branching, discrete time, one

can write specifications that hide the detail of dis-The invariant of a process is proved by standard
crete passage of time and express that somethingsafety assertion verification methods.  That is, it is
happens just “eventually”. With quantification overshown that the invariant holds upon initiation of the
snapshots, one must show this aspect of the formalprocess and that each statement inside the process
model, even though it is irrelevant to what is beingpreserves its holding.  The invariant of a monitor is
specified.demonstrated to hold after the end of its initializa-

tion part, and then each monitor procedure is dem- Indeed, obtaining this ability to abstract away from
onstrated to preserve the invariant’s holding across, discrete time passage was the rationale behind
but possibly not within, its body. Nixon and Wing’s proposal to add temporal logic to

the Ina Jo specification language [Wing89]. The InaService Specification
Jo language is for writing operational specifications
and in fact does not permit quantification over snap-A service specification for a monitor procedure is
shots. It was proposed to add the temporal operatorssimply its input/output specification, i.e., the P and
by defining them axiomatically in terms of eachQ of the rule for the monitor procedure body.  This
other rather than by reducing them to formulae withis demonstrated by standard safety assertion verifi-
quantification over snapshots.cation methods.

Two programming notations or program specifica-Commitment
tion notations have been developed in the temporal

A commitment is a liveness assertion, as it states logic mold.  One is is a notation for specifying con-
properties that are guaranteed to happen.  Note that a current program modules, introduced by Lamport
service specification does not really guarantee very [Lamport83a], and the other is UNITY developed by
much since it is only a statement of partial correct- Chandy and Misra [Chandy88]. Both use whatever
ness, i.e., what happens if the body halts. A commit- is convenient from mathematics for expressing
ment, being a liveness assertion can carry a values of variables. Both allow concurrency at the
guarantee of something happening, especially if it level of the assigment statement.  The meaning of a
contains an occurrence of the eventually operator. program is expressed in terms of assertions about
Indeed, it is for this reason that processes, which states that hold at specific points or globally, either
generally loop and do not halt, do not have service invariantly, occasionally, or at specific instances.
specifications. A process’s commitment states the There are a variety of temporal operators allowing
progress that it guarantees to have as it loops in- expressing both safety and liveness properties.
definitely. Lamport’s description, being limited to a journal ar-

ticle, is not formally complete. The Chandy andThe liveness assertions of a process are proved by
Misra book gives full details on the language andcomposing the liveness assertions of its statements
describes the meanings of statements and the tem-and the liveness assertions of the monitor procedures
poral operatos axiomatically.  With the help ofit calls.  As mentioned, liveness assertions of the
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Boyer-Moore logic, the UNITY proof system has process should also be a continuation.  However,
been mechanized [Goldschlag90a, Goldschlag90b]. here what function is computed by this continuation

is not clear. The normal continuation computes the
Another language incorporating temporal logic is final snapshot, if it exists, as a function of the cur-
COL [Karam91]. COL is a linear-time temporal- rent snapshot and the changes caused by the current
logic based specification language, which can be statment. Thus, the continuation corresponding to a
used to specify concurrent Ada programs.  Associ- process should compute all possible final snapshots
ated with COL is TimeBench, a concurrent system as a function
design environment that includes a deadlock

• of the current snapshot,analyzer. TimeBench is an extension of the second
• which of the processes is selected to executeBuhr’s CAEDE visual Ada program design environ-

next, andment and uses its notations for expressing program
structures. • the changes that the selected process’s next state-

ment causes.4. Denotational
In normal denotational semantics, continuations areThere are two main aspects to a denotational seman-
composed to build other continuations. That is, thetics of a language.
continuation from now until the end of the current

• The semantics are described in a syntax-directed loop is composed with the continuation from the end
manner, that is the meaning of a construct is built of the loop until the end of the computation to get
from only the meanings of its direct syntactic the continuation from now until the end of the com-
components. putation. Recalling the tree of Figure 1, consider

how this composition would occur. In Figure 3, the• The meaning of a program is usually, but not
left hand contour delimits the part of the tree denot-always, taken as the function on input to output
ing one continuation, say to the end of the currentthat it computes.
cobegin-coend construct. The right hand contourActually the word “denotational” is used to refer to a
denotes the continuation going from the end of thedefinition which is entirely syntax directed as de-
cobegin-coend construct to the end of the compu-scribed above.  In principle, any semantic domain
tation. Their composition is not the whole tree.can be used, e.g., the computation sequence given
Figure 4 shows a computation tree with no forks; inrise to by an initial snapshot.  However, the tradition
such a deterministic case, the composition of the twois to use the function that a program computes as its
parts of the path is the whole computation, as ismeaning. A program which does not halt at some
desired. The reason for this is that in composing oneinputs is given as its meaning a function that com-
choice’s continuation with the continuation contain-putes undefined for those inputs. This tradition of
ing the choice, one loses the ability to choose thecourse, limits the applicability of denotational
unchosen choices. Thus, concurrent continuationssemantics to function programs.  This particular kind
cannot be usefully composed.  Other means must beof denotational semantics would not be useful for
found to build continuations.  See the literaturemodeling looping programs such as operating sys-
[Plotkin76, Smyth78, Berry85, Schmidt86] for moretems.
details.

Nonconcurrent Flow of Control
Limited Concurrency

In order to be able to model gotos and other wild
The result of these difficulties is that most denota-flows of control without needing other than direct
tional semantics of concurrency have focussed onsyntactic components, the semantics of each lan-
non-shared memory concurrency in which the onlyguage feature is given as a function of itself, the
interaction between processes is via messages sentcurrent snapshot information, and a continuation.
along a communication channel that enforcesThe continuation of a construct is the function com-
synchronized access [Francez80]. The restricted in-puted by the part of the computation that follows the
teraction greatly limits the number of choices thatcompletion of the construct, i.e., the rest of the com-
have to be re-interleaved.  Indeed, if two processesputation.
are totally non-interfering there is no need to inter-

This continuation turns out to be the value of a label, leave them. [Plotkin76, Plotkin83]
so that doing a goto means replacing the continua-

5. Comparisons of the Coverage of thetion that exists at the point of the goto by the one
Approacheswhich is the value of the label.

The view of the world is three dimensional, and theConcurrency and Processes
dimensions are

The facts that processes do gotos and labels are con- 1. the nature of the program,
tinuations leads directly to the conclusion that a

2. the nature of the property to prove, and
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3. the definitional and proof approach. they work with invariants, they are useful only
for demonstrating safety properties.The choices for each dimension are:

• Temporal semantics, not being tied to partial cor-1. the nature of the program:
rectness, can deal with either functional or loop-• functional, i.e., halting
ing programs and are useful for demonstrating

• looping safety and liveness properties.
2. the nature of the property to prove: • Denotational semantics, as traditionally used,

can deal only with functional programs and are• safety
useful for demonstrating safety and liveness• liveness
properties but only of processes that do not share

3. the definitional and proof approach: memory. When processes share memory, the
• axiomatic amount of interaction possible, and which must

be dealt with formally, explodes to the point of• denotational
intractability.• operational

IV. Actual Specifications of Software• temporal
The issue is, “For any configuration of two dimen- In the literature, a number of the above formal systems
sions, which choices of the third are available.” have been used to specify concurrent programs and in
Since three dimensional paper does not exist yet, it some cases, properties have been proved of them.  The
is necessary to show the world as three two- primary examples have been in verifying security of
dimensional tables, as Figure 5 shows. operating system kernels, verifying integrity of data-

bases, and verifying the correctness of protocols.The first of these shows all the approaches that can
be used for any given property that is to be proved 1. Operating System Security
about any kind of program.  The choices are more

The approach taken by the various workers in thelimited for liveness properties and for looping pro-
security area is an operational one.  The main prob-grams. Liveness properties cannot be handled by
lem is to design an operating system that enforces astrictly inductive invariance proofs, and looping pro-
certain security policy.  It is recognized that to provegrams cause partial correctness and functional ap-
an entire operating system adhering to any but theproaches to be to give no useful information.  The
most trivial property, e.g., true, is hopeless becausefunctional approaches are those that try to treat all
of the sheer size of the code for an operating system.programs as implementing functions, i.e., the
Fortunately, for a security policy, it is not necessaryaxiomatic and the denotational approaches.
to prove that the entire operating system enforces it.

The second table shows all the properties that can be Most operating systems are structured in such a
proved for any kind of program using any of the manner that a small kernel gets the job of allocating
discussed approaches. This table shows that the objects to users and enforcing the policy.  If the
functional approaches cannot be used with looping kernel properly does its job and the only way the rest
programs to prove any useful properties.  It is clear of the system and any other program or procedure
that safety is more universally covered than is live- can get to the protected objects is by invoking the
ness. kernel operations, then it is not necessary to worry

about what the rest of the system or the other pro-
Finally, the third table shows all the kinds of pro- grams or procedures do. Thus, in a properly struc-
grams for which one can prove the various tured kernel-based operating system, it suffices to
properties using the various approaches.  In this verify that the kernel does the job right and to ar-
table, it is clear that it is much harder to deal with range that the rest of the system and no other pro-
looping programs than functional programs, and that gram or procedure can directly access the protected
axiomatic approaches do not help at all when trying objects. The latter can usually be verified by inspec-
to prove liveness. tion that no objects are accessed directly or it can be

enforced by the compiler’s normal symbol tableThe following summarizes what is possible for the
mechanism; that is, the protected objects are notapproaches.
even visible in the symbol table.  Thus, the problem

• Operational models can deal with either func- of verifying the security of a kernel-based system is
tional or looping programs and are always useful reduced to that of verifying the security of the kernel
for demonstrating safety properties.  They may itself.
be used to demonstrate liveness properties only
if the language permits quantification over snap- It has been said that the only programs that can be
shots; most do not. verified are toy programs.  The kernel-based ap-

proach [Popek75, Popek79] aims to make the only• Axiomatic models based on partial correctness
program that has to be verified, i.e., the kernel, smalldeal only with functional programs, and since
enough to be a toy!
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Security Policy Identification kernel operation is selected for execution.  The
security policy is expressed as an invariant and other

In the typical effort to design and implement a assertions that the operations must preserve and sat-
verifiably secure operating system, the effort begins isfy. For example, that in all snapshots no process
with an identification of the security policy has read access to any file that is at a classification
[Landwehr 81, Landwehr83], that is, what objects are higher than its clearance is an invariant expressing
going to be protected, what is the nature of this pro- part of the example policy.
tection, and from whom they are going to be
protected. The usual situation is that files are the This particular formal model has two important
objects being protected and they are being protected simplifying assumptions.
against inappropriate access by processes represent- 1. The model does not necessarily insist that the
ing users.  For example, a file may be given a classi- only thing that can happen during a compu-
fication, e.g., secret or top secret, based on the sensi- tation is what is specified. Thus, the model
tivity of its contents.  That file would be protected assumes that any thing else that might happen
from being read by processes representing users is simply not security relevant. This is reason-
whose clearance is not at least equivalent to the clas- able if it is known that all accesses to the en-
sification of the file, i.e., secret or top secret, respec- tities involved in the security policy are de-
tively. The system might also allow blind append- scribed completely in the model
ing of this file by any process whose clearance is at [Kemmerer82].
least equivalent to the classification of the file.  The

2. The execution of each kernel operation is indi-formalized security policy most often quoted is that
visible, so that it is a correct model to inter-of Bell and LaPadula [Bell73].
leave at the level of their invocation.  This is
reasonable since in most systems, such opera-Decomposition of System
tions are implemented in a non-interruptible

Once the elements of the policy are identified, it is manner so that they are effectively indivisible.
necessary to decompose the system into two parts,

Iterative Design Processthe kernel and the rest.  The intention is that the
kernel will be concerned with at least everything that

The designers begin an iterative process which haltscan affect or be affected by the security policy, i.e.,
only when the operations as specified provably meetthe files, the processes, and the access rights and the
the security requirements as specified.  They attemptoperations governed by these rights.  The kernel is
to prove the operations as specified meet the speci-designed so that, in the case of the example, the only
fied requirements. Each failure to do so leads toway to create processes and files is by asking the
closer inspection of both the operation specificationskernel to do so and the only way that processes can
and the security policy specifications.  Usually thisgain access to files for reading and writing is by
examination leads to identification of the reason thatasking the kernel for permission to do so, and the
the proof fails, and this identification leads toonly way that processes can actually read from or
changes to the operations, their specifications, thewrite to files is by having obtained permission from
security policy, and its specification. After changesthe kernel.  This means that in the rest of the system
are made, a proof is again attempted. It is probablyand in any other program running on the system,
this close inspection and subsequent changes that arethese operations on files and processes can be done
the most valuable aspects of the method, far moreonly by invoking kernel routines or by invoking
valuable than the proof per se.routines that ultimately invoke kernel routines.
Program DevelopmentThis particular decomposition of a system into a ker-

nel and the rest makes sense from the software engi- Once the kernel specification has been verified to
neering point of view.  A glance at the way operat- adhere to the desired security policy, two particular
ing systems are designed, not for the purpose of en- program developments may proceed.  One of these
forcing security, but for the purpose of making an is of the software that uses the kernel.  The two main
easy to understand and easy to maintain system, constraints on any such software are that
shows the same basic decomposition being followed 1. it invoke only kernel operations when it
[Dijkstra68, Organick72, Ritchie74, Comer84, wishes to do something which can be security
Bach86, Tanenbaum87]. relevant and
Specification of Policy 2. these invocations assume the specifications

given in the NDISM for the kernel.
The specification of the kernel includes a specifi-
cation of security policy that it must satisfy.  The The other program development is that of the kernel
usual approach is to specify an NDISM in which F itself. Assuming that the kernel is structured as a
is a function that non-deterministically invokes ker- collection of subroutines that can be invoked from
nel operations.  That is, at each transition some one outside the kernel, i.e., a collection of supervisor
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routines, it suffices to show that each subroutine cor- cannot get read access to files with a classifi-
rectly implements its corresponding transition speci- cation higher than its clearance. However, prov-
fication. The specification of each such transition ing this will not prevent a process from reading
tends either to be deterministic or non-deterministic snapshot changes caused by another process that
with the intent of specifying allowed variations and can legitimately read the file.  If that process
not concurrency.  Therefore proving these sub- purposefully changes snapshot at an agreed upon
routines correct can be done with traditional non- rate so as to signal the bits of the content of the
concurrent methods, as covered in [Berztiss88]. The file it can read, then it will manage to transmit
important thing here is the concept that if the speci- the contents of the file to other processes that are
fication of an operation meets a given requirement not supposed to have access to the file.
and one has shown that a procedure correctly imple- • Because of the sheer difficulty of carrying out
ments the specification, then one has also shown that proofs, what is specified tends to be only the
the procedure meets the given requirement. barest minimum of security relevant properties.

No attempt is made to prove that the transitionsA fuller description of the technique is given in
do what they are supposed to.  There is no[Cheheyl81]. This paper describes the general tech-
guarantee that an operation to read a file in factnique and four different specification languages. A
causes copying of the contents of that file, onlysmall example illustrates each one.
that the copying does not happen unless the
security policy permits it.  In some cases, theThe famous Orange book [Klein83] describes re-
formal system used cannot even guarantee thatquirements for systems to be accepted as secure by
an operation once invoked will even terminate.the Department of Defense. It specifies both the
The formal system handles only safety propertiesbasic policy that must be implemented and the
and not progress properties. Note that an opera-methods by which the system must be developed and
tion that does not give the data that is requestedverified to implement the policy.  A system cannot
is quite secure, but it is not very useful.receive so-called Orange-book certification unless it

was developed and verified in a manner that inspires • The security is as good as the underlying as-
confidence in the claimed security.  In other words, sumptions of correctly performing compilers,
how the system is designed and implemented is at hardware, etc.  The software has still kept its
least as important, if not more, than what policy it promise if as a result of a hardware failure, all
implements — a recognition of the importance of top secret files get spilled out to the line printer
having a systematic method for engineering the that is in a public reading room.
secure system.  One system that has been certified

Network SecurityA1 Secure under the Orange book is SCOMP
[Benzel84].

Several authors have dealt witht the related problem
of secure transmission of messages over a non-Real-Life Use of Technique
secure network, i.e., of making sure that the intended

The method has been applied a number of times at recipient and only the intended recipient of a mes-
the level of verifying that the specified NDISM sage see the message [Good82, Britton84].
meets the security requirements.  To this author’s

2. Database Integrityknowledge, the method has never been carried out to
the point that the implementation meets the security Given a database scheme, consisting of a collectionrequirements. While this failure is an indictment of of data types, e.g., for relations or inverted trees,claims to practicality of formal proof methods, in etc., operations that can be performed on the data,practice the failure is not that serious. It is generally and a statement of what it means for the data to haveagreed that the hard part of the implementation of a integrity, the problem is to insure that the databasesecure system is getting the specification of the ker- will maintain that integrity.nel right.  The kernel procedures are small enough
and generally simple enough that getting their im- Run-Time Checking
plementations right is far easier.

The more usual situation is to do the checking at run
Limitations time. However, this is expensive.  Moreover, it is

not clear what to do if the data are discovered not toThe method has its limitations. have integrity; the operation that made the change,
• The system can be no securer than the specifi- which is the primary cause of the lack of integrity,

cation of security.  That is, if the desired concept may have been done long ago.
of security is not covered by the specification,

Verification Approachthen the system may not satisfy it, and it cannot
be expected to observe it.  For example, the

Another approach is to verify, at design time, thatspecified security policy may state that a process
the database as specified has the required integrity.
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This approach to database integrity verification is an tributing datum has changed, the process releases
operational one which is similar to that of operating access and backs out of the operation. If the fre-
system kernel security verification. One defines an quency of concurrent access is low enough, then the
NDISM to model the database; I defines the scheme, probability is high that the process will be able to
I defines the initial configuration, F defines the write the changes.  With the right frequency of con-0

current access, the two-phase commit exhibits sig-operations. The integrity constraints are then ex-
nificantly more throughput than using the brute-pressed as an assertion on I. To prove that the data-
force method.base has integrity, it suffices to show that the in-

tegrity constraints assertion is an invariant.  That is
3. Protocolsthe integrity constraint holds for all elements of I0

and it is preserved by each operation [Leveson83], Network protocols are generally modeled as proc-
[Paolini81]. esses passing messages to each other across some

bi-directional media.  The medium between two
Once the NDISM definition of the database has been processes is modeled as storage accessible to both
verified to have integrity, any correct implementa- processes that holds the transmitted message for at
tion of it also has integrity. Furthermore, any data- least one snapshot.  If the protocol is designed to
base application programmed entirely in terms of work across faulty media, then in the formal model
operations of the NDISM is also guaranteed to have the storage is given the ability to generate spurious
integrity; this is because all accesses to the database data, to lose data, and to corrupt data with nonzero
are through operations that are guaranteed to pre- probabilities. The procedure that the processes ex-
serve integrity. ecute in order to send and receive messages is called

the protocol.  Generally, all processes execute theThe upshot of this approach is that no additional
same protocol procedure, and the procedure tends torun-time integrity checks are needed.  It is known
have a part that deals with sending and a part thatthat the operations are designed never to get the data
deals with receiving.  The two parts may even beinto a snapshot in which they do not satisfy the in-
two different invokable procedures.  Usually, in antegrity constraints.
attempt to simplify the formal model while retaining

Limitations its focus on the protocol, the formal model consists
only of two processes, a sender executing only the

The method suffers from the same drawbacks as sending part and the receiver executing only the
does verifying security, e.g, the real integrity of the receiving part of the protocol, and a uni-directional
database is only as good as the specification of what medium.
integrity means.  If the database is a concurrent one,
i.e., several processes may be accessing the data at a Main Properties to Prove
time, then the same approach works.  All that is

The main property that it is generally desired torequired, as is the case with operating system ker-
prove about a protocol is that if a message m is sentnels, is that the operations be indivisible or atomic.
from the sender, it eventually is received uncor-

Making Operations Atomic rupted by the receiver.  For some protocols, there
may be additional properties, such as that the mes-

There are a number of approaches to making the sages arrive uncorrupted in the order that they are
implementation of the operations atomic. The brute sent.
force method is to physically prevent more than one
process at a time from accessing the database. This The second of these properties is a safety property,
approach is wasteful, however.  In a truly large data- because it says that in all snapshots, the sequence of
base, it is quite likely that the concurrent accesses messages sent by the sender is an initial subsequence
are to independent parts of the database.  In such a of the sequence of messages received by the
case, concurrent access is not harmful, and disallow- receiver. However, the main property is a liveness
ing it would slow down the operation of the database property, because it says that in all snapshots, if a
intolerably; Consider an airline reservation system in message is sent by the sender in that snapshot, then
which only one agent world-wide could access the there exists a later snapshot in which the same mes-
database at a time.  A more useful approach is to use sage has been received by the receiver.  Hence, a
a two-phase commit [Bernstein87] in which a proc- popular way to specify and verify properties of
ess does all the calculations necessary to do an up- protocols is with temporal logic [Hailpern82,
date unprotected, but then just before it is about to Schwartz81, Lamport83a, Schwabe85, Wolper82,
write the changes, it grabs uninterruptible, unique Nguyen84].
access to the data, checks that all data that con-

Temporal Logic Specificationstributed to the new values have not changed, and if
not, then writes the changes and releases access to As an example, consider a general protocol specifi-
the data.  If the process finds that at least one con- cation given by Hailpern. In this specification, the

medium is modeled as a monitor:
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Operational Specificationssend(m):
pre: α=A

There are a number of operational definitions ofpost: α=A<m>
protocols. Among them are specifications written inlive: 〈〉 (after send)
AFFIRM [Sunshine82] and in a graphic specifica-
tion language invented by Chen and Yeh [Chen83].receive(var m):

pre: β=B AFFIRM
post: β=B<m>
live: 〈〉 (ExistsM) ⊃ 〈〉 (after receive) The AFFIRM language has been used to specify a

variety of protocols and the AFFIRM verification
ExistsM: environment has been used to verify a number of

pre: true properties of these specifications. A later section
post: true describes AFFIRM and its environment.  For now, it
live: 〈〉 (after ExistsM) suffices to say that AFFIRM allows specifications of

NDISM in a way in which it is possible to quantify
Monitor Invariant: over snapshots. Therefore, it is possible in AFFIRM

to specify liveness as well as safety properties.  Sun-ExistsM∧ ℵ (¬after receive) ⊃ ℵ (ExistsM)
shine, Thompson, Erickson, Gerhart, and Schwabe
[Sunshine82] have written a paper in which theyNote how a message cannot be received until after
show how several protocols can be specified andthe message exists in the communication medium.
verified to satisfy a number of useful properties.The monitor invariant, relying on the assumption of

only one receiver, says that if ExistsM becomes true,
They define a basic service protocol which capturesthen it will not become false before a receive opera-
what the protocol user sees, that is, as a reliabletion takes place, i.e., if an existing message is never
medium which delivers all messages, uncorrupted,received then it will always be existing.
and in the order sent.  Typical of the properties of
the service protocol that they specify are:The property that the medium can duplicate, lose,

and re-order messages is captured by using history • Messages are delivered uncorrupted and in the
variables α and β which keep the list of messages order sent, a safety property.
sent and received respectively. Then it is specified • All messages that are sent are delivered, a live-that

ness property.
m∈α ⊃ m∈β These are specified using whatever needed quan-

tification over snapshots.  Then the AFFIRM naturalThus no spurious and corrupted messages are cre-
deduction interactive verifier is used to prove thatated. In order that the protocol eventually deliver a
the service protocol satisfies these properties.  Ac-message, it must be that the medium eventually
tually, failed attempts to prove these properties oftransmits a message if it is sent often enough.  This
the service protocol led to modifications to the spec-is guaranteed by putting two commitments on the
ifications of both the service protocol and themedium, one for the send end and one for the
properties. These modifications continue until thereceive end.
proofs had been successfully carried out.

α grows−without−bound ⊃ 〈ℵ 〉 (ExistsM) Then they define a number of implementing
protocols, such as the Alternating Bit (AB) protocol,

m repeated−without−bound−in α whose job is to implement the service protocol given
∧β grows−without−bound unreliable transmission media that lose messages,

⊃ 〈〉 (m∈β) corrupt messages, generate noise, etc.  They prove
that the implementing protocol satisfies theThe first says that pumping enough messages into
properties of the service protocol by proving each ofthe medium guarantees that eventually one will exist
the service properties as theorems in the implement-in the medium.  The second says that if a particular
ing protocol under the mapping from the implement-message is pumped into the medium often enough
ing protocol data to the service protocol data.  Inter-and the receiver receives often enough, then even-
estingly, they did not take the approach of provingtually the particular message will be received.
that the implementing protocol was a correct imple-
mentation of the service protocol.  Proving only thatHailpern’s book describes two other protocols in de-
the so-called implementation satisfies the desiredtail and proves that each causes its medium to satisfy
properties directly takes less effort than proving thatthe service specification and the commitment of the
the so-called implementation is in fact an implemen-medium described above.
tation and then to deduce by transitivity that it satis-

ℵ fies the properties.
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Graphic Specification 4. Other Problems

Hayes has edited a collection of case studies of for-Another operational approach is that of Chen and
mal specifications [Hayes87]. Among the examplesYeh. They use a picture-based model that directly
specified are a telephone network, the UNIX fileexhibits distribution of processes typical of many
system, several reservation systems, and several dis-concurrent systems these days, especially protocols.
tributed systems.One draws structure diagrams consisting of nested

modules (boxes) connected by directed arcs emerg-
V. Doing the Verificationsing from and entering into modules and output and

input sockets.  Figure 6 shows a typical diagram There is an excellent book by Howard Barringer
consisting of a single module called RT with an in- [Barringer85] that surveys all the specification and veri-
put socket I and an output socket O. A module fication methods except denotational and temporal.
contains some computing agent.  Messages of ar- The papers by Lamport and Owicki [Lamport83a,
bitrary data types flow along the arcs. The sockets Lamport83b, Lamport86, Owicki82] on the topic of tem-
represent sets of message arrival events at the poral semantics show how to do temporal proofs.  The
boundaries of the module. The behavior of an inner- survey article by Cheheyl, Gasser, Huff, and Millen
most module is described by giving axioms relating [Cheheyl81] shows how the various operational sys-
the message arrival events at its own sockets. These tems are used.  The detail required for an adequate
axioms may express equality, arithmetic, Boolean, coverage precludes their inclusion in this module.
etc. relations between contents of messages as well

VI. Specification Languages and Verificationas temporal and enabling relations on the events
themselves. For example, when the function of the Environments
RT module is that an output message o∈O that ar-

Many of the operational semantic languages have beenrives at the output socket O is a copy of an input
implemented. That is, for these languages, there existsmessage i∈I that arrived at the input socket I, then
a specification language processor which given a speci-

1. the arrival, i, of the input message at the input fication and a list of properties to prove, generates con-
socket precedes the arrival, o, of the output jectures, which if proved, imply the holding of the
message at the output socket: properties. Most of these systems also come with in-

teractive or semi-automatic theorem provers that can bei→o
used to prove the conjectures generated from a specifi-

2. i enables o: cation. In fact, these tools sit in environments that are
i==>o directed at specifying and implementing verifiably cor-

rect systems.3. the contents of i and o are the same:
The specification and verification environments sur-i.cont = o.cont
veyed in this module are representative what is avail-

The language permits existential and universal quan- able:
tification of events.  Thus it is possible to express

• AFFIRMboth safety and liveness properties.  The “precedes”
• FDMand “enables” relations on events are defined

axiomatically. For example, “precedes” is defined • Gypsy
as a partial ordering. This allows defining two • HDMevents as concurrent if neither can be shown to

• P-NUTprecede the other.  Once the model and its properties
are specified, any theorem prover that can handle • SARA
axiomatic definitions can be used to carry out proofs • PAISLey
of property satisfaction by the model.

• STATEMATE
The paper gives a protocol service specification as a • Process Algebras
single module with one input and one output socket.

• ASTRALThe relations on the events on these two sockets
Most of these environments have actually been used todescribe a reliable transmission from the input to the
carry out specifications and property verifications ofoutput socket.  The paper then gives a specification
real software.  These include mainly kernels of operat-of the AB protocol as a more detailed nest of mod-
ing systems that are supposed to enforce securityules which contain an innermost module modeling
policies and protocols.an unreliable medium.  The AB protocol is proved to

implement the service protocol by proving the rela-
For each language and environment the discussion in-tions that specify the service protocol to be theorems
cludes descriptions of as much of the following as isin the AB protocol model. Also a number of the
relevant.usual safety and liveness properties are proved of the

1. the language itselfAB protocol model.
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2. how one specifies an NDISM in the language As there may be more than one operation applicable
to a given snapshot, it is possible to model nondeter-3. how complete the specification can be
minism. The operations are specified algebraically,

4. what kinds of properties can be proved of an using equational axioms, whose left and right sides
NDISM contain applications of operations, including the cre-

5. how one specifies, if at all, the redundant ate operations.
properties that are to be proved of an NDISM

The view of rules as rewrite rules is interesting when6. the associated system development method the ADT is used to define an NDISM.  Specifically
7. known limitations of the language or its environ- application of a rule can be viewed as a snapshot

ment transformation, i.e., as taking one step of the compu-
tation. Thus a computation can be viewed as a se-8. the tools of the environment
quence of rewrite rule applications.  Concurrency is9. actual system developments to which the lan-
modeled when there is no unique sequence of rewrit-guage and its environment have been applied
ings, that is when which rule is applied next is non-

Topics 1, 8, and 9 get their own subsections and topics deterministic.
2 through 7 are covered in a single subsection entitled
“Specification and Verification”. The AFFIRM language permits universal and ex-

istential quantification over the values of the abstract
Each of these is described by literature mentioned in its data type.  Therefore, it is possible to express both
own description below.  There are some surveys that safety and liveness properties in AFFIRM specifi-
cover more than one of these.  The first four are sur- cations of NDISMs.
veyed very thoroughly by Cheheyl, Gasser, Huff, and
Millen [Cheheyl81]. The Cohen, Harwood, and Jack- Tools
son book [Cohen86] has brief descriptions of AFFIRM,

The AFFIRM environment contains a number ofGypsy, HDM, and SARA. The Lindsey survey
useful tools, including[Lindsay88] describes a number of automated verifica-

tion environments, including AFFIRM and Gypsy. • an algebraic specification analyzer,

• a library of useful data type specifications,1. AFFIRM
• a library of useful proofs,

Language
• a theorem prover, and

AFFIRM [Thompson81] was designed by USC’s In- • a friendly user interface.
formation Sciences Institute (ISI) as a system for

The specifications analyzer attempts to check thatspecifying abstract data types (ADTs) [Liskov74] and
the specification meets certain well-formednessverifying their properties.  The AFFIRM language is
properties such as suitability as rewrite rules andbasically a notation for writing algebraic specifica-
completeness. It can only attempt a completenesstions of abstract data types [Guttag78]. First, the
check, because in general completeness of an axiomsignature of each operation of the ADT is given in
set is undecidable.  The theorem prover allows inter-the form of the list of the types of its parameters and
active natural deduction.  The user enters thethe type of its return value.  Then a set of axioms are
relevant ADT specifications and then gives it con-given to relate the values of various applications of
jectures about these data types to prove.the operations.
Actual UseThe theorem prover uses the axioms defining an

ADT as rewrite rules.  Therefore, there are restric- AFFIRM has been used to specify and prove
tions on the form of the axioms to make sure that properties of a number of network protocols
their applications as rewrite rules cannot go into infi- [Sunshine82]. The properties proved include both
nite loops.  Among the restrictions is that the left safety and liveness properties. AFFIRM was also
side should consist of a single function application used in the Delta Experiment [Gerhart79]. The Delta
and that the right side should be have at least as system is part of the Military Message System
many terms as the left side. (SIGMA). It is a collection of functions, about 1000

lines of BLISS code, for reading and appendingSpecification and Verification
comments to messages in a secure manner.  The col-
lection was specified as operations of a messageOne defines an NDISM as an ADT whose data are
ADT. Certain security properties were proved. Anthe snapshots and whose operations create the initial
abstract implementation was written and proved cor-snapshot and perform the individual transformations.
rect. This abstract program was generated by handThat is, each operation except the create operation
from the original BLISS language programs of theaccepts a snapshot as its only parameter and returns
system.as its result a next snapshot.  The create operation

takes no parameter and returns an initial snapshot.

SEI-CM-27-1.0 23



Formal Specification and Verification of Concurrent Programs

the redundant specifications, discussed below, of the2. FDM
parent level can be proved to hold in the child level.

The Formal Development Method (FDM) [Eggert89,
Barton88, Eckmann89, Holtsberg89] was developed The FDM suggests the following way of designing a
by Unisys (which absorbed System Development secure system.  The designer starts with the writing
Corporation) for use in specifying systems and veri- of the TLS.  He or she decides on the data of its
fying that they satisfy desired properties.  The lan- snapshot, on its initial conditions, and on its security
guage of FDM is the Ina Jo language [Locasso80, policy as expressed by criteria and constraints in-
Scheid86a, Scheid86b, Scheid89]. volving the variables of the snapshot.

Language The designer then begins an iterative process by
which transforms are added until the model has all

The Ina Jo language allows a direct specification of the desired transforms and all of them preserve the
NDISM by giving assertions relating before and af- criteria and satisfy the constraints.  As a transform is
ter snapshots of individual selectable transfor- added, it should be verified as preserving the criteria
mations. The language permits quantification over and satisfying the constraints.  If not, then the trans-
values of snapshot variables but not over snapshots form must be changed until the verification suc-
themselves. ceeds. As the set of transforms is being decided

upon, the designer may also choose to start supply-Specification and Verification
ing more implementation details.  In this case, the
designer specifies a new level in which the data vari-An Ina Jo specification consists of a list of level
ables exhibit more implementation details. Thespecifications. The first of these is called the Top
designer writes the entire level, the data, the initialLevel Specification (TLS), and the last of these is
conditions, and the transforms so as to implementcalled the implementation specification. Each level
the parent level.  The way in which the child dataspecification consists of four main parts
implements the parent data is captured in the map-• data declarations
ping section of the child level.

• initial conditions
Because of the great difficulty in carrying out de-• transform specifications
tailed proofs of implementation correctness, the

• correctness assertions designers of the FDM have stuck to more modest
• mapping specification (except in the TLS) goals. Specifically, it is required only to prove that

the child level satisfy the criteria and the constraints
The data declarations declare the types of values of the TLS that define the correctness of the model.
used by the variables and the variables appearing in Rather than prove the child level a correct imple-
the snapshot (“state” in FDM terminology), and the mentation of the parent level through its mapping,
possibly parameterized snapshot interrogation func- each successive level starting with the child of the
tions. TLS is shown to satisfy the mapped criteria and con-

straints of the TLS brought down through its parent.The initial conditions describe by assertion all the
possible legal initial snapshots. Consistent with this method of adding more trans-

forms, the set of computations defined by an Ina JoThe transform specifications describe for each trans-
level specification is not necessarily that generatedform the conditions under which it may be invoked
by applying arbitrary compositions of transforms toand how the before and after snapshots are related;
the snapshots satisfying the initial conditions.  Thethese relations can be functional, but they do not
set of computations is a superset of these and a sub-have to be.
set of those generated by applying the arbitrary com-
position of the constraints, considered as transforms,The correctness assertions are redundant assertions
to the snapshots satisfying the initial conditions.of two kinds, criteria and constraints.  Each criterion
While it is never known if there will not be moreis a one-snapshot assertion that is supposed to be an
transforms added later, it is known that all thoseinvariant, and each constraint is a two-snapshot
added later will satisfy the constraints.assertion that is supposed to be satisfied by all trans-

forms.
Because the redundant assertions are invariants and
constraints, one can specify and prove safetyAll levels except the TLS have a mapping section
properties and relations between successive snap-which explains how to write expressions of the lan-
shots. Because there is no quantification over snap-guage of the preceding level, i.e., its parent level, in
shots, one cannot specify and prove livenessthe language of its own level.  This is to allow an
properties in the Ina Jo language.assertion of the parent level to be rewritten in the

language of the child level in order to see if it can be
ℵproved a theorem in the child level.  In this manner,
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Tools developed by a group of people at the University of
Texas at Austin [Good78, Ambler78, Good84a,

The FDM is supported by an environment, the FDM Good84b]. Whereas the emphasis of AFFIRM,
platform, which includes a number of tools, the most FDM, and HDM are on verification that a specifi-
important of which are the following: cation and a design meet stated requirements, the

emphasis of the GVE is on verification that an im-• Ina Jo processor
plementation is correct to stated requirements.  The• Interactive Theorem Prover (ITP)
GVE has been used for code correctness proofs,
which, in general have not been done in any actualThe Ina Jo processor is essentially a compiler.  It
application of AFFIRM, FDM, and HDM.checks input Ina Jo specification for syntax and type

errors, and if none are found, it generates a set of
Languageconjectures, one for each level specification. These

conjectures imply that The language of the GVE is Gypsy.  Consistent with
• the initial conditions satisfy the possibly mapped the emphasis of the GVE, Gypsy is a Pascal-like

criteria, language that can be used both for specification and
for implementation.  There are restrictions from Pas-• the transforms preserve the possibly mapped cri-
cal and extensions to Pascal in Gypsy.  The restric-teria, and
tions are for the purpose of eliminating features that• the transforms satisfy the possibly mapped con- cause anomalies to the standard Hoare axiom sys-

straints. tem. For example, no function or procedure ac-
In other words, if the conjectures are verified, then cesses any non-local variable; all accesses to a vari-
the NDISM specified by the data declarations, the able other than local variables must be via variable
initial conditions, and the transform specifications parameters. Functions have only by-value
have been shown to meet the correctness conditions parameters and thus cannot have side effects.  Proce-
as given by the redundant assertions. dures that do not return values can have side effects

only through their parameters.  On the extensionThe ITP [Stein80, Smith86] is used in order to at-
side, there is a syntax for assertions that can be at-tempt to prove these conjectures.  The ITP first
tached to arbitrary points in the program as well asgenerates the logical negation of the conjecture to be
at procedure and function headings as interfaceproved; then the ITP helps the user find a contradic-
specifications.tion thus proving the original conjecture a theorem.

Specification and VerificationActual Use
In Gypsy one specifies NDISMs solely in an indirectDespite the original intention of being able to carry
manner by writing a program that implements it.  Inout the FDM over several levels down to code, no
order to obtain concurrency, Gypsy has a number ofapplication has even been carried out over more than
features for setting up processes and for2 levels and no application has been carried to code.
synchronization.In order to carry out the FDM all the way to code,

another tool is needed for each programming lan- Tools
guage the might be used in conjunction with the

The GVE has a number of tools:FDM, namely a verification condition generator
(VCG) [Scheid83a, Scheid83b] that generates verifi- • Gypsy syntax directed editor
cation conditions asserting that a given procedure • Gypsy parserbody implements a given transform as specified in

• Gypsy interpreterthe implementation level specification.  Unfor-
tunately, to date, there is no complete VCG for any • Gypsy compiler
programming language. • Gypsy optimizer
The FDM has been applied to specify and prove the • verification condition generator (VCG)
data security of a number of system programs.  One • theorem prover
of these was the AUTODIN II multi-level secure

Controlling all of these is the GVE executive.  It ispacket switching network [Cheheyl81]. The second
worth noting that the optimizer uses knowledge thatof these was for KVM/370 a secure kernelized ver-
can be gleaned from the assertions in making op-sion of VM/370 [Gold79]. In both of these cases, the
timization decisions; for example, if the assertionstop level was proved to meet the specified security
imply that one arm of a conditional is impossible torequirements. Neither was carried to any additional
ever follow, its code is not generated.levels.

The VCG generates conjectures which imply that3. Gypsy
the code is partially correct with respect to the asser-
tions given as annotations in the code.  Because ofThe Gypsy Verification Environment (GVE) was
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Languageits basis on the Hoare axiom system, safety
properties can be proved. This author believes that

The specification language of the HDM is SPE-certain liveness properties such as halting are also
CIAL. SPECIAL allows direct specification ofproved, but not by conjectures generated by the
NDISMs. A SPECIAL specification of an NDISMVCG. These have to be submitted directly to the
consists of two main parts,theorem prover

• the data part, and
The GVE uses a Boyer-Moore theorem prover.

• the algorithm part.
Actual Use

The data part declares types used by the variables
and the variables of the snapshot of the NDISM.The GVE has been used for a secure network appli-
Each data type is specified algebraically withcation [Good82]. That is the software that encrypts
axioms.messages prior to sending them out over a non-

secure network and that decrypts received messages
The algorithm part consists of a collection of opera-only for the stated recipient. It was verified that
tion specifications.  There are two kinds of opera-only encrypted messages get out into the network,
tions, VFUNs and OFUNs.  VFUNs are value func-and that all received messages are equal to the cor-
tions; they return values computed from the currentresponding original message. The GVE was also
values of variables and have no side effects on theseused to develop the ACCAT guard.  The ACCAT
variables. OFUNs are procedures that change theguard is used to assist a human being in downgrad-
values of variables and do not return values. Theiring documents from a higher security level to a
notation is not unlike that of Parnas’s [Parnas72b],lower one.  It is proved that no data are downgraded
and indeed the HDM designers suggest using theunless the human operator has seen it; thus it is
same software design methods touted by Parnas inpresumed that the human is cleared to the higher
the same and related papers [Parnas72a].security level and is competent to decide on the sen-

sitivity of the document and to excise portions that Specification and Verification
should not be released to those who are cleared for
the lower security level.  For both of these projects In the HDM terminology, the specification of an
the security criteria was stated as Gypsy assertions NDISM is a Top Level System (TLS). The TLS
and the code was written in Gypsy. specifies the visible behavior of the system, which

the users of the abstract machine can rely upon.  Be-
More recently, the people responsible for the GVE low the TLS, is a list of NDISMs each of which is a
have moved in other directions.  One such direction refinement of the one above it.  A refinement
is to use the Boyer-Moore logic directly to to specify NDISM provides more implementation details than
both an abstraction and an implmentation as the one above it, but provides no new operations; to
NDISMs and to prove the correctness of the imple- do so would violate the TLS’s specifying the visible
mentation of the abstraction by showing that the lat- behavior of the system.  Below the lowest level
ter simulates the former as suggested in Section comes the implementation of the specified TLS as a
III.1.d [Bevier87]. The Boyer-Moore prover has also module or a collection of procedures and data struc-
been used to mechanize a proof system tures in some implemented programming language.
[Goldschlag90a, Goldschlag90b], defined in the
Boyer-Moore logic, for UNITY [Chandy88]. Tools

4. HDM There are no redundant properties mentioned in a
SPECIAL specification.  Instead the properties to be

The Hierarchical Development Method (HDM) was proved are provided by the prover at proof time to
developed at SRI International for the purpose of the verifier. Given the basic purpose of the HDM to
specifying and verifying the security of operating be able to prove systems multi-level secure (MLS),
system kernels [Robinson79, Silverberg79]. Operat- there is an MLS Formula Generator which takes a
ing systems are developed by hierarchical decom- TLS and generates conjectures which collectively
position and the kernels are multi-level secure.  The imply the multi-level security of the TLS.  The MLS
hierarchical decomposition of the system is carried Formula Generator is based on Feiertag’s
out using traditional software engineering methods; [Feiertag80] model of multi-level security.
for example, information hiding is used to decide
how to decompose a system into modules, and each These conjectures can be submitted along with the
module is made an abstract machine providing some TLS to the Boyer-Moore theorem prover that is
service, such as memory management, to the other available. The user of the theorem prover may also
abstract machines.  Each such abstract machine is interactively provide other conjectures to prove, thus
specified as an NDISM using SPECIAL. allowing him or her to prove properties other than

multi-level security.
ℵ
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While the TLS is to be demonstrated MLS, the re- create the token assignment of the next snapshot.  At
finement levels are to be proved correct implemen- each snapshot any fireable transition may be se-
tations of their immediate parents.  This proof is lected for firing.  Thus concurrency is modeled by
based on the standard mapping from the implement- having more than one transition fireable.
ing level’s data to the implemented level’s data de-

A Petri net may be timed or untimed.  Normally ascribed in Section II.1.d.  In addition the code im-
Petri net is untimed. When it is timed, a delay isplementing a TLS is to be proved correct by proving
associated with each transition indicating how longeach procedure a correct implementation of the cor-
it takes for the transition to fire. A Petri net mayresponding operation in the lowest level refinement
also be interpreted or uninterpreted.  Normally it isof the TLS. For each implementing programming
uninterpreted, but one may associate an actual func-language there is supposed to be a verification con-
tion with a transition.  In this case, each tokendition generator (VCG) that generates conjectures
represents one parameter. Thus these functions areimplying this correctness relation.  At present there
not applied unless all input parameters have beenare VCGs for Pascal, FORTRAN, and JOVIAL.  In
supplied.order not to have to develop a VCG for every pro-

gramming language that might be used, SRI has de- Specification and Verification
veloped a Common Internal Form (CIF) which can
express implementations and whose programs can A system is specified by giving a Petri net for it.
be translated straightforwardly to any implementa- This Petri net can be totally uninterpreted; however,
tion language.  They have written a VCG for CIF as then not much beyond its flow control is specified.
the implementing language. Currently translation More information can be given in the form of timing
from CIF notation to an implemented programming estimates for the firing of places and interpretations,
language is done by hand. i.e., procedures, that explain what happens when a

place fires.
Actual Use

Tools
The HDM has been used to specify, design, and ver-
ify MLS secure two operating systems, Kernelized The P-NUT environment contains a variety of tools,
Secure Operating System (KSOS) [McCauley79] and including
Provably Secure Operating System (PSOS) • an interactive graphic Petri net editor,
[Neumann77, Feiertag79].

• a translator,
5. P-NUT • an untimed reachability graph builder,

P-NUT is a suite of tools developed by the Distri- • a timed reachability graph builder,
buted Systems Project at University of California at • a reachability graph analyzer,
Irvine [Razouk85a, Razouk85b, Morgan87]. The

• a reachability graph pretty printer, andpurpose of these tools is to allow design of concur-
• a simulator.rent systems in a manner that allows detection of

timing, synchronization, and resource contention er- The translator converts a Petri net input in linear
rors. The approach used is to specify these systems form into an intermediate form which is used by all
with analyzable models and to have tools which do the other tools to stand for the net.
the analysis.  P-NUT is built around giving Petri net

The reachability graph builders build graphs whosemodels of concurrent systems [Peterson81].
nodes are all the snapshots achievable in any compu-

Language tation of a candidate Petri net. The builders try to
keep these graphs finite by recognizing when a

A Petri net is a bipartite directed graph whose nodes newly generated state is the same as one it has seen
are transitions and places. Figure 7 shows a Petri before.
net describing a service protocol.  The places P1 and
P2 send messages to each other via the transitions These reachability graphs are analyzed for timing,
T1 and T2. The directed arcs indicate for each tran- synchronization, resource contention, and deadlock
sition which places are input places and which problems by the reachability graph analyzer (RGA).
places are output places, namely those places which The RGA is the most important tool of P-NUT.
are at the tail and heads of the arcs respectively. With it, the user can specify propositions and predi-

cates about places, transitions, and arcs in the Petri
A snapshot in a Petri net computation consists of an net and about reachable states in the reachability
assignment of zero or more tokens to each place.  A graph. All of these entities can also be bound by
transition is fireable if there is at least one token on both the existential and universal quantifier.  There-
each of its input places.  If a transition fires, then fore both safety and liveness properties can be speci-
one token is removed from each input place and one fied. The RGA proves these by exhaustive examina-
token is deposited at each of its output places to tion of the reachability graph.  There are also a num-

SEI-CM-27-1.0 27



Formal Specification and Verification of Concurrent Programs

ber of generic properties that the RGA knows how ule, one gives multiple models of the system or
to demonstrate: module at hand, each from a slightly different point

of view.  The models are structural and behavioral,• boundedness, that there is some constant max-
and there is a mapping between behavior model ele-imum number of tokens at each place
ments and the supporting structure model elements.

• safeness, that there is a maximum of one token at A structure model (SM) consists a number of nested
each place modules (boxes) connected by undirected arcs that

• conservation, that the total number of tokens in meet the modules only at sockets. Figure 8 shows
any snapshot is less than or equal to some con- an SM on the lefthand side with two modules, M1
stant and M2, and an arc connecting them at sockets.  Ob-

serve that the modules are mapped via dashed lines• liveness, that a particular transition is potentially
to elements in the rest of the diagram. The behaviorfireable in all reachable snapshots
model, in the form of a graph model of behavior• deadlock-freeness, that it is not the case that no (GMB) consists of three submodels,

transition is alive
• a control flow graph (CFG),

The simulator takes a graph in intermediate form • a data flow graph (DFG), and
and an initial assignment of tokens and simulates

• an interpretation.computations by firing fireable nodes and redistrib-
The two flow graphs together form an uninterpreteduting tokens according to the firings.  If the net is
model. Figure 8 shows a GMB on the righthandtimed the simulator will keep track of simulated
side.time. If the net is interpreted, the simulator will

invoke the procedure for fired nodes and keep track
The CFG consists of process nodes connected byof the values of the tokens.  There are useful facil-
directed arcs. An arc represents precedence of ac-ities for controlling the progress of the simulation.
tivation of the processes at the head and tail; that is,The user may choose which node to fire, or he or she
the process at the tail must finish before the processmay let the simulator select one at random.
at the head can begin.  Each CFG node may have
more than one in-pointing arc headed at it and moreThe interactive graphic Petri net editor allows input-
than one out-pointing arc tailed at it.  For a giventing nets by drawing them with the aid of a mouse.
node, the in-pointing arcs are either in an “and” orThis is more convenient than the linear form of the
an “or” relation, and likewise for the out-pointinggraph consisting of ordered pairs defining the arcs.
arcs. These relations constitute the input and output

Actual Use logics for the process node, respectively.  The CFG
in the GMB of Figure 8 has two process nodes, P1The tools of P-NUT have been used to specify
and P2, connected by two arcs flowing in oppositeprotocols and to prove both safety and liveness
directions.properties about them.  The paper by Morgan and

Razouk [Morgan87] shows a specification of the Al- A snapshot in the computation of a CFG is an as-
ternating Bit (AB) protocol and proof of its signment of zero or more tokens to each arc.  In any
properties. There is a service specification as a snapshot a process node is enabled if the tokens on
fairly simple Petri net and then a very detailed Petri its in-pointing arcs satisfy the logic; that is, if the
net describing the AB protocol as an implementation logic on the in-pointing arcs is “or”, then at least one
of the service specification.  With the help of the such arc has at least one token, and if the logic is
RGA, the AB protocol Petri net is proved to satisfy “and”, then all such arcs have at least one token. In
the liveness property of implementing the service each snapshot, any enabled process node is selected
specification. The AB protocol Petri net is also for initiation, and execution.  The next snapshot is
shown to be safe, so that the readers are mutually obtained by removing tokens from the initiated
exclusive. process’s in-pointing arcs, according to the input

logic, and depositing tokens on the process’s out-6. SARA
pointing arcs, according to the output logic.  That is,
if the input logic is “or”, then exactly one token isThe SARA design environment was developed at
removed from exactly one of the in-pointing arcs,UCLA to support requirement-driven top-down de-
and if the input logic is “and”, then exactly onesign of possibly concurrent digital systems
token is removed from each of the in-pointing arcs.[Razouk77, Vernon80, Razouk80, Estrin 86]. The
Similarly, if the output logic is “or”, then exactlySARA method dictates top-down design from re-
one token is deposited on exactly one of the out-quirements until the level at which it is possible to
pointing arcs, and if the output logic is “and”, thencompose the system from off-the-shelf components.
exactly one token is deposited on each of the out-

Language pointing arcs.

At the topmost level or at each refinement of a mod- ℵ
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The DFG is a bipartite composed of process and The GMB Analyzer generates the graph of all reach-
dataset nodes.  An arc with the head at a process able states and then asks various questions that can
represents the dataset at the tail being an input to the be answered by examining the structure of this
process, and an arc with the tail at a process graph.
represents the dataset at the head being an output of

The Performance Analyzer uses supplied timing in-the process.  Each DFG process is associated with
formation to build a closed form queueing theorysome process in the CFG so that a DFG process is
model of the CFG.initiated to do its data transformation from input to

output when the corresponding CFG is initiated. The GMB Simulator is in the form of a token ma-
The DFG of the GMB of Figure 8 has two process chine. It implements the token-distribution seman-
nodes, P1 and P2, and two dataset nodes, D1 and tics of the GMB model, allowing the user to choose
D2. All the arcs flow from one kind of node to the among enabled nodes, and it invokes associated in-
other. Observe that an association has been set up terpretation procedures as process nodes are in-
mapping the DFG processes P1 and P2 to the CFG itiated. The token machine shows the simulation on
processes P1 and P2 respectively. the screen by highlighting initiated nodes and show-

ing tokens moving from arc to arc.Associated with each process node in the CFG may
be an interpretation, a procedure in some imple- Actual Use
mented programming language, LISP in the current
version of SARA, describing the behavior of the The models of SARA have been used to describe
process. The input and output of this procedure protocols, and the tools of the SARA environment
must be consistent with the connectivity of the have been used to verify certain useful properties of
process’s associate in the DFG. these protocols, such as proper termination

[Razouk79, Ruggiero79]. The SARA tools do not
Specification and Verification permit verification of correctness, since the require-

ments language is only natural language.The design and implementation of a system
proceeds from requirements downward to imple- 7. PAISLey
mentation using components, including program-
ming language statements, off the shelf.  The re- PAISLey [Zave72, Zave87a, Zave87b, Zave87c,
quirements are stated as an enumerated list of natu- Zave91] is an executable specification language for
ral language sentences, the numbering giving a specifying concurrent digital systems.  That is, be-
means to map implementation details to the require- sides formally specifying a concurrent system, a
ments that they help implement.  The topmost level PAISLey definition can be given to an interpreter
design is a complete complement of designs in each that will execute the specification to produce one or
of SARA’s languages. The tools described below more of the specified computations.
give means to analyze, simulate, and test the design.

It is claimed that PAISLey is different from an ordi-As the designer moves from level to level, he or she
nary programming language because a specificationtakes a yet unimplemented SM module and either
in PAISLey, when it can be given, is implementationimplements it easily with off-the-shelf components
independent. That is, it can describe all requiredor refines it into a complete complement of models
properties and behavior of a digital system only togiving more details. This process continues until the
the level of detail desired, leaving all other aspects,system is completely tested and implemented.
including how the properties and behavior are im-

Tools plemented, unspecified. For example, instead of de-
scribing a computation over all the elements of a list

The SARA environment is a graphics based environ- as a loop that visits the elements in some order, the
ment in which one can draw the models and estab- result of this computation is specified using univer-
lish the mappings and associations between elements sal quantification over the elements of the list
of the models visually.  Figure 8 shows these map-
pings as dashed lines.  In this environment, there are PAISLey tries to get the best of two computational
a variety of tools that can be used to validate the models, asynchronously interacting concurrent proc-
models, in particular the GMB models, esses and functional programming.  The cycle of

each process is specified functionally. One can• GMB Analyzer for analyzing the CFG in order
specify timing constraints on any function, and thusto test for proper termination and thus for dead-
also on any step of processes.  These timing con-lock,
straints may either be a formula giving the estimated

• Performance Analyzer for a stochastic variant of time of a step or formulae giving upper and lower
the CFG, and bounds on the estimated time of a step.  The inter-

• GMB Simulator for allowing the user to exercise preter keeps lower and upper bound total time es-
the model with visual feedback. timates for any computation path it follows.
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According to Zave and others who have used PAIS- process returns as the value of the function call the
Ley, PAISLey is intended to and is well-suited to argument of the other’s call.  That is, if process Π1
model highly parallel, real-time, possibly distributed calls x-time[1], and process Π calls2
systems, such as process-control and communication x-time[2] at times that allow the calls to match,
systems. then Π returns 2 from its call of x-time, and Π1 2

returns 1 from its call of x-time. To each process,Language and Specification
an exchange function call appears as an ordinary
value-returning function call; however, during theA PAISLey system is a fixed set of processes, each
execution of the exchange function call, dependingrunning independently and asynchronously with
on the type of the function, a process may have torespect to the others of the set.  By “fixed number of
wait asleep, until a match occurs between exchangeprocesses” is meant that the number of processes is
function calls to the same channel.determinable at specification processing time.  In or-

der not to have to write many nearly identical copies
The three types of exchange functions are x xr andof a definition that is describing the behavior of
xm. They differ by whether the calling processmore than one process, a process specification can
waits or not and with what other kind of exchangebe replicated over an indexed set of processes, but
calls they can match.  Each side of a communicationthe replication is a kind of macro obeyed by the
may be of a different type.specification processor. The purpose of bounded-

• In an x-type function, the caller waits if there isness in the number of processes is to allow proof
no other process that has called an exchangethat synchronization attempts will be successful
function over the same channel.  If and when awithin a bounded amount of time, by allowing estab-
match occurs, the call returns the argument oflishing bounds on the mount of time required to per-
the matching call.form any observable function.

• In an xr-type function, the caller does not wait if
Formally a system is specified as a tuple of process there is no other process that has called an ex-
cycle functions, each applied to its initial state. change function over the same channel; in this
Thus to specify a two-process system, consisting of case, the call returns the value of its own argu-
a clock whose state is the current time and a watcher ment. If there is another exchange call to the
whose state is the last observed time, one would same channel waiting or issued at the same cy-
write cle, the a match occurs, and the call returns the

argument of the matching call.TIME=INTEGER; clock-cycle:
TIME --> TIME; • An xm-type function call behaves as an x-type
watcher-cycle: TIME function call, except that it cannot match another

--> TIME; (clock-cycle[0], xm-type call on the same channel.watcher-cycle[0]);

Thus x’s can match x’s, xr’s, and xm’s, xr’s canA process is specified with the aid of a cycle func-
match x’s and xm’s, but xm’s can match only x’stion that maps the process’s state to its next state.
and xr’s.Each application of the cycle function is called a

process step or a process cycle. Because the argu- Any time an exchange function is evaluated, if more
ment to a process’s cycle-function is only the than one match is possible, then some legal match is
process’s own state, each process appears to have a chosen nondeterministically.
non-forked, deterministic computation tree.  How-

Consider the following PAISLey definition, of aever, processes do communicate by exchanging
clock ticking every second and a watcher occasion-values through shared synchronizing channels.  That
ally looking at the current time of the clock.  Theis, a process may have to wait unspecifiable num-
current time is the state of the clock and the last timebers of other process’s steps before it can continue
read from the clock is the state of the watcher.  Inits own step with an unpredictable value.  The un-
PAISLey, comments are surrounded by quotes.predictability in the number of steps and in the value

returned from the exchange causes nondeterminism.
The cycle of the clock process can be described in
words as: compute a new time value as the currentIn PAISLey, communication between two processes
time plus one and offer the current time value tooccurs with the help of exchange functions. Each
anyone who will read it.  The new time value, i.e.,exchange function name specifies both the type of
the first component of the tuple, is taken as the nextexchange and the channel over which the exchange
state of the clock.  The offering of the current time isoccurs. For example, x-time specifies an x type
accomplished as a call to an xr, non-waiting ex-exchange over the time channel.  When two proc-
change function on the time channel that is read byesses have called an exchange over the same channel
the watcher.  Since the clock does not wait, it canat the same time (defined more precisely below)
guarantee to finish its cycle in precisely one second.then the function calls are said to match, and each
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The cycle of the watcher can be described in words hung up, the clock would not be able to
as: wait until there is a current time being offered in guarantee that it will finish an execution of
the time channel; when the match occurs take the clock-cycle in the 1.0 second time limit set
time argument passed into the matching call and above; thus its exchange function must be of
return it as the read time.  Note that when the type xr."
watcher gets back a time, and that time is installed

"xr-time will return its argument if no other proc-as the next state of the watcher that time will be one
ess has asked to read the time channel and nullsecond behind the time installed as the next state of
otherwise, as is required for offer-time."the clock.

"DEFINITIONS FOR THE WATCHER"BEGIN DEFINITION"
PROCESS"

TIME=INTEGER;
"watcher-cycle appears to take a TIME to some

"INITIAL STATE OF PROCESSES" "It also TIME, but in fact, it ignores the input TIME and
says that the system has two processes, the occasionally returns a TIME read from the time
clock and the watcher, each with its own cycle." channel."
(clock-cycle[0], watcher-cycle[0]); watcher-cycle: TIME --> TIME;

watcher-cycle[time] ="DEFINITIONS FOR THE CLOCK PROCESS"
read-time[null];

"The function clock-cycle takes TIME to the
read-time: FILLER -> TIME;next TIME.  Thus, the state of the clock is its

current time, and its initial state 0 is time 0." "read-time is a mnemonic for a waiting ex-
change function, i.e., of type x, on the timeclock-cycle: TIME --> TIME;
channel; x-time will wait until another process

"The lower bound and upper bound of the time has attempted an exchange on the same chan-
for a cycle are both 1.0 second.  Thus, a cycle nel and will return the argument of that call.
is precisely 1.0 second long!" Since the only other process, the clock-cycle,

will be calling offer-time every second, theclock-cycle: ! lb 1.0 s, ub 1.0 s;
watcher’s x-time will wait no more than one sec-

"The next time is the first component of a two- ond until it returns, if and when the watcher
tuple consisting of does a call to x-time."

the current time bumped by 1 read-time[null] = x-time[null];
and an offering of the current time to

"END DEFINITION"the watcher

Now the question is what is the computationali.e., the offering is done only for effect and its
model of the formal model of PAISLey.  That is,results are ignored in the clock’s progression to
how is concurrency modeled? The model is unusualits next state."
in that there are definitely sequences of states.  How-

clock-cycle[time] = ever, the state transitions are not the unit of inter-
proj[(1, leaving. Rather, a state transition is defined as an

(sum[(time,1)] ,
application of a function, which in turn may be de-offer-time[time])
fined in terms of other, possibly concurrent function)];
applications. The initiation and termination of func-

"offer-time either returns with the time it offered, tions applications that are the units of interleaving.
indicating that this offered time was not read or

A system in PAISLey is a set of processes, eachit returns null, the unique value of type FILLER,
running independently of and asynchronously withindicating that the offered time was read."
each other.  A process specification describes a se-

offer-time: TIME --> TIME | FILLER; quence of states.  Each process has an initial state
and each subsequent state is obtained from the previ-"offer-time is defined as a more mnemonic
ous by application of a mapping or function onname for a exchange function of type xr on the
states to states.  Each application of a process’s statechannel called time, i.e., for xr-time."
transition mapping is called a step or cycle of the

offer-time[time] = xr-time[time] process. Figure 9(a) shows a system with three
processes. In the absence of synchronization, each"It is important that the exchange function for
process’s cycles proceed independently and concur-offer-time not get hung up waiting if there is no
rently of each other.  Nothing can be said in theother process who has asked to read the time
formal model about the speeds of these cycles. Infrom the time channel; if the clock were to get
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the absence of synchronization, the cycles do not lower and upper bounds on the execution time, or
occur in any kind of lock-step with each other. both. The simulator will keep track of simulated
Thus, the figure shows the cycles taking varying time elapsed, using a random number generator to
amounts of time and states of processes not lined up select some time in the range if a range is given.
with each other in time.

The PAISLey processor and other tools are available
An event is either an initiation or a termination of a from the UNIX tool chest and is available free to
mapping application.  Thus there is an event at least educational institutions.
at the beginning and end of each step of any process.

Actual UseThere may be more events, because the definition of
a mapping may be in terms of other mappings or of PAISLey has been used in projects at AT&T as an
tuples of mappings. The initiation and termination executable specification language [Zave87c,
of each of these submappings is an event. Zave91]. These include the specification of the in-
Moreover, the individual mappings of a tuple of terface to a database in the Submarine Lightguide
mappings are evaluated concurrently.  Therefore, Project, the specification of the user interface to the
within each cycle of a process, there may be any PAISLey environment, and, in the FEARS (Finite
number of mapping evaluations going on concur- Element Adaptive Research Solver) project, the
rently, with their starting and termination events oc- specification of a distributed implementation of an
curring in any which order.  Figure 9(b) shows the application that had never been distributed before.
detail of two cycles of one process.  Each cycle has In all of these cases, it was found that “a little for-
an encompassing mapping application. Each of malization goes a long way” [Zave91] to help under-
these contains nested mapping applications, some stand difficult problems.  This understanding comes
disjoint and some overlapping with each other.  The from the mere exercise of trying to formalize the
events are marked with little filled boxes. system under design even if the formalization is left

incomplete.The events of all processes of a system are inter-
leaved. Thus the smallest observable grain of com- Other Similar Systems
puting are the initiation and the termination of a
function evaluation. Within each process’s cycle The specification language Gist [Feather87], devel-
there may be any number of possibly concurrent oped by Feather and others at ISI, is in a family with
function applications going on.  It is their startings PAISLey, although its formal definition is probably
and endings that are interleaved.  If two events are more carefully laid out.  In Gist, the meaning of a
supposed to occur at precisely the same time, concurrent program is a set of histories, each being a
whatever that means, one of them will be chosen sequence of transitions. A transition is a set of
arbitrarily to execute first.  Thus, in Figure 9(b), the deltas, and each delta is a function on a primitive
two events on the same vertical, time axis near the state variable to its next value.  By having a function
middle of the second cycle are arbitrarily inter- for each variable of the state, concurrency can be
leaved. represented to the granularity of the individual vari-

able update.  Gist is used to write specifications for
The author of this module asked Zave what is the components of distributed composite systems, from
model. She replied by electronic mail that “It is which correct implementations of the components
definitely operational, as there is an interpreter and of the system itself can be formally derived.
which nondeterministically selects the next event in
the computation. Petri nets and dataflow diagrams Another operational approach based on sequences of
both capture some aspects of the execution model.” events is that of TSL-1 (Task Sequencing

Language-1) [Luckham86] TSL-1 is language for
Tools specifying sequences of tasking events that occur

during the computation of a distributed Ada pro-As PAISLey is an executable specification language,
gram. The events of interest are task initiations andthere is an environment providing a specification
terminations and rendezvous initiation and termina-checker and a specification simulator.  The specifi-
tion.cation checker does all sorts of compile-time checks

including that all functions are called with argu- TSL-1 statements are annotations added to Ada pro-
ments of the correct type.  The simulator tool is gram that appear as comments to the Ada compiler,
quite spiffy with a variety instructions to allow user but when processed by the TSL compiler, cause gen-
to select more or less output, frequency of sampling, eration of calls to a run-time monitor which checks
etc. Also the output is always pure ascii to allow that the actual computation is consistent with the
other tools to be used to analyze the output in the annotations.
traditional UNIX pipe paradigm.

TSL-1 statements allow specification of the events
Performance information can be given for functions. that will occur during a program’s computation; it
One can specify a distribution of execution times,
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also allows specification of when two of these formational system, such as a batch formatter, is
events are connected, i.e, that one must follow the event driven and must be continually available to
other. For example, the acceptance of an entry call react to internal and external stimuli.  Examples in-
is connected to and must always follow the cor- clude avionics systems, communication networks,
responding entry call.  The ordering of all other pairs computer operating systems, process controllers,
of events must be left unspecified because in a dis- telephones, VLSI circuits, windowing systems,
tributed system, there is no clear notion of what hap- WYSIWYG formatters, etc.  The problem in design-
pens first.  Two events may appear in opposite or- ing such systems is to describe their behaviors
ders to different observers at two different sites in clearly and realistically.  The authors of
the system.  The specified events and connections STATEMATE have paid close attention to the prob-
imply a partial ordering of events.  The checking lems of visual formalisms in designing their notation
done by the run-time monitor is that the actual for the three views.  They were quite creative in
events in the monitored computation are consistent their notation for the behavioral descriptions.
with this partial ordering.

To give more detail about the three views:
Because TSL-1 is formally defined, it should also be

A structure chart for the SUD consists ofpossible to formally verify the consistency of the
specification with the program, and not have to rely • possibly nested modules, each being a rectangle,
on run-time monitoring. • information flows from modules to modules,

each being a possibly multitailed and a mul-8. STATEMATE
tiheaded arrow,

STATEMATE [Harel88a, Harel88b] is a graphics- The SUD is itself a module, and modules of the
based environment for describing reactive concur- environment external to it are drawn with dashed
rent systems.  The mode of use of it is similar to that lines. Inside the SUD module are both processing
of SARA, described above.  One is expected to use modules and data modules, with the latter being
the STATEMATE languages to carry out the design drawn with dashed lines.  A module may encap-
of a system starting from requirements. In sulate internal modules which are shown in another
STATEMATE, the system under design (SUD) is diagram in which the encapsulating module is regard
described with three different views, structural, as the SUD of that diagram.  In this manner, the
functional, and behavioral.  As with SARA, the idea structure is hierarchically decomposed into modules
is to obtain redundancy, as each aspect is described that have no internal substructure.  For an example,
from three different points of view and these see Figure 10.
descriptions are reconciled as part of the consistency

An activity chart is similar to a structure chart, ex-checks performed by the STATEMATE tools.
cept that the rectangles denote the activities or func-

The structural view decomposes the SUD into its tions carried out by the system, and the arrows
physical components, modules together with chan- denote flows.  A solid arrow denotes data flow and a
nels for the flow of information.  The functional dashed arrow denotes control flow. For an example,
view describes what each component can do, i.e., the see Figure 11.
function it can compute or the data it can carry.  The

The behavior charts are the most innovative.  Theybehavioral view describes the order in which the
may be thought of as extended state transitioncomponents are activated in order to carry out their
diagrams (extended finite-state machine) for whichfunction.
the traditional limitations of these diagrams have

Language been avoided.  State transition diagrams are inappro-
priate for describing behavior of complex reactiveFor each of these three view, STATEMATE pro-
systems because they are flat and unstructured andvides a graphical language together with an on-line
inherently sequential.  Moreover, they tend to suffergraphics-based editor that checks the validity of a
an explosive, exponential growth in the number ofdiagram as it is being built element by element.  The
states as the SUD is extended slightly.resulting diagrams, called module-charts, activity-

charts, and statecharts, respectively are all based on These problems are avoided by the ability to hierar-
a number of new graphical conventions invented by chically decompose states into AND- and OR-
the authors of STATEMATE to get around the size combined states plus a broadcast mechanism.  Once
problems that other graphic notations have run into states are hierarchically decomposed, it is necessary
and which prevent them from being used on large, to be able to have transitions enter and leave at any
real systems. level of the decomposition.  Figure 12(b) shows the

diagram resulting from OR-decomposition of FigureAs mentioned, STATEMATE was designed to allow
12(a). Either diagram shows that from state V thespecification of large and complex reactive systems.
computation goes either by transition e to state S orA reactive system, as opposed to a functional trans-
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by transition h to state T and then from either back Pnueli by electronic mail.  The basic idea is to con-
to V by transition f. Figure 12(b) has clustered states sider the atomic transitions, i.e., those that go from
S and T into a new state U such that to be in U atomic states, which have no components.  “At each
means being either in S or T. If it turns out that T is step in the execution of a statechart, there is a set of
specified as the default state of U, then the diagram events and conditions that come either from the en-
can be changed to that of Figure 12(c). vironment, or have been generated by the statechart

in the immediately previous step. These events and
Figure 13 shows AND-decomposition.  In Figure conditions enable a certain set of transitions, which
13(a), there is a cluster of ordered-pair states.  If are edges in the statechart graph that depart from a
these are clustered into a new state U consisting of a state that is currently active, and whose labels are
Cartesian product of smaller state transition statisfied by the events and conditions that are cur-
diagrams, the diagram can be simplified con- rently true.  The next step consists of a maximal
siderably into that shown in Figure 13(b).  Quite conflict-free set of enabled transitions, and all of
likely the meaning of the individual sub state transi- them are jointly taken in this step.  In case of non-
tion diagrams is clearer than that of the larger determinism, several such maximal conflict-free sets
diagram with ordered-pair states.  Recall your own may be available.” One of these is nondeterminis-
experience constructing the AND- and OR- tically selected and all of its transitions are take in
combined finite state machines when you learned this step.  “In interactive simulation, the user is
that the union and the disjunction of finite state lan- asked to choose one.  In non-interactive
guages were also finite state.  Figure 14 shows the (batch-)simulation, the system chooses one at ran-
use of broadcasting.  In this machine, each state is a dom. The taken transitions usually generate events
three-tuple. When the computation is in state and modify conditions, and these will be available in
(V,W,R) and event m occurs, then the next state is the construction of the next step.”
(X,Y,P) because the transition under m from R to P
broadcasts e, causing transitions from V to X and There is true concurrency in the formal model, as for
from W to Y. PAISLey. However, since the set of transitions se-

lected to fire in parallel are mutually non-
Concurrency is achieved through the AND decom- conflicting, the result can be no different that having
position using Cartesian product states.  Each sub gone through the same transitions in any order.
transition diagram can be considered the specifica- Thus, the model is equivalent to a fully atomic-step
tion of an independent process running concurrently interleaving model.  The obvious question is “Why
with the process that is specified by the other sub is there this unnecessary concurrency in the formal
transition diagrams.  Thus in Figure 13(b), one proc- model?” Perhaps, it is to justify the interpreter tool
ess is running the diagram in S and the other is run- using the same model, i.e., of doing many steps con-
ning the diagram in T. In figure 14, there are three currently. Certainly time estimates will be more ac-
processes, S, T, and Q. Synchronization is said to curate if the concurrency in the model is an accurate
occur at like named transitions in the sub transition reflection of the concurrency that can take place in
diagrams. Thus in Figure 13(b), the first process real life.
that gets to a transition e will have to wait until the
other gets there also in order that both can proceed. Actual Use

The ability to decompose states and to broadcast are STATEMATE is in use by several companies, in-
powerful tools for reducing the size of transition cluding Israel Aircraft Industries and SEI itself to
diagrams into manageable chunks, each part of help specify and design reactive systems. Leveson
which can be understood independently for its con- and others report on the use of STATEMATE to
tribution to the whole.  But what is the meaning of a build a system requirements specification for a real
computation when states have substructure.  If a aircraft collision avoidance system, a system involv-
state S consists of a subdiagram, then activation of S ing real-time concurrency [Leveson91].
means activation of the subdiagram.  Then suppose

ToolsS, at the level it appears atomic, is concurrent with
state T, then what is the relationship between the Among the STATEMATE tools are the following:
components of S with T? Moreover, in an interleav-

• a simulation package for executing the specifi-ing model, what is considered atomic is critical, for
cation of the SUD to allow observation of itsthat determines the grain of interleaving.  If in a
behaviornondeterministic selection S is selected to run before

T, then should the submachine of S finish entirely • report generators that, among other things, can
before initiating T or should the components of S be generate DoD required standard documentation
interleaved with T? • testing package for doing a number of dynamic

tests, such as reachability analysis and detectionThe module author raised this question with the au-
of deadlock and nondeterminatenessthors of STATEMATE and received an answer from
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symbols are uninterpreted in the CCS and CSP for-• an Ada code generator that produces an Ada pro-
malisms, but can be chosen to be mnemonic of atotype of the SUD according to simple rules
meaning to the human reader. For example, theabout how to implement the components of a
event start_timer can be understood as the event ofspecification
the timer starting up, even though to CCS and CSP,

9. Process Algebras it is no more than just another atomic event.

CCS (Calculus of Concurrent Systems) and CSP Thus, in addition to the logic, set, and function
(Communicating Sequential Processes) are for- operators are a collection of operators for working
malisms for specifying concurrent systems in terms with finite sequences such as concatenation, head,

thof sets of possible traces of observable events given tail, i element, etc.
rise to by the system. Thus the formalisms are oper-
ational. Furthermore, each specifies a system in The concept of observable event is critical and pro-
terms of its component processes that are independ- vides a powerful abstraction tool.  It is up to the
ent except for explicit communication between definer of a system to specify which of the possible
them. Each component is specified in terms of con- indivisible actions that occur during the execution of
straints on its possible traces of observable events. the system are considered observable. Events not
The system as a whole is understood as a composi- critical to the abstract description of the system can
tion of these traces according to various trace com- be ignored.  Among the operators of CCS and CSP
position operators. is restriction of a trace to symbols in a sub-alphabet

of symbols.
In both, each process is specified in a grammar-like
notation in which the nonterminals or variables are The specification of a sequential program is given as
regarded as process states and the terminals or con- a description of the set of all possible traces of ob-
stants are regarded as names of actions, events, or servable events of the program.  The specification of
transitions. A multiprocess system is specified by a concurrent program is given as the composition of
composing process definitions using a variety of specifications of its constituent sequential processes.
operators that model choice between processes and This composition effects an interleaving of the
concurrent execution of processes.  These operators events of the individual processes. For this inter-
form a process algebra leaving to be meaningful and to capture all possible

computation histories, it is essential that the events
CCS was developed as a formalism for describing be atomic.  Communication between two processes
multiprocess systems and for exploring the various is accomplished by having two processes execute
notions of equivalence of processes two separate halves of what is considered one event.
[Milner80,Milner89]. The original CSP was in fact a One half is the write and the other half is the read of
programming language [Hoare78] that later proved a datum on a channel.  Both processes have the same
to be the inspiration for the Occam language.  A event symbol in their traces.  The process that ar-
proof system for that version of CSP can be found in rives at its half of the event first must wait until the
a paper by Apt, Francez, and de Roever [Apt80]. other arrives at the other half; only then does the
The CSP formalism (as opposed to programming event happen, i.e., the reader reads what is written.
language), developed to explore specification of
processes, is described in a book of the same title Fundamental Semantics
[Hoare85]. These formalisms have been the inspira-

In both, one views a collection of process definitionstion for at least one standardized concurrent system
as specifying what is called a synchronization tree.specification language, LOTOS [ISO89] that is being
A synchronization tree, shown in Figure 15, is notused to specify Open Systems Interconnection
unlike the tree of possible computations of an(OSI). There is a more recent extension of CCS
NDISM illustrated in Figure 1.  There is more infor-called SCCS (Synchronous CCS) for specifying sets
mation embodied in the synchronization tree, but itof processes that operate in lock-step synchronized
is possible to derive from it the tree of possible com-concurrency [Cohen86].
putations of the NDISM implied by the synchroniza-

Language and Specification tion tree and its process definitions. To understand
CCS, CSP, and langauges derived from them it is

The languages of CCS and CSP are built on the useful to understand the NDISM implied by a set of
standard notation for mathematics, using theusual process definitions.
logical, set, and function operators.

Consider Figure 15 as a representation of a collec-
In both (although strictly speaking, CCS does not tion of process definitions.  Each node represents a
really define the trace), a trace is a finite sequence of global state of the defined processes perhaps ex-
symbols representing atomic, indivisible observable pressed as a tuple of the states of the individual
events in which a process or processes have partic- processes if it is desired to examine the composition
ipated in up to some instant of time.  The event of the states. Each arc represents a transition from
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one state to another via an action or event whose In the literature on CCS, CSP, and their linguistic
name is the label of the arc.  There is one arc label τ descendants, choosable choices are called
that is a place holder naming all hidden actions. A deterministic and nonchoosable choices are called
hidden action is an action involving portions of the nondeterministic. This choice of vocabulary to de-
state that are not intended, for the purposes of the scribe different choices within the specified system
definition, to be visible to the user of the system. is perhaps unfortunate because of the entirely differ-
All other labels are names of actions that the user of ent meaning of these terms at the level of the formal
the system is to be aware of. model of the specified system.  At the level of the

formal model, if the synchronization tree has any
One can take either an active or an inactive view of forks, the specified system is called nondeterminis-
a system.  In the active view, the viewer is a user is tic, and a deterministic system is one whose
operating the system and non-τ labels are names of synchronization tree has no forks, i.e., at any state
actions and that can be explicitly chosen or invoked there is at most one possible action out of the state.
by the user, while τ labels are place holders for inter- To avoid this confusion, this module continues to
nal actions over which the user has no control that use the terms “choosable” and “nonchoosable” for
cannot be invoked.  In the inactive view, the viewer expressing the degree of external control over
is merely watching the system compute.  Non-τ la- choices in a nondeterministic system, which has
bels name actions that are intended to be visible to choices.
the viewer, while τ labels are place holders for inter-
nal actions that are intended to be invisible to the Each synchronization tree denotes a set of possible
viewer. computations. In CCS and CSP a computation is a

sequence of states for which the actions between
The literature on CSP and CCS takes both points of them have non-τ labels. In other words, the ob-
view, unfortunately often in the same document. served computations consist only of the non-hidden
The mixture of viewpoints was confusing to the au- actions that are taken in traversing the synchroniza-
thor of this module, because the reasoning consistent tion tree from the root towards a leaf. Figure 16
with one point of view is not applicable to the other. shows the set of computations denoted by the
Moreover, the passive view of just observing evnts synchronization tree of Figure 15.  Some are infinite
happen puts the viewer in the awkward position of and some are finite. All start with the initial state
observing unobservable τ events. Therefore, this from which there was only one possible action, that
module takes solely an active point of view. labelled a. Observe that transitions labelled τ and

the node at their target are eliminated in building theAs with the tree of possible computations of an
computation sequences.  Thus a computation con-NDISM, a forking node of a synchronization tree
sists only of actions that are externally visible ordenotes a choice of different actions out of the state
invokable. In CSP, a computation sequence is calledrepresented by the node.  If the labels of all of the
a trace.arcs coming out of a node are distinct and none of

them is τ, then the node is said to be choosable. In On this basis, it is easy to see how to construct the
this circumstance each arc has a unique label by tree of possible computations of the NDISM implied
which it can be selected and non of them is invisible. by a synchronization tree.  Figure 17 shows the ex-
Otherwise, if at least two arcs are labelled the same traction of the tree of possible computations from
or there is at least one arc labelled τ, then the node is the synchronization tree of Figure 15.  The arcs of
said to be nonchoosable. The meaning of being the synchronization tree are dotted lines and the arcs
choosable is that in the active view, the external en- of the tree of possible computations are solid lines.
vironment can choose which action to take from a From each non-τ labelled synchronization tree arc is
state simply by invoking that action’s label.  If two obtained a tree-of-possible-computations arc that is
arcs are labelled the same, choosing that label does labelled identically. If the parent of a non-τ labelled
not uniquely identify a single arc; thus the choice synchronization tree arc a is labelled τ, then the cor-
must be made internally.  If at least one arc is responding arc a of the tree of possible computations
labelled τ, then the external environment looses the is extended upward to the parent of the arc labelled
ability to completely choose because the hidden τ. This process of extending arcs upward continues
events denoted by the τ labelled arcs might happen recursively until there are no arcs labelled τ. Figure
before the external environment can exercize a 18 shows the tree of possible computations without
choice by explicitly invoking a non-τ label. the distraction of the synchronization tree from

which it was derived.The idea of a node being choosable or nonchoosable
simply does not jibe with a passive view. It is The two formal systems, CCS and CSP, differ in the
simply impossible to passively observe whether or ways that forking nodes of synchronization trees can
not an active choice has been made when a choice is be specified.  Each has a slightly different set of
observed. The set of possible observable events is choice composition operators. In addition there are
no different when the choice is purposeful from slightly different operators for specifying concur-
when it is not!
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rency. The effect of these operators is on the repre- In CCS, all choices, choosable and not involve the
sentation of the states as a function of the compo- use of the + operator on processes.
nent process states and on the actions that are pos-

P+Q behaves either as P or as Q. As soon as thesible to take from these.
first action of one process is performed, the other

Notation process is discarded.

Choiceless Sequential Processes A choosable choice is one in which the labels of the
first actions of both are not τ and they are distinct;

The notations to describe the individual processes in otherwise the choice is nonchoosable.  Thus,
CCS and CSP are quite similar and will be described

a.P+b.Qtogether before continuing on the description of each
separately. is choosable, but

a.P+a.Q,The specification of a choiceless sequential process
a.P+τ.Q,has the flavor of a recursive, grammatical specifi-
τ.P+b.Q,cation of the finite state language of traces whose

andalphabet is the set of observable event names.
τ.P+τ.Q

For example, a specification of a vending machine,
are nonchoosable.VM, that repeatedly accepts one coin and in response

to the coin issues a chocolate is While τ events disappear when considering com-
putations, they cannot always be elided when con-VM=coin.choc.VM (CCS)
sidering process definitions.  Clearly,VM=(coin→(choc→VM)) (CSP)

a.τ.P = a.Pwhich is to be read “The VM accepts a coin and then
andissues a choc and then repeats itself”.

τ.τ.P = τ.P ,
The set of traces that these specifications generate is

but among
{<coin,choc>∞}

A = a.A+τ.b.A
i.e., the singleton set containing the unbounded se- and
quence of arbitrary repetitions of coin, choc. B = a.B+b.B

Figure 19 shows the infinite, linear synchronization A and B should be different. B may perform either a
tree generated by these.  Collapsing the synchroniza- or b in any state.  However, A may reach a state via τ
tion by cycling at the first recurrence point yields the in which b is possible but a is impossible because
state transition diagram of Figure 20. the other option has been discarded, and there is no

way for the environment to control whether or not A
In general, if P is a process and a is in the alphabet gets to this state.  Now in a concurrent combination
of P, then of processes, the environment may offer only an in-

a.P (CCS) vocation of a, and A is deadlocked.  If the the envi-
(a→P) (CSP) ronment offers only an invocation of a tp b, there is

no deadlock.  Figure 21 shows the state transitiondescribes a process that does action a and then does
diagrams for A and Bthe actions of P.
In CSP, there is no explicit τ action. Therefore, theWith the common parts of the two notations de-
distinction between choosable and nonchoosablescribed, consideration turns to the choice and con-
choices must be made explicit in the operator.currency composition operators which differ in the

two languages. (a→P | b→Q), where a≠b, describes a process which
initially does one of a or b. If the chosen action is a,Choices
then after that it behaves as P. If the chosen action
is b, then after that it behaves as Q.Both notations have ways to express both choosable

and nonchoosable choices.  Even within a kind of
The “|” operator is not a process operator evenchoice, the notations differ in subtle ways.  In the
though its operands are processes. So, in CSP, onefollowing discussions, unless otherwise explicitly
cannot say “P | Q”. Its operands must be of the formstated, P, Q, R, and S are processes and a, b, c, and d
“action→process” so that there is always an explicitare actions, which are assumed to be in the common
way to choose the desired choice, by selecting itsalphabets of the processes involved.  In cases in
first action.  Indeed, the “|” itself is not really thewhich what happens when an action is not in the
operator; “( ⋅ ⋅ ⋅ → ⋅ ⋅ ⋅ | ⋅ ⋅ ⋅ → ⋅ ⋅ ⋅ )” is the operatorinvolved processes’ alphabets, the alphabets are de-
taking for operands of types action, process, action,scribed explicitly.
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and process, in that order.  The expression a carmel for each coin, but the customer cannot
(a→P | b→Q) is considered as a whole much the predict which, would be specified as
same way that there are no “if”, “then”, and “else”

VM=(coin→(operators, and a conditional expression is considered
(choc→VM) as a whole. Multiway choices are written as flat
(caramel→VM))) .expressions using one pair of parentheses and more

than one “|”. Thus, (a→P | b→Q | c→R) is correct In CCS, the former would be specified as
and (a→P | (b→Q | c→R)) is not.  Note also the re-

VM =quirement that the initial actions of each operand of
((dime.choc.VM) +“( ⋅ ⋅ ⋅ → ⋅ ⋅ ⋅ | ⋅ ⋅ ⋅ → ⋅ ⋅ ⋅ )” be distinct is syntactic.
(nickel.caramel.VM)) ,It is syntactically incorrect to write (a→P | a→Q)

and the latter would be specified as
Indeed, these syntactic constraints are what distin-

VM=(coin.(guish CSP’s
(choc.VM) +

(a→P | b→Q) (caramel.VM))) .
from CCS’s Figure 22 shows the state transition diagrams of the

two newer vending machines.a.P + b.Q

purposely written without parentheses, which means Concurrency
almost the same thing.  The CCS “+” is an operator

In both CCS and CSP, concurrency is introduced bythat can be applied to processes; so P + Q is
operators that cause the individual actions of the ar-legitimate. Also it is legitimate and meaningful to
gument processes to be interleaved in some way par-write a.P + a.Q. The result is a nonchoosable
ticular to the operator. For some of the operators,choice; the fact that the first actions of both
there is the possibility of synchronization occurring,operands are the same prevents the user from ex-
that is, of two processes engaging in simultaneousercizing a choice that chooses between a.P and a.Q.
complementing actions. These complementing ac-

A nonchoosable choice is expressed in CSP with an tions are considered a communication (the “S”es in
operator on processes. “CCS” and “CSP”!)

P  Q is a process which behaves either as P or as In CCS, there is one concurrency operators on proc-
Q. The choice is made arbitrarily without knowl- esses of like alphabet, the “|” operator. Before it can
edge or control of the environment. be defined, it is necessary to define complementing

action labels.  Two action labels are complementing
The other way to obtain a choosable choice in CSP if they have the same spelling but one has a over bar
is with a genuine operator on processes. −and the other does not.  For example a and a are

complementing labels.P [] Q is a process which behaves either as P or as Q.
The environment can control which of P or Q is

P|Q is that process whose actions are the interleavedselected provided that the control is exercized on the
actions of P and Q. In each state, any action fromvery first action.
either process is nondeterministically chosen to the
be the next action of P|Q. The component processIt is clear that if a≠b,
whose action is selected is taken to the state that

(a→P) [] (b→Q) = (a→P | b→Q) , follows the selected actions.  If, in both processes
the next possible actions are complementing, thenbut
one possible next action is the τ action which takes

(a→P) [] (a→Q) = (a→P)  (a→Q) , each component process into the state that follows
its one of the complementing actions.which in turn equals

a→(P  Q) . If complementing actions are possible, it is possible
for the composed process to select one of the com-

With the choice operators it is possible to define plementing actions to take as an individual action.
more realistic vending machines.  In CSP, a vending
machine that issues a chocolate for a dime and Given process definitions,
caramel for a nickel would be specified as A = a.A′

−VM = A′ = c .A
((dime→(choc→VM))| and
(nickel→(caramel→VM)))) . B = c.B′

−B′ = b.B .A vending machine that issues either a chocolate or

That is,
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− via the event or input or output. If the next actionsA = a.c .A
of P and Q are not complementing, i.e., they differand
or are not over the same channel, then the processes−B = c.b.B . deadlock.

A|B is definable as (a→P)||(a→Q) = a→(P||Q)
<A|B> = a.<A′|B> (c!v→P)||(c?x→Q(x)) = c!v→(P||Q(v))
<A|B> = c.<A|B′>

In the latter, the combined event is considered the<A′|B> = c.<A′|B′>
output to the external environment.−<A′|B> = c .<A|B>

−<A′|B> = τ.<A|B′> (here, τ = cc ) If a≠b and c≠d, then
−<A|B′> = b.<A|B> (a→P)||(b→Q) =<A|B′> = a.<A′|B′> (a→P)||(c!v→Q) =−<A′|B′> = b.<A′|B> (a→P)||(c?x→Q(x)) =−<A′|B′> = c .<A|B′> , (c!v→P)||(d?x→Q(x)) = STOP

where <P|Q> denotes the state of process A|B built Thus, for two processes with identical alphabets to
from state P of process A and state Q of process B. compose in parallel without deadlock, they must go
Figure 23 shows the state transition diagrams of A, through sequences of identical actions or input and
B, and A|B. output over identical channels.

In CSP, there are a variety of operators affecting a If however, the alphabets of the processes P and Q
concurrent composition of processes.  Only the two are different, then events that happen to be in both of
main ones are discussed here.  The distinction be- their alphabets require simultaneous participation of
tween the operators is in their treatment of potential both processes.  However, an event that is in the
interaction. Recall that in CCS, an interaction might alphabet of one and not the other is ignored by the
occur when two processes are composed and they other and is done at the one’s leisure. The result is
have complementing actions.  If the interaction oc- that the alphabet of P||Q is the union of the alphabets
curs, the two complementing actions occur and can- of P and Q.
cel each other to yield a single τ action that is invis-
ible to the observer.  Then again, the interaction Suppose that
might not occur and each complementing action is a is in the alphabet of P but not in that of Q.
left to occur on its own, possibly to interact with b is in the alphabet of Q but not in that of P.
another, external complementing action. c and d are in both alphabets, and c≠d.
In CSP, the complementing actions are either like- Clearly a≠b. Then only P can do a, only Q can do b,
named events or an input and an output on the same but P and Q must do c or d simultaneously for P||Q
channel. Thus action a on one process complements to avoid deadlock.  More formally,
action a on another process.  An output of a value v
on channel c is written (c→P)||(c→Q) = c→(P||Q)

(c→P)||(d→Q) = STOPc!v .
(a→P)||(c→Q) = a→(P||(c→Q))

This output is complemented by an input to a vari- (c→P)||(b→Q) = b→((c→P)||Q)
able x from the same channel c, which is written (a→P)||(b→Q) = a→(P||(b→Q))|

b→((a→P)||Q) .c?x .

Actions in the common alphabet of P and Q requireIf and when the input-output interaction occurs over
simultaneous participation of both processes, whilechannel c, the result is that the value v is assigned to
all remaining actions occur in arbitrary interleaving.the variable x of the reading process’s context.
To see this, consider the processes P and Q defined

The simplest concurrent composition operator is the
P = a→b→c→Pparallel composition operator “||”.
Q = d→c→Q .

If P and Q have the same alphabet, then P||Q
The traces of P and Q are shown in Figure 24.  Alsodenotes the process with that same alphabet which
in that figure is a representation of all possible tracesbehaves as the system composed of P and Q inter-
of P||Q. Events that lie in a chain of arcs must beacting in lock-step synchronization.
ordered as in the chain, but events that lie on op-
posite paths of parallel chain of arcs are not orderedThat is, in each step of P||Q, if the next actions of P
with respect to each other.  The merging of the eventand Q are complementing, then the common event
arcs for c is supposed to indicate a requirement ofor the input and output over the common channel
simultaneous occurrence.  Thus, one possible tracehappens and each process is taken to its next state
is a;d;b;c;d;a;b;c; . . .  .

SEI-CM-27-1.0 39



Formal Specification and Verification of Concurrent Programs

Note that if P’s and Q’s alphabets have no actions in If a = b then effectively, the “|||” becomes “”, i.e.,
common, then P and Q are completely independent, the choice becomes nonchoosable.  In general the
and the traces of P||Q consists of arbitrary interleav- choice is choosable in that if a and b are different,
ings of the individual actions of P and Q. Each such choosing the first action determines which operand
trace is indistinguishable in net effect from even a is executed.  This point is illustrated best when a
sequential composition. process is interleaved with another copy of itself.

Let R = (a→b→R). We would expect that R|||R be
Parallel composition interacts with choices in an in- an arbitrary interleaving of a and b events such that
teresting way.  Each operand process is considered the difference in the numbers of as and bs does not
to be in the other’s external environment.  Thus, in grow without bound.
any step, when one or both processes offer choos-

R|||R =able choices of initial events, only the complement-
a→((b→R)|||R)ing events, if any, are possible.  Each process is, in

[# a → (R ||| (b → R))] .effect, choosing the other’s choosable choices and is
choosing the right one to continue the computation. Since the first actions are the same for each choice,
Thus, if this
P = (a→b→P|b→P) = a→(((b→R)|||R) (R|||(b→R)))
Q = (a→(b→Q|c→Q)) which

= a→((b→R)|||R) .then,

However,P||Q = a→(b→P||(b→Q|c→Q)) = a→(b→(P||Q))

(b→R)|||R = (a→((b→R)|||(b→R))) [] (b→(R|||R))In the first step, Q’s first action chooses the a choice
whichof P, and in the second step, the b→P chooses the b

= (a→(b→((b→R)|||R))) []choice of (b→Q|c→Q). However, letting P||Q be X,
(b→(a→((b→R)|||R))) .

X = a→(b→X)
Letting (b→R)|||R be X, we have that

Note however, if any choice is nonchoosable, the
X = (a→b→X) [] (b→a→X) , andpossibility exists that the internal action chooses a

first action not complementing the only or chosen letting R|||R be Y, we have that
action of the choosable choices, yielding a deadlock.

Y = (a→b→Y) [] (b→a→X) .As mentioned, the traces generated from P  Q and
P [] Q cannot distinguish them.  However it is pos- CSP has a number of other operators for combining
sible to put them in a parallel combination with processes in concurrent and non-concurrent be-
other processes so that P  Q can deadlock, but havior. These include operators for
P [] Q cannot. Let P = (a→P) and Q = (b→Q) where

• piping the output of the first concurrent processa≠b. For (P  Q) || P, at every state, the lone P offers
to the input of the second,a; therefore P  Q is forced to choose the P alter-

native because its first action is a. However, if • subordinating the second process to the first,
P  Q is put into a concurrent combination with P, at • executing the two processes sequentially,
every state the lone P offers a; however, the P  Q

• interrupting the first process with the second, andmay choose internally to select the Q alternative,
• alternating between the two processes step-by-whose first action requires b to proceed.  There is no

step.b coming from the other process, so the combination
deadlocks.

Observe that CCS’s concurrency operator, “|”, is dif-
ferent from both of CSP’s concurrency operators,The other main concurrency operator is the inter-
“||” and “|||”.  The “|” allows both synchronizationleave operator “|||” defined for processes with iden-
and interleaving, and which one it does at any timetical alphabets.  This operator gets the two processes
is nondeterministic.  In CCS,to execute concurrently with out direct interaction or

synchronization.
(a.P)|(b.Q) = a.(P|(b.Q))+b.((a.P)|Q)
(a.P)|(a.Q) = a.(P|(a.Q))+a.((a.P)|Q)An action of P|||Q is an action of P or of Q; if both

− − −(a.P)|(a.Q) = τ.(P|Q)+a.(P|(a.Q))+a.((a.P)|Q) .processes are able to execute the same action, then
only one is chosen nondeterministically to do that This is different from in CSP in which applying a
action, leaving it still to be done by the other. synchronization is not optional.  In CSP,

synchronization is obligatory with “|”, and if it can-Thus,
not occur, then deadlock happens.  Thus,

(a→P)|||(b→Q) =
(a→P)||(b→Q) is a deadlocka→(P|||(b→Q)) [] b→((a→P)|||Q) .
while
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CCS does not need a concealment operator because(a→P)||(a→Q) = a→(P||Q) .
it is implicit in the cancelation of complementing

On the other hand, in CSP interleaving is obligatory events. CSP does not need a prevention operator
with “|||”.  Thus, because it can be forced by using its obligatory

synchronization operator together with processes(a→P)|||(b→Q) =
whose first actions are disjoint.a→(P|||(b→Q))

[] b→((a→P)|||Q) .
Example Specification in CSP

The CCS concurrency operator is a catch-all, captur-
The system consisting of the PRODUCER anding all modes of concurrency, while CSP gives a
CONSUMER running concurrently isseparate operator to each kind of concurrency.

Similarly, CCS choice operator captures all kinds of SYSTEM=PRODUCER||CONSUMER .
choice, while CSP gives a separate operator for each

The definition of PRODUCER would be somethingkind of choice.
like

Prevention and Concealment of Actions PRODUCER=
(produce_value→CCS has an operator “\” on processes and sets of

(c!value→PRODUCER)) ,actions whose effect is to prevent the process from
doing any action in the set. and the definition of CONSUMER would be some-

thing like
P\A where A is a set of actions is that process ob-

CONSUMER=tained from P by preventing P from doing any ac-
(c?var→(consume_contents_of_vartion in A.

→CONSUMER)) .
Thus,

Verification
(a.P)\{a} = NIL

Hoare’s book on CSP, besides being a text book,is a deadlock because its only possible first step is
treats CSP as a formal system and gives algebraicprevented. The “\” operator can be used to cause a
laws that can be used to show that two specificationsCCS parallel composition to behave like a CSP
are equivalent and to prove other properties such asparallel composition.  Recall that
avoidance of deadlock.  Indeed as an example of the

− − − power of the system, the book devotes considerable(a.P)|(a.Q) = τ.(P|Q)+a.(P|(a.Q))+a.((a.P)|Q) .
space to specification of a solution to the dining

−Preventing the individual a and a actions forces their philosophers problem and verification of properties
cancellation into the hidden τ event. of this solution.

− Actual Use((a.P)|(a.Q))\{a} = τ.(P|Q) ,

thus simulating the effect of CSP’s ((a→P)||(a→Q)). CSP has been used to specify a variety of systems.
For example, Woodcock has used CSP to specify

CSP has an operator “\” on processes and sets of and prove properties of several different primitives
actions whose effect is to hide as internal actions the for transaction processing [Woodcock87].
actions of the process that are in the set.

The module author has even seen students use it
P\A where A is a set of actions is that process ob- informally during the course of an informal discus-
tained from P by making all actions in A hidden, sion of how a certain system works.  This fact tes-
internal actions. tifies to the naturalness of the notation and the ease

with which it is used.  Probably its greatest strengthThus,
is the uninterpreted alphabet that allows events to be

(a→P)\{a} = P\{a} . considered at any level of detail.

Concealment of events can turn a choosable choice Also in a recent study at SEI comparing several
into a nonchoosable choice by hiding the actions by methods, CSP, VDM, and denotational semantics
which the choice would be chosen. [Place90], to specify concurrent software, CSP was

taken as the first one in which to write the specifi-(a→P)|(b→Q)\{a,b} = P\{a,b} Q\{a,b}
cation. While the authors of the report professed to

CSP’s “\” operator can be used to achieve CCS’s being fair, it seems clear in retrospect that CSP was
hiding of cancelling events as τ actions. Suppose chosen to be first because working with it involves
C = {c!v|v∈alphabet of channel c}. Then, less notational baggage than other methods; one can

write strictly the relevant events.((c!v→P)||(c?x→Q(x)))\C = (P||Q(v))\C .
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Tools Synchronization or communication happens when
the involved processes do complementing actions in

At least two tools for writing and verifying CSP the same step.  It is possible for more than two proc-
specifications have been developed. Both use the esses to be involved in a synchronization or commu-
trace model of CSP-specified computations as the nication, because all processes are executing in all
basis for the formalization embodied in the tool. In steps.
one case, Moore has shown how to carry out mul-
tilevel decompositions of requirements not unlike In order to permit processes to act at different, vary-
those done for the FDM and the HDM (See Sections ing, and unspecified speeds, the definer of a process
VI.2 and VI.4.) [Moore90]. He uses the EHDM (See can introduce choices of τ actions at any point to
Section VI.4 on HDM) verification system to verify allow the other processes to proceed faster with
proofs of the correctness of the decomposition, so non-τ actions. Of course, it is possible to split
that properties ascribed to the highest level can be lengthy actions into sequences of shorter subactions;
inferred of the lowest level.  Camilleri has the length of the sequence for each split action
mechanized the CSP trace model with in Higher Or- would be made proportional to an estimated time for
der Logic (HOL) so that the HOL verifyer can be the action.  Care should be taken in decomposing
used to prove properties of a CSP specification actions, for it is intended in SCCS that process ac-
[Camilleri90]. tions be atomic and non-interruptable.

The Concurrency Workbench is an automated tool Milner was able to derive CCS from SCCS.  Basi-
for analyzing networks of finite-state processes cally, given an SCCS definition, allow each process
specified in CCS [Cleaveland89]. to nondeterministically choose a τ action at each

steop. Then, in any computation, in each step, have
Differences Between CCS and CSP all processes but the one that CCS would choose

execute τ actions. The result is a CCS interleavedThe two languages CCS and CSP clearly have a lot
computation. Moreover, SCCS can express commu-of semantics in common, and their operators are tan-
nications involving more than two processes; doingtalizingly similar, but fundamentally different.  Cor-
so is impossible in CCS.  Therefore, SCCS is strictlyrespondences are shown in Table 1. As can be seen,
more general than CCS.except for the exact correspondence between CCS’s

“.” and CSP’s “→”, no CCS operator corresponds to LOTOS
exactly one CSP operator and vice versa.

LOTOS (Language Of Temporal Ordering
It seems in retrospect, that CCS is a minimal lan- Specification) [ISO89,Bolognesi87] is a language de-
guage providing no concept in more than one oper- veloped under the auspices of ISO (International
ator and even lumping several concepts into one op- Standards Organization) to allow formal specifica-
erator. CSP provides more specialized operators tion of OSI (Open Systems Interconnection) com-
each providing only one concept and, in some cases, puter network architectures and of open, distributed
more than one way to achieve a single concept. For systems in general.  LOTOS is based on process
this reason, CSP is probably more useable in writing algebras and has nothing to do with temporal logic,
specifications of concurrent systems. Indeed, one its name notwithstanding.  Officially, LOTOS is
system specification language, LOTOS, which is based on CCS, but after reading any description of
claimed to be derived from CCS first and CSP sec- LOTOS, it will be clear that CSP has had greater
ond, appears to be more a descendent of CSP than syntactic and semantic influence.
otherwise.

Besides the basic process algebra to be described
Synchronous CCS below, LOTOS also has features for describing data

structures, value expressions, and their types via in-SCCS (Synchronous CCS), also devised by Milner
itial algebraic specifications of abstract data types.[Cohen86], is an extension of CCS in which a sys-

tem is viewed as a collection of processes, all run- In LOTOS, as in CCS and CSP, a distributed con-
ning in parallel rather than being interleaved in a current system is viewed as a process. A process
nondeterministic fashion.  That is, at each step, each may itself be composed of processes, called
process is put through one of its next actions, there sub-processes to form a hierarchy of process defini-
being the possibility of choice of next action for a tions.
process. Each process is specified to have sequen-
tial behavior with choosable or non-choosable A process performs a sequence of atomic actions,
choices at any step just as in CCS.  The parallel some of which are internal and unobservable and
composition operator gets the individual processes others of which interact with other processors form-
working together in lock-step synchrony. Thus in ing the external environment of the process
SCCS, a system’s state is a tuple of individual proc-

ℵess states, and each process is specified by equations
much as in CCS.
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Process synchronization is achieved by having sev- within an enclosing box is hidden by the process of
eral processes execute the same event during the that box.  A channel that sticks out from a box is
same state transition.  A synchronization may in- connected to an externally visible gate.
volve exchange of data among the processes partici-

Concurrency Operatorspating in the event.  Notationally and semantically,
these synchronization events are as in CSP. They In the Max3 definition is an example of the most
are via like-named events in several processes or via general concurrency operator in LOTOS.
a channel that all processes have access to, with one
process doing output and the rest doing input on that Given processes P and Q and a set of gates S, P|S|Q
channel. is able to perform any action at a gate not in S or any

action that both P and Q are ready to perform at any
The specification of a process looks like that of a gate in S.
procedure in a programming language.  A process
has a name and parameters called gates.  These gates Note that if, say, P is ready to execute an action at
are the ports by which the communication channels an S gate and Q is not ready to execute an action at
connect to the process. The connection of at least the same gate, then P must wait until Q is ready.
processes with like-named gates forms a channel

Another of the concurrency operators in LOTOS iswith that same name.  In the body of the process is
the “|||” operator, which carries exactly the meaningan expression describing its composition in terms of
of |S| with an empty S. Since there is no possibilityother sub-processes and events.  As an example,
of synchronization, the “|||” operator effectivelyconsider
amounts to specifying interleaved execution, exactly

process Max3[in1,in2,in3,out] ⋅= as in CSP.
hide mid in
(Max2[in1,in2,mid] The third concurrency operator in LOTOS is the “||”
|[mid]| operator which is equivalent to |S| with S being the
Max2[mid,in3,out]) set of all gates in the system. Thus, the two com-
where ... posed processes are forced to proceed in complete

endproc . synchrony except for internal events, just as in CSP.

It is assumed that Max2 is a process which outputs It is interesting that LOTOS defines as its basic
on its third gate the maximum of the values input on parallelism operator something which reduces, as
its first two gates. Max3 is intended to be a process special cases, to the two main concurrency operators
that outputs on its fourth gate out, the maximum of of CSP.
the values input on its first three gates in1, in2, in3.

There are other operators that are not discussed hereThe expression
in the interest of conserving space.(Max2[in1,in2,mid]

|[mid]| LOTOS has been used to specify a variety of distri-
Max2[mid,in3,out]) buted systems. Moreover there exists automated

support for the language, specifically tools toindicates that two instantiations of Max2 are to be
composed with the output of the first, mid, being the • write specifications,
first input of the second, via a channel called mid. • validate and verify specifications, and
The notation

• compile specifications to C and Ada.
|[mid]|

RAISE
is an operator specifying concurrent, i.e., inter-
leaved, execution of its two process arguments, RAISE (Rigorous Approach to Industrial Software
synchronizing via the channel mid connection gates Engineering) [Nielsen89] is an attempt to address the
named mid in the two processes. Note that the two problems that prevent the Vienna Development
inputs to the first Max2 are the first two inputs to Method (VDM) from being used in large-scale in-
Max3, the second input to the second Max2 is the dustrial software developments of modern concur-
third input to Max3, and the output of the second rent and distributed systems.
Max2 is the output of Max3. The process definition 1. VDM is completely manual.
specifies that mid is hidden from the external envi-

2. The VDM specfication language lacks a satis-ronment of Max3.
factory way to specify concurrency. (This fact
kept it from being considered in this module.)Associated with this process definition is a diagram

that shows the physical composition of the process. 3. The VDM specification language lacks a way
For Max3 the digram in shown in Figure 25. A to build abstractions and a way to modularize
process is a box, a channel is a line, a gate is where a specifications into managemable, separable
channel meets a process.  A channel that is entirely pieces.
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4. The VDM specification language lacks an ade- ments. It is formally defined, has the type time con-
quate mathematical semantics. sisting of numeric values, has the notions of now,

future, and past, but lacks features that would make
The RAISE language, methods, and tools are aimed it feasible to use for specifying real-life systems.  In
at solving these problems by offering particular, it has no modularity and no hierarchical

1. a formally defined, denotational semantics- structuring, and its realtime machine-level formal
based specification language with modulariza- language makes reading specifications extremely
tion and abstraction building features, difficult for any but the writer of the specifications.

However, its formal definition makes it a good basis2. a rigorous method for specifying, validating,
for a specification and verification environment.implmenting, and verifying the correctness of

systems, not unlike the methods assumed by Add to RT-ASLAN features for modeling inter-
FDM (See Section VI.2) and HDM (See Sec- process communication and specify the resulting
tion VI.4), and language by showing how to translate any of its

3. a collection of tools for editing, printing, specifications into TRIO, and you have ASTRAL.
checking, and verifying properties of specifi- From RT-ASLAN, ASTRAL gets the modularity
cations written in the specifcation language. and specification structuring that TRIO lacks, and

from TRIO, ASTRAL gets the formal basis it needs
The RAISE specification language (RSL) is a wide- for a proof system and specification execution.
spectrum language in which the main part dealing
with data structures and the nonconcurrent part of The formal model for ASTRAL is a state-machine
alogorithms follows the denotational frame and model like Ina Jo’s and ASLAN’s. It assumes max-
strongly resembles the VDM specification language. imal parallelism with noninterruptable and nonover-
The part of the RSL that deals with concurrency is lapping transitions in a single process instance.  That
based on CSP (hence the fact that this discussion is is, the model behaves as though each process were
in this section). given its own physical processor and that physical

resources, e.g., memory, available to it are un-10. ASTRAL limited. A processor is never idle when it has a
transition available to execute, and if no other transi-ASTRAL [Ghezzi91], developed by Kemmerer and
tion is pending, a transition is executed as soon as itsGhezzi, is an executable specification language for
precondition is satisfied.  All variable updates of adescribing real-time systems.  Its geneology is in-
transition are treated as taking place in a singlestructive. Kemmerer et al at the University of Cali-
atomic action occurring at the end of the transition.fornia at Santa Barbara developed ASLAN

[Auernheimer85] based on Ina Jo in order to provide
The reason for adopting this model is that it allowsan executable specification language for roughly the
the processes to be designed under the assumption ofsame class of systems specifiable in Ina Jo.
total independence except for explicitly specified
communications. Such designs tend to be cleanerLanguage
than those that deal also with scheduling.  After the

RT-ASLAN [Auernheimer86] is an extension of AS- design is validated, scheduling can be specified
LAN for specifying real-time systems; it was devel- separately to insist that timing requirements be met
oped by adding timing constraints (in the vernacular in the face of the reality of limited resources.
sense of the word) to the transforms and constraints

Specification and Verification(in the formal sense of the word) of ASLAN.  A
timing expression in a transition specification speci-

In ASTRAL, a real-time system is specified byfies the time required to execute the transition, i.e.,
giving a collection of state-machine specifications,the time limit to which the transform adheres, while
one for each type of process, and a single globalthat in a constraint specification specifies general
specification, for the environment in which the proc-time limits to which all transforms are required to
ess instances sit.  Each state machine specificationadhere. It must be verified that the time limits of the
is, in fact, the definition of a process type in the Adaconstraint are implied by those of the transforms.
sense, and there may be multiple instantiations ofOne of the strengths of ASLAN and RT-ASLAN is
this type in the system as a whole.  The assumptionthe ability to structure specifications into smaller
mentioned above that the transitions of the processespieces. They allow layering and composition of
are nonoverlapping allows properties proved aboutspecifications, and the formalism allows reasoning
independent processes to be composed intoabout the pieces to be composed into reasoning
properties proved about the whole system.about the whole specification.

The state variables and transitions defined in a proc-TRIO [Ghezzi90] is a first-order logic language de-
ess type specification may be accessed without re-veloped at Politecnico di Milano as a formal nota-
striction by any instance of that type. Normallytion for specifying and verifying timing require-
these variables and transitions are not accessible
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from outside any containing process.  However, invariant, constraint, and schedule assertions. An
variables and transitions may be marked as exported, invariant must be true in every state of its containing
in which case they are accessible from outside.  It specification, a constraint must be true of any transi-
appears from the literature about ASTRAL that from tion in its containing specification, and a schedule
outside the defining process, a variable is read-only. assertion describes the timing of the initiation and
Changes to such variables are achieved by invoking termination of the transitions in its containing speci-
exported transitions that do the changes internally. fications. Only a nonglobal, process specification
All interprocess communication is via these ex- may have transition specifications, each describing
plicitly exported variables and transitions. This one state transition of a process of the type specified
scheme is classic information hiding of process type by the specification containing the transition specifi-
definitions. cation. Each transition specification has at least one

pair of entry and exit assertions specifying the state
Among the exported variables of any process speci- condition that must be true upon a normal invoca-
fication are variables for inquiring the start and en- tion of the transition and what is true upon comple-
ding time for the kth last invocation of any other tion of such an invocation.  A transition specifica-
operation with or without specific parameter values tion may also have any number of exception and exit
in some or all parameter positions.  These allow assertion pairs. Each specifies the state conditions
writing of timing expressions that depend on values for a so-called exceptional invocation of the transi-
of variables and on the history of the computation so tion together with the handling response to that ex-
far. ceptional condition.

Whereas RT-ASLAN used interface specifications Finally, only a process specification may have an
for interprocess communication, ASTRAL uses a initial assertion describing the possible initial states
multicast communication model, not unlike the of any process of the type specified by the contain-
model implemented by an Ethernet or similar net- ing specification.
work in which each packet is made available to all
nodes and a node picks up only packets addressed to The inovation in ASTRAL is its ability to describe
it. In the formal model, a message is sent to all time in its assertions.  The basic time primitives are
processes and only the target process actually gets it. the notion of time as a numeric value over which
Formally, at the beginning of a transition, the ex- arithmetic and ordering operators can be applied
ecuting process broadcasts the start time.  At the end plus some specific time valued constants and func-
of the transition, the executing process broadcasts tions such as now, Start(t, and End(t) where t
both the finish time and the final values of all ex- denotes an invocation of a transition.  Assertions
ported variables for receipt by all processes that about time can appear in any of the kinds of asser-
have imported them. tions described above.  An example of a transition

specification that has timing assertions is:
The broadcast itself is regarded as taking place in-

TRANSITION Notify_Deathstantly. This way, the multicast can be used to
ENTRYmodel shared memory access as well as communi-

Now - Start(New_Info) ≥cation via a point-to-point channel.  In the latter
Timeoutcase, the real communications delay must be ex-

& ~Channel_Closedplicitly specified for an appropriate amount of time. EXIT
Moreover, the combined effect of universal broad- Msg[Data_Part] = Closed
cast of the start and finish times of transition execu- & Msg[ID_Part] = Self
tions and instantaneous broadcast is that timing & Channel_Closed
assertions in all specifications can make use of full

This specifies that the transition Notify_Deathinformation about the time of events without there
may be invoked only if it has been more thanbeing any delay to obtain the timing information;
Timeout units of time since the start of an invoca-that is there is no Heisenberg effect built into the
tion of the New_Info transition and the channel isformal model.
not already closed.

An ASTRAL system specification consists of a
A conjunction such as End(This) -global specification together with a set of individual
Start(This) ≤ 5 * n says that the time be-specifications for the process types mentioned as
tween the start and end of the current invocation ofused in the global specification.  Both kinds of spec-
This transition no greater than five times n units ofifications have type, constant, and variable declara-
time, where n might be a parameter of the currenttions. The variables of any specification make up
transition or a constant, variable, or a function builtthe state of whatever is described in the specifica-
from all of them.  If this conjunct appears in an exittion. As with Ina Jo and ASLAN, a constant or
assertion of a transition specification, then the cor-variable may be a function on values or values and
responding normal or exceptional invocation isvariables. Both kinds of specifications may have
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guaranteed to finish by the specified time.  This kind environments, at least AFFIRM and HDM have under-
of a conjunct in a schedule assertion in a process or gone enhancement to yield more powerful specification
global specification would be subject to proof for the languages and verification environments.  AFFIRM has
process or globally given what is guaranteed or been upgraded to AFFIRM-85 [Musser85a,
proved for the contained transitions or processes. Musser85b]. AFFIRM-85 has more facilities for struc-

turing specifications hierarchically, and its environ-
Verification ment has a library of reuseable proofs.

Verification of an ASTRAL specification follows The language of Enhanced HDM [Rushby91a] is
the same general framework as in Ina Jo.  The speci- Revised SPECIAL [Levitt85]. It has a number of im-
fication is compiled into conjectures written in the provements over SPECIAL, including parameterizable
TRIO language.  These conjectures assert the fol- modules, the use of second order predicate calculus,
lowing: and the treatment of program operations as data ob-

1. In each process specification, jects. A more powerful logic is needed to support these
enhancements [Shostak82]. More recently, EHDM has• the invariant is implied by the initial asser-
been used successfully to help construct a verifiablytion,
correct distributed clock synchronization algorithm• the invariant is preserved by each transi-
[Rushby91b, Rushby91c].

tion,
Gypsy has been ported to several other machines in-• the constraint is implied by each transition;
cluding Symbolics machines [Smith85].and

2. in the global specification, Another approach that has been explored is that of
symbolic execution of an operational model specifi-• the invariant is implied by each process’s
cation, such as AFFIRM, Ina Jo, or VDL.  UNISEXinvariant,
[Kemmerer83, Kemmerer85] is a successful implemen-• the constraint is implied by each process’s
tation of this idea for non-concurrent programs writtenconstraint,
in Pascal.  Inatest has been developed to allow sym-

• the schedule requirement is implied by bolic execution of Ina Jo specifications in order to test
each process’s schedule. whether what is desired equals what is specified

In the above, when something is implied by a transi- [Eckmann85]. Others are exploring extending this idea
tion, it is implied by its entry and exit assertions pair to deal with Ada tasking [Dillon 88a, Dillon88b,
and by each of its except and exit assertions pair. Harrison88].

Tools

The authors realized that a interpretable specifica-
tion language without an interpreter is not very use- Glossary
ful; therefore the design of the language proceeded
in parallel with the design of the environment for

asynchronous executioncompiling ASTRAL specifications into TRIO speci-
fications and the TRIO evaluator. At the present the appearance of parallel execution achieved
time, a syntax-directed ASTRAL editor exists in through true parallel execution or multiplexing,
prototype form.  The translation from ASTRAL to in which what happens next is unpredictable,
TRIO is done by hand, but a syntax-directed trans- and in which the concept of next may not even
lator is under development.  Finally, a TRIO sym- be meaningful
bolic executor, written in PROLOG, is available for
distribution.

bipartite graph
Actual Use an ordered graph with two disjoint sets of nodes,

such that for each arc, the head and tail nodesASTRAL appears to this author as the first real-time
are in the opposite setssystem specification language that has a chance of

being applied to the design specification and verifi-
concurrent programcation of real-time systems in a way that whether the

real-time constraints are met are subject to formal a program whose execution consists of or gives
mathematical verification. ASTRAL is too experi- rise to asynchronous execution
mental to have had any industrial strength applica-
tion. deadlock

VII. Current Status the situuation that occurs when all nonter-
minated processes in a computation are asleep;

Of the above described specification and verification
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i.e., each is waiting for a resource that another the program meeting its requirements in all of its
provides; an alternative definition is when at halting computations; a program is partially cor-
least one process is waiting for an event that rect if for all input that meets its input require-
cannot occur ments, the program meets its output require-

ments whenever it halts
distributed computing

process itema collection of processors not sharing memory,
but sharing communication channels that allow a data structure keeping the state of a process in
the processes on them to communicate with each the memory accessible to the processors which
other can execute on behalf of the process

fairness process
a property of a scheduling algorithm that insures an execution of a program or a portion thereof
that all awake processes eventually get to run; if

process statusa scheduler is fair then one method of starvation
cannot happen at the level of the program, a process can be ei-

ther awake, asleep, or terminated; a process is
interference awake if it is is capable of running and would

the act of two or more processors attempting and run if there were sufficient processors available
possibly succeeding to use the same physical de- to run it; a process is asleep if it cannot run be-
vice (including memory locations) at the same cause of a condition defined in the program it is
time executing, i.e., it is waiting for a resource from

another process with which it shares data; a
multiplexing process is terminated if it cannot run any more,

e.g., it has finished its work or it has committed(IEEE:multitasking) a mode of operation in
an unrecoverable error; at the level of the imple-which two or more tasks are executed in an in-
mentation, an awake process is either running orterleaved manner (by a single processor)
ready; it is running if a processor is running it; it
is ready if at the moment no processor is avail-multiprocessing
able to run it; note the distinction between readya mode of operation in which two or more proc-
and asleep processes; the latter could not be runesses are executed simultaneously (IEEE uses
even if there were enough processors available“concurrently”) by separate processing units that

have access to a common main storage
processor

an agent capable of executing a program or por-nondeterminate
tion thereofa nondeterministic computation is nondeter-

minate if the differing orders of computation
programcause different final results

(IEEE:computer program) a combination of
computer instructions and data definitions thatnondeterministic
enable computer hardware to perform computa-a computation is nondeterministic if at each
tional or control functionsstate, the step to be done next is not defined by

the program being computed; the choice of what
proper terminationis to be done next is made by an agent external

if and when a computation terminates, i.e., thereto the program
are no awake processes, then there are no asleep
processes still waiting for a resource; proper ter-parallel execution
mination implies absence of deadlock.simultaneous execution of more than one proc-

ess, which can happen either in multiprocessing
race conditionor distributed computing

the situuation that occurs when the resolution of
interference for a particular device can cause un-partial correctness
predictable resultsa form of program correctness characterized by
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real time
(IEEE: real time) pertaining to a system or mode
of operation in which computation is performed
during the actual time that an external process
occurs, in order that the computation results can
be used to control, monitor, or respond in a
timely manner to the external process

starvation
the situuation that occurs when an awake proc-
ess fails to get any work done because it is
denied a resource it needs; either it is busy wait-
ing for a resource being held on to by another
process or it is being denied a processor by the
processor scheduling algorithm

synchronous execution
the absence of asynchronous execution, in which
what happens next is completely predictable

task
the same as process

total correctness
a form of program correctness characterized by
the program halting for all inputs and meeting its
requirements in all cases; a program is totally
correct if for all input that meets its input re-
quirements, the program halts and meets its out-
put requirements
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Teaching Considerations

Suggested Schedules Worked Examples

There is far more material in this module than can be The worked examples should be sufficiently com-
covered in one semester or one quarter.  Therefore, plex that the act of specifying them actually teaches
the instructor will have to pick and choose from the the students about the function of the software.
topics mentioned in the module. Protocols are ideal for this because they are gener-

ally difficult to understand without some model.  ForSince the emphasis of the course should be the appli- example, the students might be shown in lecturescation of the formal methods of specification and formal definitions of the Alternating Bit protocol inverification to the development of concurrent soft- each of the languages and notations covered.ware, the instructor should pick topics and methods
that he or she is most comfortable working with in
front of the class.  The instructor will have to per-
sonally demonstrate the methods in front of the stu-

Exercisesdent and will have to be prepared to field difficult
questions from the students and bug emergencies as

If the class goals include the ability to write specifi-the students find errors in what the instructor is
cations of concurrent systems, then in all probability,presenting.
the instructor will be writing some specifications in

The outline below represents how the module author front of the students in class. Then, as homework,
would teach the course based on his own preferences the students should be asked to define another more
and familiarities. complex protocol, say, Stenning’s Data Transfer

1. Foundational Background (Section I) Protocol [Sunshine82], in each of the same lan-
guages and notations and to prove implementation of2. Ada Concurrency Features (Material
the basic service protocol, safety, and livenessfrom the module [Feldman90])
properties.3. Properties of Concurrent Programs

(Section II) It would be useful to get a copy of or get access to
one of the formal specification and verification envi-4. Operational Models (Section III.1)
ronments so that students can attempt to use these in5. Temporal Logic (Section III.3)
which to carry out their assigned specifications and

6. Specifications and Verifications of verifications.
Protocols in Operational and Temporal

From where can these environments be obtained?Models (Sections IV.3 and V)
Below is information on how to obtain environments

7. Use of FDM and SARA to do these spec- for most of the languages covered in detail in Sec-
ifications and verifications (Sections tion VI.  Note that although the module author has
VI.3 and VI.7) seen some of these environments in operation, he

has never tried porting any of them from its originalOf course, the instructor who wishes to follow a
site.similar outline but is not comfortable with the spe-

cific languages, methods, and tools, could use PAISLey
others, e.g., Concurrent Pascal, Axiomatic Seman-

As mentioned earlier, the PAISLey environment, in-tics, Operating System Security, and AFFIRM.
cluding the processor and other tools, is sold through

The module author considers it critical to cover AT&T’s UNIX toolchest.  Use the UNIX toolchest,
Topics 1, foundational background, and 2, some dial the computer at 201-522-6900 and log in as
language’s concurrency features. The students need guest. The system will prompt you.  The environ-
this material to make what follows an abstraction of ment is also available free to any academic institu-
concepts they already know rather than totally new tion. Faculty members interested in ordering it
material from which they may derive an understand- should send to Pamela Zave a request for the envi-
ing. ronment on institutional letterhead.  Her address is

Dr. Pamela Zave, Software and Systems Research
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Center, AT&T Bell Laboratories, Room 3D-426, cost for as long as the cost continues to be covered
Murray Hill, NH 07974, U.S.A., e-mail: by National Computer Security Center.  Please con-
pamela@allegra.att.com. tact Deborah Cooper, Unisys Corp., Formal Methods

5731 Slauson Ave., Culver City, CA 90230,AFFIRM 213-338-3727, e-mail:cooper@culv.unisys.com for
Work has ceased on AFFIRM entirely.  The original details. Available with the distribution is a full set
AFFIRM, developed at ISI, runs on only the PDP 10 of user documentation, including the FDM User
class machines, and there appear to be none around Guide with a complete tutorial example.  Unisys also
except in museums. offers a two-week Advanced FDM Course empha-

sizing hands-on experience.  This course includes re-According to David Musser, the leader of the project views of first order logic and state machines.  Thereto develop AFFIRM-85, Affirm-85, a version of Af- is a plan to develop a Basic Course, as a prerequisitefirm available from Rensselaer Polytechnic Institute, to the Advanced course, for brand new users.runs on VAX/VMS machines. No license for
Affirm-85 is required, and no support is provided, Unisys has recently developed the Model Executor
but licenses are required for Interlisp-VAX from as a simulator of Ina Jo specifications.  It has proved
DEC (at least a run-time license) and for Unipress to be a good pedagogical tool for understanding the
Emacs (which is used as part of the user interface) semantics of Ina Jo and Ina Jo specifications.  It is
from Unipress, Inc.  Affirm-85 was developed at written in Quintus Prolog.  Therefore, a site not al-
General Electric Corporate Research and Develop- ready licensed for Quintus Prolog must pay a
ment Center (as a porting and extension of the orig- $400.00 licensing fee to run the Model Executor.
inal Affirm system developed at USC/Information The Model Executor is accompanied by documen-
Sciences Institute) but is in the public domain, as it tation, Model Executor User Guide.
was sponsored by the U.S. Air Force.  It may also be HDMpossible to get Affirm-85 from Rome Air Develop-
ment Center, Griffiths Air Force Base, Rome, NY The original HDM no longer exists.  There is an
(John Faust).  The distribution tape from Rensselaer newer version of the method, called EHDM.  EHDM
includes the source files and a binary executable file. has been developed by the Computer Science Labo-
Documentation describing installation procedures ratory (CSL) of SRI International for the U.S. Gov-
and differences from the original ISI Affirm system ernment and is therefore in the Public Domain.  SRI
is included (copies of the original Affirm documen- International has no wish to restrict the availability
tation may also be obtained from Rensselaer, or of EHDM, but distribution of the EHDM system and
from ISI). A nominal charge will be made for tape its documentation is subject to controls imposed by
copying and document reproduction.  Send inquiries the U.S.  Government.  Permission to obtain copies
to Professor David Musser, Rensselaer Polytechnic of the EHDM system is generally routine for Agen-
Institute, Computer Science Department, Amos cies of the U.S. Government, and for U.S. Corpora-
Eaton Hall, Troy, NY 12180, U.S.A., e-mail: tions working on U.S. Government contracts.
musser@turing.cs.rpi.edu. Policies on wider distribution are unclear at present.

GYPSY VERIFICATION ENVIRONMENT (GVE) Those interested in using EHDM should contact
John Rushby at the Computer Science Laboratory,The GVE is available for distribution subject to cer- SRI International, 333 Ravenswood Avenue, Menlotain export restrictions imposed by the U.S. govern- Park, CA 94025 USA, 415-859-5456, FAX:ment. The GVE is a free product though there are 415-859-2844, e-mail:  rushby@csl.sri.com.some conditions for release. Requests can be sent to

Ron Olphie, Computational Logic, Inc., 1717 W. 6th EHDM Version 5.1.4 is currently available for
Street, Suite 290, Austin, TX 78703, U.S.A., email: Sun-3 and Sun-4 workstations (Symbolics machines
olphie@cli.com 512-322-9941. are no longer supported).  At least 8 MB of real

memory (16 MB recommended), 35 MB of swapVarious system documentation, including a user’s space (50 MB recommended), and about 32 MBytesmanual, is available.  These consist mainly of Com- of file space are required. EHDM is implemented inputational Logic, Inc. technical reports.  Contact Ron Sun Common Lisp and you will need the appropriateOlphie at the address above to obtain this documen- RTU license from Sun.  A full GNU Emacs istation. needed since EHDM uses this as its interface.
FDM The documentation available includes a Language
The FDM environment for Sun 3’s is available at no manual, a System manual, a Formal Semantics, and
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a rather good Tutorial.  These are all available the
same restrictions mentioned above.

SARA

The old SARA system is not available and the latest
CoSARA (Cooperative SARA) is not ready for dis-
tribution. CoSARA will allow several designers to
be working on the same design at the same time
from different workstations.

P-NUT

P-NUT is distributed as part of the standard Arcadia
distribution tape.  There is a licensing agreement that
must be signed, and there is a nominal distribution
fee. For further information about the Arcadia dis-
tribution, please contact Professor Richard Taylor,
Information & Computer Science Department, Uni-
versity of California, Irvine, CA 92717, U.S.A. e-
mail: taylor@ics.uci.edu.

STATEMATE

STATEMATE may be licensed on a commercial
basis from i-Logix, Inc., 22 Third Avenue, Bur-
lington, MA 01803, U.S.A., 617-272-8090, FAX:
617-272-8035. It is available on a number of
hardware platforms including VAX/VMS. It comes
with a graphic user interface for constructing the
models and an analyzer for analyzing and simulating
models.

Caveats

Beware of typographical errors in textbooks adopted
for any course.  While you, the instructor, can wea-
ther these errors, the students may not be able to dis-
tinguish between their own misunderstanding and
genuine errors in the text.
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Abstract: Automatic programming consists not (From Preface) The AFFIRM Annotated Transcripts
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some of the many verification methods for parallel This paper defines the basic model of data security
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papers are: Flon & Suzuki: Total Correctness of security. It has the concept of subjects (processes)
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ology (FDM).  It describes the procedures and tools time systems.  We present an exponential decision
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lustrated for both structured and graph represen-
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Security Evaluation Center, Sept. 1984. University, Pittsburgh, Pa., Oct. 1987.

This paper is one in a series that examines the for- (From Capsule Description) This module intro-
mal verification process used to certify the SCOMP uduces methods for the formal specification of pro-
operating system.  This is a long and stringent math- grams and large software systems, and reviews the
ematical process that is required to prove formally domains of application of these methods.  Its em-
the protection properties of a system.  It is notewor- phasis is on the functional properties of software.  It
thy that SCOMP is certified A1 under the Orange does not deal with the specification of programming
Book criterion by the US DoD. languages, the specification of user-computer inter-

faces, or the verification of programs.  Neither does
it attempt to cover the specification of distributedBerg82
systems.Berg, H.K., W.E. Boebert, W.R. Franta, and T.G.

Moher. Formal Methods of Program Verification
Berztiss88and Specification. Englewood Cliffs, NJ:  Prentice-
Berztiss, A. and M.A. Ardis. Formal Verification ofHall, 1982.
Programs. Curriculum Module SEI-CM-20, DTIC:

The book has a wide-ranging survey of verification. ADA 235775, Software Engineering Institute, Car-
Chapter 6 deals with correctness of parallel pro- negie Mellon University, Pittsburgh, Pa., Dec. 1988.
grams and surveys several methods of dealing with
shared-memory parallelism and interference. The (From Capsule Description) This module introduces
bibliography is extensive with 166 entries. formal verification of programs.  It deals primarily

with proofs of sequential programs, but also with
consistency proofs for data types and deduction ofBernstein87
particular behaviors of programs from their specifi-Bernstein, P.A., V. Hadzilacos, and N. Goodman.
cations. Two approaches are considered: verifica-

Concurrency Control and Recovery in Database tion after implementation that a program is consis-
Systems. Reading, MA:  Addison-Wesley, 1987. tent with its specification, and parallel development

of a program and its specification.  An assessmentThis book has a tutorial explanation of two-phase
of formal verification is provided.commit.

Bevier87Berry72
Bevier, W.R. A Verified Operating System Kernel.Berry, D.M. “The Equivalence of Models of
Technical Report 11, Computational Logic, Inc.,Tasking.” ACM SIGPLAN Notices 7, 1 (Jan. 1972),
Austin, TX, 1987.170-190.

Abstract: We present a multitasking operating sys-Abstract: A technique for proving the equivalence
tem kernel, called KIT, written in the machine lan-of implementations of multi-tasking programming
guage of a uni-processor von Neumann computer.languages is developed and applied to proving the
The kernel is proved to implement, on this sharedequivalence of the contour model and a multi-
computer, a fixed number of conceptually distribu-tasking version of the copy rule.
ted communicating processes. In addition to im-
plementing processes, the kernel provides the fol-

Berry85 lowing verified services: process scheduling, error
Berry, D.M. “A Denotational Semantics for Shared- handling, message passing, and an interface to
Memory Parallelism and Nondeterminism.” Acta In- asychchronous devices. The problem is stated in
formatica 21 (1985), 599-627. the Boyer-Moore logic and the proof is mechani-

cally checked with the Boyer-Moore theorem
Abstract: It is first shown how to construct a con- prover.
tinuation from a deterministic Vienna Definition
Language control tree.  This construction is then

Bolognesi87applied to nondeterministic control trees. The
Bolognesi, T. and E. Brinksma. “Introduction to theresult is a denotational but not quite continuation

semantics for arbitrary shared-memory nondeter- ISO Specification Language LOTOS.” Computer
minism and parallelism.  The implications of this Networks and ISDN Systems 14 (1987), 25-59.
result are discussed.

Abstract: LOTOS is a specification language that
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has been specifically developed for the formal de- semantics of CSP operators can be mechanized in
scription of the OSI (Open Systems Interconnection) higher order logic, and show how the laws associ-
architecture, although it is applicable to distribu- ated with these operators can be proved from their
ted, concurrent systems in general.  In LOTOS, a semantic definitions. The resulting system is one in
system is seen as a set of processes which interact which natural-deduction style proofs can be con-
and exchange data with each other and their envi- ducted using the standard CSP laws.
ronment. LOTOS is expected to become an ISO
standard by 1988. Chandy88

Chandy, K.M. and J. Misra. Parallel Program
Britton84 Design. Reading, MA:  Addison-Wesley, 1988.
Britton, D.E.  “Formal Verification of a Secure Net-

This book defines the UNITY parallel program de-work with End-to-End Encryption.” Proceedings of
sign language and and develops a complete theorythe 1984 Symposium on Security and Privacy.
of programming with UNITY and of the meaning ofWashington, DC: IEEE Computer Society, April UNITY programs.

1984.

Abstract: A formal specification and verification of Cheheyl81
a simple secure communications network using end- Cheheyl, M.H., M. Gasser, G.A. Huff, and J.K. Mil-
to-end encryption is presented.  It is shown that all len. “Verifying Security.” ACM Computing Surveys
data sent over the network is encrypted and all 13, 3 (Sept. 1981), 279-340.
hosts on the network exchange messages only if they
are authorized to do so.  The network and its hosts Abstract: Four automated specification and verifi-
are modelled by a set of concurrent processes that cation environments are surveyed and compared:
communicate via unidirectional buffers.  Each proc- HDM, FDM, Gypsy, and AFFIRM.  The emphasis
ess is viewed as a state machine.  The specification of the comparison is on the way these systems could
has been formally verified using the commercially be used to prove security properties of an operating
available VERUS verification system. system design.

The acronyms HDM and FDM stand for Hierar-
Bustard90 chical Development Methodology and Formal De-
Bustard, D.W. Concepts of Concurrent velopment Methodology, respectively. HDM is
Programming. Curriculum Module SEI-CM-24, based on the specification language SPECIAL, and
DTIC: ADA 223897, Software Engineering Insti- the (non-interactive) Boyer-Moore theorem prover.
tute, Carnegie Mellon University, Pittsburgh, Pa., FDM makes use of the Ina Jo specification language

and an interactive theorem prover. Gypsy is aApril 1990.
highly integrated environment intended for the in-

(From Capsule Description) A concurrent program cremental verification of software.  In AFFIRM,
is one defining actions that may be performed software development is regarded as the specifica-
simultaneously. This module discusses the nature tion and implementation of abstract data types, and
of such programs and provides an overview of the specifications are written as algebraic axioms. Al-
means by which they may be constructed and ex- though this survey deals specifically with the verifi-
ecuted. Emphasis is given to the terminology used cation of security, it provides clear descriptions of
in this field and the underlying concepts involved. the four verification methodologies listed above and

is an invaluable guide to further reading.  The
largest application example known at the time isCamilleri90
indicated for each environment.Camilleri, A.J. “Mechanizing CSP Trace Theory in

Higher Order Logic.” IEEE Trans. Software Eng.
Chen8316, 3 (Sept. 1990), 993-1004.
Chen, B.S. and R.T. Yeh. “Formal Specification andAbstract: The process algebra CSP is widely used
Verification of Distributed Systems.” IEEE Trans.for formal reasoning in the areas of concurrency,
Software Eng. SE-9, 6 (Nov. 1983), 710-722.communication, and distributed systems.  Math-

ematical proof plays a key role in CSP reasoning, Abstract: Computations of distributed systems are
but despite this, little mechanical proof support has extremely difficult to specify and verify using tradi-
been developed for CSP to facilitate the exercise tional techniques because the systems are inherently
and eliminate the risk of human error.  In this paper concurrent, asynchronous, and nondeterministic.
we described how a mechanized tool for reasoning Furthermore, computing nodes in a distributed sys-
about CSP can be developed by customizing an ex- tem may be highly independent of each other, and
isting general-purpose theorem prover based on the entire system may lack an accurate global clock.
higher order logic. We investigate how the trace
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In this paper, we develop an event-based model to gebraic specification and the Vienna Development
specify formally the behavior (the external view) Method (VDM).  Chapter 6 covers specification of
and the structure (the internal view) of distributed concurrent systems.  Chapter 7 describes formal
systems. Both control-related and data-related methods in the development environment.  This
properties of distributed systems are specified using chapter includes a listing of centers of current re-
two fundamental relationships among events: the search activity in the more theoretical approaches to
“precedes” relation, representing time order; and specification, and of experimental specification lan-
the “enables” relations, representing causality.  No guages.
assumption about the existence of a global clock is
made in the specifications. Comer84
The specification technique has a rather wide range Comer, D. Operating System Design: the Xinu
of applications.  Examples from different classes of Approach. Englewood Cliffs, NJ:  Prentice-Hall,
distributed systems, include communication sys- 1984.
tems, process control systems, and a distributed

This book describes the Xinu system, similar to theprime number generator, are used to demonstrated
UNIX kernel, that runs on the LSI-11 minicomput-the power of the technique.
er. The book describes and gives the complete C

The correctness of a design can be proved before code for the system.implementation by checking the consistency be-
tween the behavior specification and the structure

Cousot82specification of a system.  Both safety and liveness
properties can be specified and verified.  Further- Cousot, P. and R. Cousot. “Induction Principles for
more, since the specification technique defines the Proving Invariance Properties of Programs.” In
orthogonal properties of a system separately, each Tools and Notions for Program Construction,
of them can be verified independently.  Thus, the D. Neel, ed. Cambridge, England:  Cambridge Uni-
proof technique avoids the exponential state- versity Press, 1982, 75-119.
explosion problem found in state-machine specifi-
cation techniques. Abstract: We propose sixteen sound and complete

induction principles for proving program in-
variance properties.  We study their relationshipsCleaveland89
and show that they can be derived from each otherCleaveland, R., J. Parrow, and B. Steffen. The Con-
by commuting mathematical transformations.  Only

currency Workbench: a Semantics Based Tool for five of these induction principles correspond to al-
the Verification of Concurrent Systems. LFCS re- ready known invariance proof methods.  We choose
port series, ECS-LFCS-89-83, Dept. of Computer a non-conventional induction principle and con-
Science, University of Edinburgh, Edinburgh, UK, struct corresponding partial correctness, non-
1989. termination and clean behavior proof methods.

When constructing these new proof methods, we in-
Abstract: The Concurrency Workbench is an auto- formally apply our mathematical approach
mated tool that caters for the analysis of networks published earlier.  This essentially consists in
of finite-state processes expressed in Milner’s Cal- decomposing the global inductive invariant in-
culus of Communicating Systems.  Its key feature is volved in the induction principle into an equivalent
its scope: a variety of different verification methods, set of local invariants and in deriving the cor-
including equivalence checking, preorder checking, responding verification condition.
and model checking, are supported for several dif-
ferent process semantics.  One experience from our

Dennis68work is that a large number of interesting verifi-
Dennis, J.B. “Programming Generality, Parallelism,cation methods can be formulated as combinations

of a smaller number of primitive algorithms. The and Computer Architecture.” In Information Proc-
Workbench has been applied to examples involving essing 68. Amsterdam:  North-Holland, 1968,
the verification of communications protocols and 484-492.
mutual exclusion algorithms and has proven a valu-

Abstract: Parallelism and programming generalityable aid in teaching and research.
are increasingly important attributes of computer
systems. Yet their joint influence on computer ar-Cohen86 chitecture has not been felt. In this paper, a pro-

Cohen, B., W.T. Harwood, and M.I. Jackson. The gram graph description of algorithms is developed
Specification of Complex Systems. Wokingham, that meets the requirements of programming gener-
England: Addison-Wesley, 1986. ality and allows asynchronous parallel execution

without loss of determinism.  A machine organi-
This brief, 143 page book explores some aspects of zation inspired by the program graph models is
the electronic office by means of equational al- sketched.
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Abstract: Symbolic execution has been used suc-Dijkstra68
cessfully with sequential programs for generatingDijkstra, E.W. “The Structure of ‘THE’ Mul-
the verification conditions required for correctnesstiprogramming System.” Comm. ACM 11, 5 (May
proofs. This paper shows how the symbolic execu-1968), 341-346.
tion model for sequential programs can be extended
to a tasking subset of Ada.  The criteria for correctAbstract: A multiprogramming system is described
operation of a concurrent program include safetyin which all activities are divided over a number of
properties, such as mutual exclusion and freedomsequential processes. These sequential processes
from deadlock.  The extended model, therefore pro-are placed at various hierarchical levels, in each of
vides a basis for the automatic generation of verifi-which one or more independent abstractions have
cation conditions for proving general safetybeen implemented. The hierarchical structure
properties of Ada tasking programs.proved to be vital for the verification of the logical

soundness of the design and the correctness of its
implementation. Dillon92

Dillon, L.K. A Visual Execution Model for Ada
Dijkstra76 Tasking. Technical Report, Department of Comput-
Dijkstra, E.W. A Discipline of Programming. er Science, University of California, Santa Barbara,
Englewood Cliffs, NJ:  Prentice-Hall, 1976. CA, 1992.

The topic of weakest preconditions is developed by Abstract: A visual execution model for Ada tasking
the master himself. The book has no index and no can help programmers attain a deeper understand-
bibliography. ing of the tasking semantics.  It can illustrate sub-

telties in semantic definitions that are not apparent
in natural language descriptions of Ada tasking, asDillon88a
well as the consequences of choices made in theL.K. Dillon, R.A. Kemmerer, and L.J. Harrison. An
language design.Experience with Two Symbolic Execution-Based Ap-
We describe a contour model of Ada tasking thatproaches to Formal Formal Verification of Ada
pictorially depicts asynchronous tasks (threads ofTasking Programs. TRCS88-6, Department of
execution), relationships between the environmentsComputer Science, University of California, Santa
in which tasks execute and the manner in whichBarbara, CA, 1988.
tasks interact.  The use of this high-level execution
model makes it possible to ‘see’ what happens dur-Abstract: There have been several efforts to use
ing execution of a program. For example, our con-symbolic execution to test and analyze concurrent
tour model can illustrate race conditions that ariseprograms. Recently proof systems have also
during execution of programs, the effects of theemerged for concurrent programs and for the Ada
definitions of task dependence and termination inlanguage in particular.  This paper reports on an
Ada on inter-task communication and synchroniza-experience with developing two different ap-
tion, and the interplay between these definitions andproaches, which use symbolic execution, to prove
basic run-time storage management concerns.partial correctness and general safety properties of

Ada programs.  One approach is based upon inter- The paper provides a high-level introduction to the
leaving the task components while the other is contour model of Ada tasking and demonstrates its
based upon verifying the tasks in isolation and then use.
performing cooperation proofs.  Both approaches
extend past efforts by incorporating tasking proof

Eckmann85rules into the symbolic executor allowing Ada pro-
Eckmann. “INATEST: an Interactive Environmentgrams with tasking to be formally verified.
for Testing Formal Specifications.” ACM SoftwareThe limitations of each approach are presented,
Eng. Notes 10, 4 (April 1985).along with each approach’s advantages and dis-

advantages. In particular, the difficulty of dealing (From the Introduction) Because the cost of for-
with communication statements in a loop structure mally verifying large software systems is high in
are addressed in detail. both dollars and time, it is often the practice to for-

mally verify only critical requirements.  For ex-
ample, a system may be formally verified to be con-Dillon88b
sistent with a particular security model.  However,Dillon, L.K. “Symbolic Execution-Based Verifica-
in addition to these formally verified critical re-tion of Ada Tasking Programs.” Proceedings of
quirements, most systems also have less criticalThird International IEEE Conference on Ada Ap-
functional requirements that must be satisfied....plications and Environments. Washington, DC:

IEEE Computer Society, May 1988, 3-13. During the past twelve months, the Reliable Soft-
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ware Group at UCSB has concentrated its effort on Feather87
the design and implementation of a symbolic execu- Feather, M.S. “Language Support for the Specifica-
tion tool called Inatest....  Inatest is an interactive tion and Development of Composite Systems.” ACM
tool for testing specifications early in the software Trans. Prog. Lang. and Syst. 9, 2 (April 1987),
lifecycle to determine whether the functional re- 198-234.quirements for the system being designed can be
met. It provides an environment with various Abstract: When a complex system is to be realized
modes of operation to be used in testing formal as a combination of interacting components, dev-
specifications written in Ina Jo.... lopement of those components should commence

from a specification of the behavior required of the
composite systems.  A separate specification shouldEckmann89
be used to describe the decomposition of that systemEckmann, S.T. Ina Flo User Guide. Unisys Corpo-
into components. The first phase of implementationration, Culver City, CA, May 1989. from a specification in this style is the derivation of
the individual component behaviors implied by(From the Introduction) Ina Flo is an information
these specifications.flow analysis tool built into the Ina Jo specification

language processor.  Ina Flo partially automates The virtues of this apporach to specification are ex-
covert channel analysis of Ina Jo specifications. pounded, and specification language features that
Covert channel analysis is any method for finding, are supportive of it are presented. It is shown how
and evaluating the consequences of covert channels these are incorporated in the specification language
in a system. Gist, which our group has developed. These issues

are illustrated in a development of a controller for
elevators serving passengers in a multistory build-Eggert89
ing.Eggert, P., Cooper, D. Eckmann, S., J. Gingerich,

S. Holtsberg, N. Kelem, and R. Martin. FDM User
Feiertag79Guide. TM-8486/000/03, Unisys Corporation, Cul-
Feiertag, R. and P.G. Neumann.  “The Foundationsver City, CA, Sept. 1889.
of a Provable Secure Operating System (PSOS).”

(From Preface) This guide is for the users of the National Computer Conference. Montvale, NJ:Unisys Formal Development Methodology (FDM).
AFIPS, 1979, 329-334.New users should read the entire guide for instruc-

tions about how to use FDM. Experienced users (From the Introduction) PSOS has been designed
can skip to the last part of Section 4, which de- according to a set of formal techniques embodying
scribes the changes in the latest FDM version. the SRI Hierarchical Development Methodology

(HDM). HDM has been described elsewhere, ...
and thus is only summarized here.  The influence ofEstrin86
HDM on the security of PSOS is also discussedEstrin, G., R.S Fenchel, R.R. Razouk, and M.K.
elsewhere.... In addition, Linden ... gives a generalVernon. “SARA (System ARchitect’s Apprentice):
discussion of the impact of structured design tech-Modeling, Analysis, and Simulation Support for De-
niques on the security of operating systemssign of Concurrent Systems.” IEEE Trans. Software (including capability systems).

Eng. SE-12, 2 (1986), 293-311.

Abstract: An environment to support designers in Feiertag80
the modeling, analysis, and simulation of concur- Feiertag, R.J. A Technique for Proving Specifica-
rent systems is described.  It is shown how a fully tions are Multilevel Secure. CSL-109, Computer
nested structure model supports multilevel design Science Laboratory, SRI International, Menlo Park,
and focuses attention on the interfaces between the

CA, Jan. 1980.modules which serve to encapsulate behavior.
Using simple examples, the paper indicates how a (From the Introduction) The following sections de-
formal graph model can be used to model behavior scribe a technique for verifying that a design for an
in three domains: control flow, data flow, and inter- operating system expressed in terms of a formal
pretation. The effectiveness of the explicit environ- specification is consistent with a particular model of
ment model in SARA is discussed and the capability multilevel security.  The technique to be described
to analyze correctness and evaluate performance of is mathematically rigorous and, if applied properly,
a system model are demonstrated.  A description of gives assurance that the given design is multilevel
the integral help designed into SARA shows how the secure by this particular model.  The technique is
designer can be offered consistent use of any new supported by a collection of automated tools.
tool introduced to support the design process.
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major operations, (d) implementation of the recur-Feldman90
sive functions in PASCAL with the abstract dataFeldman, M.B. Language and System Support for
types, and (e) implementation of the PASCAL pro-Concurrent Programming. Curriculum Module
grams in BLISS; and (4) the experience gained inSEI-CM-25, DTIC: ADA 223760, Software Engi-
this experiment, both in specification and verifica-

neering Institute, Carnegie Mellon University, Pitts- tion.
burgh, Pa., April 1990.

(From Capsule Description) This curriculum mod- Ghezzi90
ule is concerned with support for concurrent pro- Chezzi, C., D. Mandrioli, and A. Morzenti. “TRIO:
gramming provided to the application programmer A Logic Language for Executable Specifications of
by operating systems and programming languages. Real-Time Systems.” Journal of Systems and Soft-
This includes system calls and language constructs ware 12, 2 (Feb. 1990), 107-124.
for process creation, termination, synchronization,
and communication, as well as nondeterministic Abstract: We motivate the need for a formal speci-
language constructs such as the selective wait and fication language for real-time applications and for
timed call.  Several readily available languages are a support environment providing tools for reason-
discussed and compared; concurrent programming ing about formal specifications.  Then we intro-
using system services of the UNIX operating sys- duced TRIO, a logic-based specification language.

TRIO is first introduced informally through ex-tem is introduced for the sake of comparison and
amples. Then a formal declarative semantics iscontrast.
provided, which can accommodate a variety of un-
derlying time structures. Finally, the problem ofFrancez80
executing TRIO formal specifications is discussed,Francez, N., D.J. Lehmann, and A. Pnueli.  “A and a solution is preseted.

Linear History Semantics for Distributed
Languages.” Twenty-First Annual Symposium on

Ghezzi91Foundations of Computer Science. Long Beach,
Ghezzi, C. and R.A. Kemmerer. “ASTRAL: anCA: IEEE Computer Society, 1980.
Assertion Language for Specifying Realtime

Abstract: A denotational semantics is given for a Systems.” In Proceedings of the Third European
distributed language based on communication Software Engineering Conference, ESEC ’91. Lec-
(CSP). The semantics uses linear sequences of ture Notes in Computer Science, no. 550.  Berlin:
communications to record computations; for any Springer-Verlag, 1991.
well formed program segment the semantics is a
relation between attainable states and the communi- Abstract: ASTRAL is a formal specification lan-
cation sequences needed to attain these states. In guage for realtime systems.  This paper discusses
binding two or more processes we match and merge the rationale of ASTRAL’s design and shows how
the communication sequences assumed by each the language builds on previous language experi-
process to obtain a sequence and state of the com- ments. ASTRAL is intended to support formal soft-
bined process.  The approach taken here is distin- ware development; therefore, the language itself
guished by relatively simple semantic domains and has been formally defined. ASTRAL’s specification
ordering. style is illustrated by discussing a case study taken

from telephony.

Gerhart79
Gold79Gerhart, S.L. and D.S. Wile.  “Preliminary Report on
Gold, B., R. Linde, R. Peeler, M. Schaefer,the Delta Experiment.” Specifications of Reliable
J. Scheid, and P. Ward.  “A Security Retrofit ofSoftware. Washington, DC: IEEE Computer Soci-
VM/370.” National Computer Conference.ety, April 1979, 198-211.
Montvale, NJ: AFIPS, 1979, 335-344.

Abstract: The ISI Delta Experiment is an effort to
specify and verify a piece of real software of moder- (From the Introduction) The VM/370 Security
ate complexity and size (roughly 1000 lines).  This Retrofit Program is a continuing research and devel-
preliminary report describes: (1) the Delta function, opment initiative, funded by the Defense Advanced
managing the editing of a single file by several Research Projects Agency (DARPA), with addition-
users within an operational message processing al funding provided by Canadian Department of Na-
system; (2) the formal specification of the Delta tional Defense.  The program’s primary goal is the
function in prose and in algebraic axioms; (3) the security retrofit of a popular commercial operating
verification methodology in levels of (a) prose for system, VM/370. Two approaches were originally
the system interface level, (b) algebraic axioms for planned: (1) the design of a feasible, formally veri-
abstract data types, (c) recursive functions for fied security kernel to VM/370 and (2) a
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used to specify and verify both safety and liveness“hardening” effort to repair known VM/370
properties. However, it is defined with respect topenetration weaknesses. It was subsequently
an operational semantics of the transition systemdecided not to proceed with the VM/370 hardening
model of concurrency. Proof rules are simplytask because of the uncertainty of the end result:
theorems of this operational semantics. This meth-correction of known security flaws does not
odology makes a clear distinction between theguarantee the absence of exploitable, but not yet
theorems in the proof system and the logical in-detected, security flaws in the hardened system.
ference rules and syntax which define the under-
lying logic. Since this proof system essentially en-Goldschlag90a
codes Unity in another sound logic, and this encod-

Goldschlag, D.M. “Mechanizing Unity.” In ing has been mechanically verified, this encoding
Programming Concepts and Methods, M. Broy and proves the soundness of this formalization of Unity.
C.B. Jones, eds. Amsterdam:  North-Holland, 1990,

This proof system has been mechanically verified by387-414.
the Boyer-Moore prover, a computer program
mechanizing the Boyer-Moor logic ....  This proofAbstract: This report describes a mechanically ver-
system has been used to mechanically verify theified proof system for concurrent programs.  This
correctness of a distributed algorithm that computesproof system may be used to mechanically verify the
the minimum node value in a tree.  This paper alsocorrectness proofs of concurrent programs.  Me-
describes this algorithm and its correctnesschanical verification increases the trustworthiness
theorems, and presents the key lemmas that aidedof a prooof.
the mechanical verification.  The mechanized proof

This proof system is based on Unity ..., but is de- closely resembles a hand proof, but is longer, since
fined with respect to an operational semantics of the all concepts are defined from first principles. This
transition system model of concurrency ....  All proof system is suitable for the mechanical verifi-
proof rules are justified by this opeartional seman- cation of a wide class of programs, since the under-
tics. This methodology makes a clear distinction lying prover, though automatic, is guided by the
between the theorems in the proof system and the user.
logical inference rules and syntax that define the
underlying logic.  Since this proof system essentially

Good78encodes Unity in a conservative extension of anoth-
Good, D.I., R.M. Cohen, C.G. Hoch, L.W. Hunter,er sound logic, this encoding proves the soundness

of Unity. and D.F. Hare. Report on the Language Gypsy, Ver-
sion 2.0. ICSCA-CMP-10, Institute for ComputingThe proof system has been implemented on the
Science, University of Texas, Austin, TX, Sept.Boyer-Moore prover, a computer program
1978.mechanizing the Boyer-Moor logic,... and has been

used to mechanically verify the correctness of an
n-processor program satisfying both mutual exclu- Good82
sion and absence of starvation.  This paper also Good, D.I., A.E. Siebert, and L.M. Smith. Message
describes this program and its correctness theorems Flow Modulator Final Report. Report No. 34, Insti-and presents the key lemmas that aided the mechan-

tute for Computing Science, University of Texas,ical verification. This proof closely resembles a
Austin, TX, Dec. 1982.Unity hand proof, but is longer, since all concepts

are defined from first principles.  This proof system Abstract: The message flow modulator is a for-
is suiable for the mechanical verification of a wide mally specified and proved filter program that is
class of thoerms, since the underlying prover, applied continuously to a stream of messages flow-
though automatic, is guided by the user. ing from one computer system to another.  Mes-

sages that pass the filter are passed to their destina-
tion. Messages that do not are logged on an auditGoldschlag90b
trail. The modulator has been designed specificallyGoldschlag, D.M. “Mechanically Verifying Concur-
to monitor the flow of security sensitive messagerent Programs with the Boyer-Moore Prover.” IEEE
traffic from the Ocean Surveillance InformationTrans. Software Eng. 16, 3 (Sept. 1990), 1005-1023.
System of the United States Naval Electronic Sys-
tems Command.Abstract: This paper describes a proof system suit-

able for the mechanical verification of concurrent The modulator has been designed, specified, and
programs. Mechanical verification, which uses a implemented in the Gypsy language. All of the
computer program to validate a formal proof, in- modules, from the highest level of design to the
creases one’s confidence in the correctness of the lowest level of coding, has been formally specified
validated proof. and mechanically proved with the Gypsy Verifica-

tion Environment.  The modulator is specifically de-This proof system is based on Unity ..., and may be
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signed and intended for use in actual filed opera- technique for proving both safety and liveness
tion. It has been tested in a simulated operational properties of parallel programs. Safety properties
environment at the Patuxent River Naval Air Test are assertions that must be satisfied by the system
Center with scenarios developed by an independent, state at all times; they are analogous to partial cor-
external group.  With any modification, the proved rectness. Liveness properties refer to events that
modulator passed all of these tests on the first at- will occur in the future, such as program termina-
tempt. tion or the eventual execution of an instruction. We

describe new tools for verifying programs and
heuristics for developing proofs. We demonstrateGood84a
the applicability of the technique by proving theGood, D.I. Revised Report on Gypsy 2.1. Institute
correctness of a number of algorithms from thefor Computing Science, University of Texas, Austin,
literature in the areas of network protocols andTX, March 1984. resource allocation.  The spirit of this thesis, how-
ever, is concerned with the design of programs.Abstract: Gypsy is a language for specifying, im-

plementing, and proving computer programs. This
document is the revised report on Gypsy 2.1.  Gypsy Harel88a
2.1 includes almost all of Gypsy 2.0 with some ex- Harel, D. “On Visual Formalisms.” Comm. ACM 31,
tensions and minor modifications. 5 (May 1988), 514-531.

Abstract: The higraph, a general kind of diagram-Good84b
ming object, forms a visual formalism of topologi-Good, D.I., B.L. DiVito, and M.K. Smith. Using the
cal nature. Higraphs are suited for a wide array ofGypsy Methodology. Draft Technical Report, Insti- applications to databases, knowledge representa-

tute for Computing Science, University of Texas, tion, and most notably, the behavioral specification
Austin, TX, June 1984. of complex concurrent systems using the higraph-

based language of statecharts.Abstract: This report describes how to use the
Gypsy methodology for designing and building for-

Harel88bmally verified systems. The emphasis is on tech-
nique and examples. Harel, D., H. Lachover, A. Naamad, A. Pnueli,

M. Politi, R. Sherman, and A. Shtul-Trauring.
“STATEMATE: A Working Environment for theGuttag78
Development of Complex Reactive Systems.” 10thGuttag, J.V., E. Horowitz, and D.R. Musser.
International Conference on Software Engineering.“Abstract Data Types and Software Validation.”
Washington, DC: IEEE Computer Society, 1988,Comm. ACM 21, 12 (Dec. 1978), 1048-1064.
396-406.

Abstract: A data abstraction can be naturally spec-
ified using algebraic axioms.  The virtue of these Abstract: This paper provides a brief overview of
axioms is that they permit a representation- the STATEMATE system, constructed over the past
independent formal specification of a data type.  An three years by i-Logix Inc., and Ad Cad Ltd.
example is given which shows how to employ al- STATEMATE is a graphical working environment,
gebraic axioms at successive levels of implemen- intended for the specification, analysis, design, and
tation. The major thrust of the paper is twofold. documentation of large and complex reactive sys-
First, it is shown how the use of algebraic tems, such as real-time embedded systems, control
axiomatizations can simplify the process of proving and communication systems, and interactive soft-
the correctness of an implementation of an abstract ware. It enables a user to prepare, analyze and
data type.  Second, semi-automatic tools are de- debug diagrammatic, yet precise, descriptions of the
scribed which can be used both to automate such system under development from three inter-related
proofs of correctness and to derive an immediate points of view, capturing, structure, functionality
implementation from the axioms.  This implemen- and behavior. These views are represented by three
tation allows for limited testing of programs at de- graphical languages, the most intricate of which is
sign time, before a conventional implementation is the language of statecharts used to depict reactive
accomplished. behavior over time.  In addition to the use of

statecharts, the main novelty of STATEMATE is in
the fact that it ‘understands’ the entire descriptionsHailpern82
[sic] perfectly, to the point of being able to analyzeHailpern, B. Verifying Concurrent Processes Using
them for crucial dynamic properties, to carry out

Temporal Logic. Lecture Notes in Computer Sci- rigorous animated executions and simulations of the
ence, no. 129.  Berlin:  Springer-Verlag, 1982. described system, and to create running code auto-

matically. These features are invaluable when it(From the Introduction) In this thesis we present a
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comes to the quality and reliability of the final out- This paper discusses the design process for the SRT
come. which was carried out using the SDC Formal De-

velopment Methodology (FDM). The SRT project is
the first application of the FDM code level verifi-Harrison88
cation capabilities.  However, since the code levelHarrison L.J. and R.A. Kemmerer.  “An Interleaving verification has not yet been performed this paper

Symbolic Execution Approach For the Formal Veri- concentrates on the design problems inherent in
fication of ADA Programs with Tasking.” targeting a system for code level verification.
Proceedings of Third International IEEE Con-
ference on Ada Applications and Environments. Hoare69
Washington, DC: IEEE Computer Society, May Hoare, C.A.R. “An Axiomatic Basis for Computer
1988, 15-26. Programming.” Comm. ACM 12, 10 (Oct. 1969),

576-580, 583.Abstract: There have been several efforts to use
symbolic execution to test and analyze concurrent

Abstract: In this paper an attempt is made to ex-programs. Recently proof systems have also
plore the logical foundations of computer program-emerged for concurrent programs and for the Ada
ming by use of techniques which were first appliedlanguage in particular. This paper focuses on using
in the study of geometry and have later been ex-symbolic execution to prove partial correctness and
tended to other branches of mathematics.  This in-general safety properties of Ada programs. It ex-
volves the elucidation of sets of axioms and rules ofpands upon last efforts by incorporating tasking
inference which can be used in proofs of theproof rules into the symbolic executor allowing Ada
properties of computer programs. Examples areprograms with tasking to be formally verified.
given of such axioms and rules, and a formal proof
of a simple theorem is displayed. Finally, it is

Hayes87 argued that important advantages, both theoretical
Hayes, I., ed. Specification Case Studies. and practical, may follow from a pursuance of these

topics.Englewood Cliffs, NJ:  Prentice-Hall, 1987.

This is the original paper on Hoare’s method.  TheThis book is a collected set of case studies based on
important theoretical and practical advantages al-the use of Z, providing a well-structured introduc-
luded to in the abstract have indeed followed from ation to the use of formal methods.  The section on
pursuance of the topics of this paper.specification of the UNIX filing system may in-

volve sufficiently familiar material to provide a
good introduction for many students.  It is suitable Hoare78
for use by both instructors and students. Hoare, C. “Communicating Sequential Processes.”

Comm. ACM 21, 8 (Aug. 1978), 666-677.
Hennessy88

Abstract: This paper suggests that input and outputHennessy, M. Algebraic Theory of Processes. Cam-
are basic primitives of programming and thatbridge, MA:  MIT Press, 1988.
parallel composition of communicating sequential
processes is a fundamental program structuringThis book starts with a tutorial about a language
method. When combined with a development ofvery similar to CCS.
Dijkstra’s guarded command, these concepts are
surprisingly versatile.  Their use is illustrated byHinke83
sample solutions of a variety of familiar program-

Hinke, T., J. Althouse, and R.A. Kemmerer.  “SDC ming exercises.
Secure Release Terminal Project.” Proceedings of
the 1983 Symposium on Security and Privacy. Hoare85Washington, DC: IEEE Computer Society, April

Hoare, C.A.R. Communicating Sequential1983.
Processes. Englewood Cliffs, NJ: Prentice-Hall,

Abstract: The SDC Secure Release Terminal (SRT) 1984.
project provides a useful view of the process in-

This book is the definitive book explaining lan-volved in constructing software whose code is in-
guage, semantics, and the use of CSP.tended to be formally verified to satisfy desired

security properties.  The purpose of the SRT is to
move appropriately classified data from a process- Holtsberg89
ing environment at one security level to a process- Holtsberg, S., P. Montgomery, and J. Gingerich.
ing environment at another level in machine read- FDM Error Message Reference. TM-8494/001/01,
able form. Unisys Corporation, Culver City, CA, June 1989.
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(From Preface) This reference is for users of the Kemmerer83
Unisys Formal Development Methodology Kemmerer, R.A. and S.T. Eckmann. A User’s
(FDM).... The purpose of this document is to pro- Manual for the UNISEX System. TRCS83-05, De-
vide a reference for the error messages generated by partment of Computer Science, University of Cali-
Release 12.4 of the FDM tools. fornia, Santa Barbara, CA, Dec. 1983.

(From the Introduction) UNISEX, a UNIx-basedHopcroft79
Symbolic EXecutor for Pascal, provides an environ-Hopcroft, J.E. and J.D. Ullman. Introduction to
ment for testing and verification of programs.Automata Theory, Languages, and Computation.

Reading, MA:  Addison-Wesley, 1979.
Kemmerer85

This book is the key book used to teach formal lan- Kemmerer, R.A. and Eckmann, S.T. “UNISEX: A
guages and automata theory. UNIx-based Symbolic EXecutor for Pascal.”

Software—Practice and Experience 15, 5 (May
ISO89 1985), 439-458.
International Standards Organization. Information

Abstract: UNISEX is a UNIX-based symbolic ex-processing systems — Open Systems Interconnec-
ecutor for Pascal.  The UNISEX system provides antion — LOTOS — A formal description technique
environment for both testing and verifying Pascal

based on the temporal ordering of observational programs. The system supports a large subset of
behavior. International Standard ISO 8807. Swit- Pascal, runs on UNIX and provides the user with a
zerland: International Standards Organization, 1989. variety of debugging features to help in the difficult

task of program validation. This paper contains aThis is the defining document for the international
brief introduction to symbolic execution, followedstandard LOTOS specification language
by an overview if the features of UNISEX, a discus-
sion of the UNISEX Pascal language, and some of

Karam91 the implementation details for the UNISEX system.
Karam, G.M. and R.J.A. Buhr. “Temporal Logic- Finally, some of the problems encountered when de-

signing and implementing the system are discussedBased Deadlock Analysis for Ada.” IEEE Trans.
as well as future directions.Software Eng. SE-17, 10 (Oct. 1989), 1109-1125.

Abstract: This paper describes an [sic] temporal King80logic-based specification language and deadlock
King, J.C. “Program Correctness: On Inductiveanalyzer for Ada.  The deadlock analyzer (along
Assertion Methods.” IEEE Trans. Software Eng.with other analyzers) are intended for use within
SE-6 (1980), 465-479.TimeBench, a concurrent system-design environ-

ment with support for Ada.  The specification lan-
Abstract: A study of several of the proof of correct-guage, COL, uses linear time temporal logic to pro-
ness methods is presented.  In particular, the formvide a formal basis for axiomatic reasoning.  The
of induction used is explored in detail.  A relationaldeadlock analysis tool uses the reasoning power of
semantic model for programming languages is in-COL to demonstrate that Ada designs specified in
troduced and its relation to predicate transformersCOL are system-wide deadlock-free; in essence, it
is explored.  A rather elementary viewpoint is takenuses a specialized theorem prover to deduce the ab-
in order to expose, as simply as possible, the basicsence of deadlock.  The deadlock algorithm is
differences of the methods and the underlying prin-shown to be decidable for finite systems and accept-
ciples involved. These results were obtained by at-able otherwise: it is also shown to have a worst-
tempting to thoroughly understand the “subgoalcase computational complexity that is exponential
induction” method.with the number of tasks.  The analyzer has been

implemented in Prolog. Numerous examples are
Klein83evaluated using the analyzer—the examples vary in

complexity and in the number of tasks: readers and Klein, M. Department of Defense Trusted Computer
writers, gas station, five dining philosphers, and a System Evaluation Criteria. Fort Meade, MD:  De-
layered communications system.  The results in- partment of Defense, 1983.
dicate that analysis time is reasonable for moderate

(From Preface) The trusted computer system evalu-designs in spite of the worst-case complexity of the
ation criteria defined in this document classify sys-algorithm.
tems into four broad hierarchical divisions of en-
hanced security protection.  They provide a basisKemmerer82
for the evaluation of effectiveness of security con-Kemmerer, R.A. Formal Verification of an Operat- trols built into automatic data processing system

ing System Security Kernel. Ann Arbor, MI:  UMI
Research Press, 1982.
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products. The criteria were developed with three ferent temporal logics for reasoning about a compu-
objectives in mind:  (a) to provide users with a tational model.  The same formulas appear in both
yardstick with which to assess the degree of trust logics, but they are interpreted differently.  The two
that can be placed in computer systems for the interpretations correspond to two ways of viewing
secure processing of classified or other sensitive in- time: as a continually branching set of possibilities,
formation; (b) to provide guidance to manufacturers or as a single linear sequence of actual events, The
as to what to build into their new, widely-available temporal concepts of “sometime” and “not never”
trusted commercial products in order to satisfy trust (“not always not”) are equivalent in the theory of
requirements for sensitive applications; and (c) to linear time, but not in the theory of branching time
provide a basis for specifying security requirements — hence, our title.  We will argue that the logic of
in acquisition specifications.  Two types of require- linear time is better for reasoning about concurrent
ments are delineated for secure processing: (a) spe- programs, and the logic of branching time is better
cific security feature requirements and (b) assurance for reasoning about nondeterministic programs.
requirements.

Lamport83a
Lamport76 Lamport, L. “Specifying Concurrent Program
Lamport, L. “The Synchronization of Independent Modules.” ACM Trans. Prog. Lang. and Syst. 5, 2
Processes.” Acta Informatica 6 (1976), 15-34. (Feb. 1983), 190-222.

Abstract: This paper considers the problems of Abstract: A method for specifying program mod-
programming a multiple process system so that it ules in a concurrent program is described.  It is
continues to operate despite the failure of individual based upon temporal logic, but it uses new kinds of
processes. A powerful synchronizing primitive is temporal assertions to make the specifications
defined, and it is used to solve some sample prob- simpler and easier to understand.  The semantics of
lems. An algorithm is then given which implements the specifications is described informally, and a se-
this primitive under very weak assumptions about quence of examples are given culminating in a spec-
the nature of interprocess communication, and a ification of three modules comprising the
careful informal proof of its correctness is given. alternating-bit communication protocol. A formal

semantics is given in the appendix.

Lamport80a
Lamport83bLamport, L. “The ‘Hoare Logic’ of Concurrent
Lamport, L. “What Good is Temporal Logic?” InPrograms.” Acta Informatica 14 (1980), 21-37.
Information Processing 83, R.E.A. Mason, ed.

Abstract: Hoare’s logical system for specifying and Amsterdam: North-Holland, 1983, 657-667.proving partial correctness properties of sequential
programs is generalized to concurrent programs. Abstract: Temporal Logic is a formal system for
The basic idea is to define the assertion {P}S{Q} to specifying and reasoning about concurrent pro-
mean that if execution is begun anywhere in S with grams. It provides a uniform framework for de-
P true, then P will remain true until S terminates, scribing a system at any level of abstraction,
and Q will remain true if and when S terminates. thereby supporting hierarchical specification and
The predicates P and Q may depend upon program verification.
control locations as well as upon the values of vari-
ables. A system of inference rules and axiom Lamport84schemas is given, and a formal correctness proof

Lamport, L. “What it Means for a Concurrent Pro-for a simple program is outlined.  We show that by
gram to Satisfy a Specification: Why No One Hasspecifying certain requirements for the unimple-
Specified Priority.” Conference Record Twelfth An-mented parts, correctness properties can be proved
nual ACM Symposium on Principles of Program-without completely implementing the program.  The

relation to Pnueli’s temporal logic formalism is ming Languages. New York: ACM, Jan. 1985,
also discussed. 78-83.

Abstract: The formal correspondence between anLamport80b implementation and its specification is examined.  It
Lamport, L. “‘Sometime’ Is Sometimes ‘Not Never’, is shown that existing specifications that claim to
On the Temporal Logic of Programs.” Conference describe priority are either vacuous or else too re-
Record Seventh Annual ACM Symposium on Prin- strictive to be implemented in some reasonable
ciples of Programming Languages. New York: situations. This is illustrated with a precisely for-

mulated problem of specifying a first-come-first-ACM, Jan. 1980, 174-184.
served mutual exclusion algorithm, which it is

(From the Introduction) We will describe two dif- claimed cannot be solved by existing methods.
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Lamport86 Lee81
Lamport, L. A Simple Approach To Specifying Con- S. Lee and S.L. Gerhart. AFFIRM User’s Guide.
current Systems. Technical Report 15, Digital Sys- USC Information Sciences Institute, Marina del Rey,
tems Research Center, Palo Alto, CA, 1986. CA, Feb. 1981.

Abstract: In the transition axiom method, safety (From Preface) The AFFIRM USER’S GUIDE ac-
properties of a concurrent system can be specified companies the AFFIRM REFERENCE MANUAL
by programs; liveness properties are specified by and the AFFIRM TYPE LIBRARY in order to make
assertions in a simple temporal logic. The method life easier for people who really want to use
is described with some simple examples, and its AFFIRM. The GUIDE is a distillation of experi-
logical foundation is informally explored through a ence by the PV project (and others) which we want
careful examination of what it means to implement to pass on to users.
a specification.  Language issues and other prac-
tical details are largely ignored. Leveson83

Leveson, N.G., A.I Wasserman, and D.M. Berry.
Lamport87 “BASIS: A Behavioral Approach to the Specifica-
Lamport, L. win and sin: Predicate Transformers for tion of Information Systems.” Information Sciences
Concurrency. Technical Report 17, Digital Systems 8, 1 (1983), 15-23.
Research Center, Palo Alto, CA, May 1987.

Abstract: This paper is an overview of BASIS
Abstract: Dijkstra’s weakest liberal precondition (Behavioral Approach to the Specification of Infor-
and strongest postcondition predicate transformers mation Systems), a multi-step formal method used
are generalized to the weakest invariant and for information systems design and development.
strongest invariant. These new predicate trans- The steps include information analysis, semantic
formers are useful for reasoning about concurrent specification, verification of the specification, con-
programs containing operations in which the grain crete implementation, and verification of the imple-
of atomicity is unspecified. they can also be used to mentation. In this way, BASIS can be used to pro-
replace behavioral arguments with more rigorous vide a formal basis for information systems devel-
assertional ones. opment. We provide an example showing how BAS-

IS can be used in conjunction with implementation
in the programming language PLAIN.Landwehr81

Landwehr, C.E. “Formal Models for Computer
Leveson91Security.” ACM Computing Surveys 13, 3 (Sept.
Leveson, N.G., M. Heimdahl, H. Hildreth, J. Reese,1981), 247-278.
and R. Ortega.  “Experiences using Statecharts for a

Abstract: Efforts to build “secure” computer sys- System Requirements Specification.” Sixth Interna-tems have now been underway for more than a
tional Workshop on Software Specification anddecade. Many designs have been proposed, some
Design. Washington, DC: IEEE Computer Society,prototypes have been constructed, and a few sys-
1991, 31-41.tems are approaching the production stage.  A

small number of systems are even operating in what Abstract: This paper describes some lessons
the Department of Defense calls “multilevel” mode: learned and issues raised while building a system
some information contained in these computer sys- requirements specification for a real aircraft col-
tems may even have a classification higher than the lision avoidance system using statecharts. Some en-
clearance of some of the users of those systems. hancements to statecharts were necessary to model

the complete system and a few notational changesThis paper reviews the need for formal security
were made to improve reviewability.models, describes the structure and operation of

military security controls, considers how automa-
tion has affected security problems, surveys models Levitt85
that have been proposed and applied to date, and Levitt, K.N. Communications Network in Revisedsuggests possible directions for future models.

SPECIAL. Computer Science Laboratory, SRI Inter-
national, Menlo Park, CA, June 1985.

Landwehr83
Landwehr, C. “The Best Available Technologies for Lindsay88
Computer Security.” Computer 16, 7 (July 1983).

Lindsay, P.A. “A Survey of Mechanical Support for
Abstract: This concise overview of secure system Formal Reasoning.” Software Engineering Journal 3
developments summarizes past and current projects, (1988), 3-27.
deciphers computer security lingo, and offers ad-
vice to prospective designers.
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This survey examines seven support systems in de- Lucas69
tail and introduces eleven others.  The systems dis- Lucas, P. and K. Walk. “On the Formal Description
cussed in detail are LCF (Logic for Computable of PL/I.” Annual Review in Automatic Programming
Functions), NuPRL, Veritas, Isabelle, AFFIRM, the 6, 3 (1969).
Boyer-Moore system, and Gypsy. The bibliography
contains 87 items. (From the Introduction) This paper presents tools

and design criteria for the formal description of pro-
gramming languages. The results reported wereLiskov74
achieved mainly during the development of the for-Liskov, B.H. and S.N. Zilles. “Programming with
mal definition of PL/I as documented in a series ofAbstract Data Types.” ACM SIGPLAN Notices 9, 4 Technical Reports [from IBM Vienna Laboratories].

(April 1974), 50-60. An appropriately tailored subset of PL/I is used to
illustrate these results.  Their applicability is, how-Abstract: The motivation behind this work in very-
ever, not restricted to PL/I.high-level languages is to ease the programming

task by providing the programmer with a language
containing primitives or abstractions suitable to his Luckham86
problem area.  The programmer is then able to Luckham, D.C., D.P. Helmbold, S. Meldal, D.L.
spend his effort in the right place; he concentrates Bryan, and M.A. Haberler. “Task Sequencing Lan-
on solving his problem, and the resulting program guage for Specifying Distributed Ada Systems.” Inwill be more reliable as a result.  Clearly, this is a

System Development and Ada: CRAI Workshop onworthwhile goal.
Software Factories and Ada. Lecture Notes in Com-

Unfortunately, it is very difficult for a designer to puter Science, no. 275.  Berlin:  Springer-Verlag,
select in advance all the abstractions which the 1986.
users of his language might need.  If a language is
to be used at all, it is likely to be used to solve Abstract: TSL-1 is a language for specifying se-
problems which its designers did not envision, and quences of tasking events occuring in the execution
for which the abstractions embedded in the lan- of distributed Ada programs.  Such specifications
guage are not sufficient. are intended primarily for testing and debugging of

Ada tasking programs, although they can also beThis paper presents an approach which allows the
applied in designing programs.  TSL-1 specifica-set of built-in abstractions to be augmented when
tions are included in an Ada program as formalthe need for a new data abstraction is discovered.
comments. They express constraints to be satisfiedThis approach to the handling of abstractions is an
by the sequences of acutal tasking events.  An Adaoutgrowth of work on designing a language for
program is consistent with its TSL-1 specificationsstructured programming. Relevant aspects of this
if its runtime behavior always satisfies them.  Thislanguage are described, and examples of the use
paper presents an overview of TSL-1.  The featuresand definitions of abstractions are given.
of the language are described informally, and ex-
amples illustrating the use of TSL-1, both for de-

Locasso80 bugging and for specification of tasking programs,
Locasso, R., J. Scheid, D.V. Schorre, and P.R. Eg- are given.  A definition of robust TSL-1 specifica-

tions that takes into account uncertainty in runtimegert. The Ina Jo Reference Manual.
observation of behavior of distributed systems isTM-(L)-6021/001/000, System Development Corpo-
given. A runtime monitor for checking consistencyration, Santa Monica, CA, June 1980.
of an Ada program with TSL-1 specifications has

Abstract: The Ina Jo specification language is in been implemented.  In the future, constructs for de-
use at SDC as part of its formal development meth- fining abstract tasks will be added to TSL-1, form-
od. System specifications written in Ina Jo lan- ing a new languages, TSL-2, for the specification of
guage are verified mechanically with respect to distributed systems prior to their implementation in
user-defined criteria.  An Ina Jo specification is a any particular programming language.
collection of levels; each level describes an abstract
machine by describing its states and possible state Manna72
transitions. Lower levels contain mappings de-

Manna, Z., S. Ness, and J. Vuillemin. “Inductivescribing how they are intended to implement parts
Methods for Proving Properties of Programs.” ACMof higher levels. The top level contains correctness
SIGPLAN Notices 7, 1 (Jan. 1972), 27-50.requirements that must be met by the entire system.

Thus an Ina Jo specification allows for a structured Abstract: We have two main purposes in this
proof of the desired properties of a complete sys- paper. First, we clarify and extend known results
tem. about computation of recursive programs, empha-

sizing the difference between the theoretical and
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practical approaches.  Secondly, we present and ex- McCarthy65
amine various methods for proving properties of McCarthy, J., P.W. Abrahams, D.J. Edwards, T.P.
recursive programs.  We discuss in detail two Hart, and M. Levin. LISP 1.5 Programmer’s
powerful inductive methods, computational induc- Manual. Cambridge, MA:  MIT Press, 1965.
tion and structural induction, illustrating their ap-
plications by various examples. We also briefly dis- This book is the original LISP manual. It contains a
cuss some other related methods. definition of LISP written in LISP.

Our aim in this work is to introduce inductive meth-
McCauley79ods to as wide a class of readers as possible and to

demonstrate their power as practical techniques. McCauley, E. and P. Drongowski.  “KSOS — The
We ask the forgiveness of our more theoretical- Design of a Secure Operating System.” National
minded colleagues for our occasional choice of Computer Conference. Montvale, NJ: AFIPS, 1979,
clarity over precision. 345-353.

(From the Introduction) This paper discusses the de-Manna74
sign of the Department of Defense (DoD) Kernel-Manna, Z. Mathematical Theory of Computation.
ized Secure Operating System (KSOS, formerlyNew York:  McGraw-Hill, 1974.
called Secure UNIX).  KSOS is intended to provide
a provably secure operating system for larger min-The book has a wide-ranging survey of topics in the
icomputers, KSOS will provide a system interfacetheory of computation.  Chapter 3 deals with verifi-
closely compatible with the UNIX operating sys-cation of program correctness and halting.
tem. The initial implementation of KSOS will be
on a Digital Equipment Corporation PDP-11/70Manna81
computer system. A group from Honeywell is alsoManna, Z. and A. Pnueli. “Verification of Concur-
proceeding with an implementation for a modified

rent Programs: The Temporal Framework.” In The version of the Honeywell Level 6 computer system.
Correctness Problem in Computer Science, R.S.
Boyer and J.S. Moore, eds. London:  Academic

McGowan71Press, 1981, 215-273.
McGowan, C.L. “An Inductive Proof Technique for

Abstract: This is the first in a series of reports Interpreter Correctness.” In Courant Computer Sci-
describing the application of Temporal Logic to the ence Symposium on Formal Semantics of Program-
specification and verification of concurrent pro- ming Languages, R. Rustin, ed. Englewood Cliffs,
grams. NJ: Prentice-Hall, 1971.
We first introduce Temporal Logic as a tool for

Abstract: A general inductive proof technique isreasoning about sequences of states.  Models of
presented which has been successfully used in es-concurrent programs based both on transition
tablishing the correctness and equivalence of inter-graphs and on linear-text representations are
preters for the lambda calculus and for block struc-presented and the notions of concurrent and fair
tured languages.executions are defined.

The general temporal language is then specialized Meadows88
to reason about those execution states and execu-

Meadows, C.A. A Method for Automatically Trans-tion sequences that are fair computations of concur-
lating Trace Specification into Prolog. NRL9131,rent programs.  Subsequently, the language is used
Naval Research Laboratory, 1988.to describe properties of concurrent programs.

The set of interesting properties is classified into
Milner80Invariance (Safety), Eventuality (Liveness) and
Milner, R. A Calculus of Communicating Systems.Precedence (Until) properties. Among the
Lecture Notes in Computer Science, no. 92.  Berlin:properties studied are: Partial Correctness, Global
Springer-Verlag, 1980.Invariance, Clean Behavior, Mutual Exclusion,

Deadlock Absence, Termination, Total Correctness,
This book is the definitive book defining CCS.Intermittent Assertions, Accessibility, Starvation

Freedom, Responsiveness, Safe Liveness, Absence
Milner89of Unsolicited Response, Fair Responsiveness and

Precedence. Milner, R. Communication and Concurrency.
Englewood Cliffs, NJ:  Prentice-Hall, 1989.In the following reports of this series we use the

temporal formalism to develop proof methodologies This book is the definitive book explaining and de-
for proving the properties discussed here. fining CCS. It is significantly more tutorial than the

other book by the same author in 1980.
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user-defined analysis algorithms to reachabilityMoore90
graphs. The alternating-bit protocol, with aMoore, A.P. “The Specification and Verified
bounded channel, is used to demonstrate the powerDecomposition of System Requirements Using
of the tool and to point to future extensions.CSP.” IEEE Trans. Software Eng. 16, 3 (Sept.

1990), 933-948.
Musser85a

Abstract: An important principle of building Musser, D.R. and D.A. Cyrluk. AFFIRM-85 Instal-
trustworthy systems is to rigorously analyze the cri- lation Guide and Reference Manual Update. Gen-
tical requirements early in the development process, eral Electric Corporate Research and Development,even before starting system design. Existing proof

Schenectady, NY, March 1985.methods for systems of communicating processes
focus on the bottom-up composition of component-

Musser85blevel specifications into system-level specifications.
Trustworthy system development requires, instead, Musser, D.R. “Aids to Hierarchical Specification
the top-down derivation of component requirements Structuring and Reusing Theorems in Affirm-85.”
from the critical system requirements.  This paper ACM Software Eng. Notes 10, 4 (1985).
describes a formal method for decomposing the re-

(From the Introduction) The AFFIRM Programquirements of a system into requirements of its com-
Verification System originated at the University ofponent processes and a minimal, possibly empty, set
Southern California Information Sciences Instituteof synchronization requirements. The Trace Model

of Hoare’s Communicating Sequential Processes (ISI). It is an experimental system for the algebraic
(CSP) is the basis for the formal method. We apply specification and verification of abstract data types
the method to an abstract voice transmitter and de- and Pascal-like programs using these types....
scribe the role that the EHDM verification system AFFIRM-85 is an enhanced version of AFFIRM
plays in the transmitter’s decomposition.  In combi- that is being developed at General Electric Corpo-
nation with other verification techniques, we expect rate Research and Development Center (GE-CRD).
that the method defined here will promote the devel- This paper briefly describes the two major exten-
opment of more trustworthy systems. sions that will completed in early in 1985.  The

primary purpose of these and several minor exten-
sions is to enable the use of AFFIRM in carryingMorgan87
out a larger part of the software development proc-Morgan, E.T. and R.R. Razouk. “Interactive State-
ess than previously has been possible.Space Analysis of Concurrent Systems.” IEEE

Trans. Software Eng. SE-13, 10 (Oct. 1987),
Neumann771080-1091.
Neumann, P.G., R.S. Boyer, R.J. Feiertag, and K.N.

Abstract: The introduction of concurrency into Levitt. A Provably Secure Operating System: The
programs has added to the complexity of the soft- System, Its Applications, and Proofs. Final Report,
ware design process. This is most evident in the Computer Science Laboratory, SRI International,design of communications protocols where concur-

Menlo Park, CA, Feb. 1977.rency is inherent to the behavior of the system. The
complexity exhibited by such software systems Abstract: This report provides a detailed descrip-
makes more evident the need for computer-aided tion of the design of a secure operating system and
tools for automatically analyzing behavior. some of its applications, along with proofs of some

of the properties related to security.  Discussed hereThe Distributed Systems project at UCI has been
are:developing techniques and tools, based on Petri

nets, which support the design and evaluation of • a formal methodology for the design and
concurrent software systems.  Techniques based on implementation of computer operating sys-
constructing reachability graphs that represent tems and application subsystems, and for
projections and selections of complete state-spaces the formal proof of properties of such sys-
have been developed. This paper focuses attention tems, with respect to both the design and
on the computer-aided analysis of these graphs for the implementation;
the purpose of proving correctness of the modeled • the design of a secure capability-based
system. The application of the analysis technique to operating system according to this meth-
evaluating simulation results for correctness is dis- odology to meet advanced security re-
cussed. The tool which supports this analysis (the quirements, together with relevant imple-
reachability graph analyzer, RGA) is also de- mentation considerations;
scribed. This tool provides mechanisms for proving

• the design of several application subsys-general system properties (e.g., deadlock-freeness)
tems for this operating system, includingas well as system-specific properties.  The tool is
support for multilevel security classifica-sufficiently general to allow a user to apply complex
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tions, for confined subsystems, for a secure Organick72
relational data management system, and Organick, E.I. The Multics System. Cambridge, MA:
for monitoring of security; MIT Press, 1972.

• the statement and proof of properties of
This book examines the structure of the MIT mul-the design for the operating system and for
tics system from the bottom upwards.certain application subsystems;

• an evaluation of the significance of this
Organick78work, and considerations for the future de-
Organick, E.I., A.I. Forsythe, and R.P. Plummer.velopment of secure systems and subsys-

tems. Programming Language Structures. New York,
NY: Academic Press, 1978.

Nguyen84 This book uses Johnston’s Contour Model, a pic-
Nguyen, V., D. Gries, and S. Owicki.  “A Model for torial information structure model to describe a
Temporal Proof System for Networks of Process.” variety of programming languages and their fea-
Conference Record Twelfth Annual ACM Sym- tures.
posium on Principles of Programming Languages.
New York: ACM, Jan. 1985, 121-131. Owicki76a

Owicki, S. and D. Gries. “Verifying Properties ofAbstract: A model and a sound and complete proof
Parallel Programs: An Axiomatic Approach.”system for networks of processes in which compo-
Comm. ACM 19, 5 (May 1976), 279-285.nent processes communicate exclusively through

messages is given.  The model, an extension of the
Abstract: An axiomatic method for proving a num-trace model, can describe both synchronous and
ber of properties of parallel programs is presented.asynchronous networks. The proof system uses
Hoare has given a set of axioms for partial correct-temporal-logic assertions on sequences of obser-
ness, but they are not strong enough in most cases.vations—a generalization of traces.  The use of ob-
This paper defines a more powerful deductive sys-servations (traces) makes the proof system simple,
tem which is in some sense complete for partial cor-compositional and modular, since internal details
rectness. A crucial axiom provides for the use ofcan be hidden. The expressive power of temporal
auxiliary variables, which are added to a parallellogic makes it possible to prove temporal properties
program as an aid to proving it correct.  The infor-(safety, liveness, precedence, etc.) in the system.
mation in a partial correctness proof can be used toThe proof system is language-independent and
prove such properties as mutual exclusion, freedomworks for both synchronous and asynchronous net-
from deadlock, and program termination.  Tech-works.
niques for verifying these properties are presented
and illustrated by application to the dining

Nielsen89 philosophers problem.
Nielsen, M., K. Havelund, K.R. Wagner, and
C. George. “The RAISE Language, Method and Owicki76b
Tools.” Formal Aspects of Computing 1, 1 (1989), Owicki, S. and D. Gries. “An Axiomatic Proof Tech-
85-114. nique for Parallel Programs I.” Acta Informatica 6

(1976), 319-340.Abstract: This paper presents the RAISE software
development method, its associated specification

Abstract: A language for parallel programming,language, and the tools supporting it, The RAISE
with a primitive construct for synchronization andmethod enables the stepwise development of both
mutual exclusion, is presented.  Hoare’s deductivesequential and conccurrent software from abstract
system for proving partial correctness of sequentialspecification through design to implementation.  All
programs is extended to include the parallelism de-stages of RAISE software development are ex-
scribed by the language. The proof method lendspressed in the wide-spectrum RAISE specification
insight into how one should understand and presentlanguage. The RAISE tools form an integrated tool
parallel programs.  Examples are given using sev-environment supporting both language and method.
eral of the standard problems in the literature.

The paper surveys RAISE and furthermore, more Methods for proving termination and the absence of
detailed presentations of major RAISE results are deadlock are also given.
provided. The subjects of these are (a) an example
of the use of the RAISE method and language, and Owicki82
(b) a presentation of the mathematical semantics of Owicki, S. and L. Lamport. “Proving Livenessthe RAISE specification language.

Properties of Concurrent Programs.” ACM Trans.
Prog. Lang. and Syst. 4, 3 (Oct. 1982), 455-495.
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Abstract: A liveness property asserts that program Pedersen89
execution eventually reaches some desirable state. Pedersen, J.S. Software Development Using VDM.
While termination has been studied extensively, Curriculum Module SEI-CM-16, DTIC: ADA
many other liveness properties are important for 235996, Software Engineering Institute, Carnegie
concurrent programs.  A formal proof method, Mellon University, Pittsburgh, Pa., Dec. 1989.based on temporal logic, for deriving liveness
properties is presented.  It allows a rigorous for- (From Capsule Description) This module introduces
mulation of simple informal arguments.  How to the Vienna Definition Method (VDM) approach to
reason with temporal logic and how to use safety software development.  The method is oriented
(invariance) properties in proving liveness is toward a formal model view of the sofware to be
shown. The method is illustrated using, first, a developed. The emphasis of the module is on for-
simple programming language without synchroniza- mal specification and systematic development of
tion primitives, then one with semaphores.  How- programs using VDM.  A major part of the module
ever, it is applicable to any programming language. deals with the particular specification language (and

abstraction mechanisms) used in VDM.
Paolini81
Paolini, P. Abstract Data Types and Data Bases. Peterson81
Ph.D. Th., Computer Science Department, Univer- Peterson, J.L. Petri Net Theory and the Modeling of
sity of California, Los Angeles, CA, 1981. Systems. Englewood Cliffs, NJ:  Prentice-Hall,

1981.
Parnas72a

This is the classic book covering Petri Nets and
Parnas, D.L. “On the Criteria to be Used in Decom- their use in modeling of concurrent systems.
posing Systems into Modules.” Comm. ACM 15, 2
(Dec. 1972), 1053-1058.

Place90
Abstract: This paper discusses modularization as a Place, P.R.H., W.B. Wood, and M. Tudball. Survey
mechanism for improving the flexibility and com- of Formal Specification Techniques for Reactive
prehensibility of a system while allowing the shor- Systems. CMU/SEI-90-TR-5, DTIC: ADA 22374,
tening of its development time.  The effectiveness of Software Engineering Institute, Carnegie Mellon
a “modularization” is dependent on the criteria University, Pittsburgh, PA, 1990.used in dividing the system into modules.  A system
design problem is presented and both a convention- Abstract: Formal methods are being considered for
al and unconventional decomposition are described. the description of many systems including systems
It is shown that the unconventional decompositions with real-time constraints and multiple concurrently
have distinct advantages for the goals outlined.  The executing processes. This report develops a set of
criteria used in arriving at the decomposition are evaluation criteria and evaluates Communicating
discussed. The unconventional decomposition, if Sequential Processes (CSP), the Vienna Definition
implemented with the conventional assumption that Method (VDM), and temporal logic.  The evaluation
a module consists of one or more subroutines, will is based on specifications, written with each of the
be less efficient in most cases.  An alternative ap- techniques, of an example avionics system.
proach to implementation which does not have this
effect is sketched. Plotkin76

Plotkin, G.D. “A Power Domain Construction.”
Parnas72b SIAM Journal of Computing 5, 3 (1976), 452-487.
Parnas, D.L. “A Technique for the Specification of

Abstract: We develop a powerdomain constructionSoftware Modules.” Comm. ACM 15, 5 (May 1972),
P (•), which is analagous to the powerset construc-330-336.
tion and also fits in with the usual sum, product and

Abstract: This paper presents an approach to writ- exponentiation constructions on domains.  The de-
ing specifications for parts of software systems. sire for such a construction arises when considering
The main goal is to provide specifications suf- programming languages with nondeterministic fea-
ficiently precise and complete that other pieces of tures or parallel features treated in a nondeter-
software can be written to interact with the piece ministic way.  We hope to achieve a natural, fully
specified without additional information.  The sec- abstract semantics in which such equivalences as (p
ondary goal is to include in the specification no par q) = (q par p) hold. The domain
more information than necessary to meet the first (D→Truthvalues) is not the right one, and instead
goal. The technique is illustrated by means of a we take the (finitely) generable subsets of D.  When
variety of examples from a tutorial system. D is discrete they are ordered in an elementwise

fashion. In the general case they are given the
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coarsest ordering consistent, in an appropriate of concurrent programs is presented in which n
sense, with the ordering given in the discrete case. processors are executing concurrent n disjoint pro-
We then find a restricted class of algebraic induc- grams under a shared memory environment.  The
tive partial orders which is closed under P (•) as semantics of such a program specifies the class of
well as the sum, product and exponentiation con- state sequences which are admissible as proper ex-
structions. This class permits the solution of recur- ecution sequences under the program.  The two
sive domain equations, and we give some illustra- main criteria which are required are:
tive semantics using P (•). • Each State is obtained from its predeces-

sor in the sequence by exactly one proces-It remains to be seen if our powerdomain construc-
sor performing an atomic instruction in itstion does give rise to fully abstract semantics, al-
process.though such natural equivalences as the above do

hold. The major deficiency is the lack of a convinc- • Fair Scheduling: No processor which is
ing treatment of the fair parallel construct. infinitely often enabled will be indefinitely

delayed.
The basic elements of temporal Logic are intro-Plotkin83
duced in a particular logic framework DX. ThePlotkin, G.D. “An Operational Semantics for CSP.”
usefulness of Temporal Logic notation in describingIn Formal Description of Programming Concepts II,
properties of concurrent programs is demonstrated.D. Bjorner, ed. Amsterdam:  North-Holland, 1983,
A construction is then given for assigning to a pro-199-224.
gram P a temporal formula W (P) which is true on
all proper execution sequences of P. In order toAbstract: Hoare’s CSP is used to illustrate a meth-
prove that a program P possesses a property R, oneod employing the well-known idea of labelled transi-
has only to prove the implications W (P) ⊂ R. Antion systems to provide operational semantics for
example of such proof is given.  It is then demon-programming languages. What is new is their
strated that specification of the Temporal characterspecifications; following the modern emphasis on
of the program’s behavior is absolutely essential forstructure they are given by structural induction on
the unambiguous understanding of the meaning ofabstract syntax, resulting in a precise but intuitive
programming constructs.semantics. Most of CSP is treated including the

arbitrary nesting of parallel commands and the
failure convention when communicating with a ter- Popek75
minated process; also a solution to the library prob- Popek, G.J. and C.S. Kline. “A Verifiable Protection
lem is proposed. System.” ACM SIGPLAN Notices 10, 6 (June 1975),

294-304.
Pnueli77

Abstract: This paper reports on the design andPnueli, A. “The Temporal Logic of Programs.”
implementation of the UCLA Virtual Machine Sys-Eighteenth Annual Symposium on the Foundations
tem, a multiuser operating system base that hasof Computer Science. Long Beach, CA: IEEE Com-
been developed to provide ultra high reliability pro-

puter Society, Nov. 1977. tection and security.  Details are presented of the
UCLA-VM system, a prototype of which now exists.Abstract: A unified approach to program verifi-
Concepts which have influenced its structure arecation is suggested, which applies to both sequen-
discussed, including program verification, securitytial and parallel programs.  The main proof method
kernels, virtual machines, virtual memory, and thesuggested is that of temporal reasoning in which the
need for flexible information sharing facilities.  Atime dependence of events is the basic concept.
new mechanism, capability faulting, is developed inTwo formal systems are presented for providing a
order to remove much of the virtual memory sup-basis for temporal reasoning. One forms a for-
port from the security kernel.  Flexible, reliablemalization of the method of intermittent assertions,
control of sharing is obtained by extensions to sev-while the other is an adaptation of the tense logic
eral of these concepts, especially through the use ofsystem K , and is particularly suitable for reason-b levels of kernels.ing about concurrent programs.

Popek79Pnueli81
Popek, G., M. Kampe, C. Kline, A. Stoughton,Pnueli, A. “The Temporal Semantics of Concurrent
M. Urban, and E. Walton.  “UCLA Secure Unix.”Programs.” Theoretical Computer Science 13
National Computer Conference. Montvale, NJ:(1981), 45-60.
AFIPS, 1979, 355-364.

Abstract: The formalism of Temporal Logic is sug-
(From the Introduction) The UCLA Data Securegested as an appropriate tool for formalizing the
Unix [sic] operating system is intended as a demon-semantics of concurrent programs.  A simple model
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stration that verifiable data security with general Razouk85a
functionality is attainable today in medium scale Razouk, R.R. and C.V. Phelps. “Performance Anal-
computing systems. More specifically, the UCLA ysis Using Timed Petri Nets.” In Protocol Specifi-
system has the characteristic that data security, the cations, Testing, and Verification, IV, Y. Yemini,
assurance that data cannot be directly read or modi- R. Strom, and S. Yemini, eds. Amsterdam:  North-fied without specific permission, is enforced via a

Holland, 1985.limited amount of kernel software.  High levels of
care are being applied to demonstrate that the Abstract: Petri Nets have been successfully used to
security properties of that software are correctly im- model and evaluate the performance of distributed
plemented. In addition, the system is designed so systems. Several researchers have extended the ba-
that confinement can be demonstrated by audit of sic Petri Net model to include time, and have dem-
some additional, isolated code. onstrated that restricted classes of Petri Nets can be

analyzed efficiently. Unfortunately, the restrictions
prohibit the techniques from being applied to manyRazouk77
interesting systems, e.g., communication protocols.Razouk, R.R. The GMB Simulator System Reference
This paper proposes a version of timed Petri NetsManual. Computer Science Department, University
which accurately models communication protocols,

of California, Los Angeles, CA, July 1977. and which can be analyzed using Timed Rea-
chability Graphs.  Procedures for constructing and

Razouk79 analyzing these graphs are presented.  The analysis
is shown to be applicable to a larger class of TimedRazouk, R.R., M. Vernon, and G. Estrin.
Petri Nets than previously thought.  The model and“Evaluation Methods in SARA — The Graph Model
the analysis technique are demonstrated using aSimulator.” Proceedings of the Conference on Simu-
simple communication protocol.lation, Measurement and Modeling of Computer

Systems. Washington, DC: IEEE Computer Society,
Razouk85bAug. 1979, 189-206.
Razouk, R.R. and D.S. Hirschberg.  “Tools for Effi-

Abstract: The supported methodology evolving in cient Analysis of Concurrent Software Systems.”
the SARA (System ARchitects’ Apprentice) system Proceedings of SOFTFAIR 85 Conference on Soft-creates a design framework on which increasingly

ware Development Tools, Techniques andpowerful analytical tools are to be grafted. Control
Alternatives, Washington, DC: IEEE Computer So-flow analyses and program verification tools have
ciety, Dec. 1985, 192-198.shown promise. However, in the realm of the com-

plex systems which interest us there is a great deal Abstract: The ever increasing use of distributed
of research and development to be done before we computing as a method of providing added comput-
can count on the use of such powerful tools.  We ing power and reliability has sparked interest in
must always be prepared to resort to experiments methods to model and analyze concurrent
for evaluation of proposed designs. hardware/software systems.  Efficient automated

analysis tools are needed to aid designers of suchThis paper describes a fundamental SARA tool, the
systems. The Distributed Systems Project at UCIgraph model simulator.  During top-down refine-
has been developing a suite of tools (dubbed thement of a design, the simulator is used to test con-
P-NUT system) which supports efficient analysis ofsistency between the levels of abstraction. During
concurrent software.  This paper presents the prin-composition, known building blocks are linked to-
ciples which guide the development of P-NUT toolsgether and the composite graph model is tested rel-
and discusses the development of one of the tools:ative to the lowest top-down model.  Design of test
the Reachability Graph Builder (RGB).  The P-NUTenvironments is integrated with the multilevel de-
approach to tool development has resulted in thesign process. The SARA methodology is exemplified
production of a highly efficient tool for constructingthrough design of a higher level building block to
reachability graphs. The careful design of datado a simple FFT.
structures and associated algorithms has signifi-
cantly enlarged the class of models which can beRazouk80
analyzed.

Razouk, R.R., M. Vernon, and M. Brewer.
Control-Flow Analyzer Reference Manual. Comput-

Reynolds72er Science Department, University of California, Los
Reynolds, J.C.  “Definitional Interpreters for Higher-Angeles, CA, Feb. 1980.
Order Programming Languages.” Proceedings of the
ACM Annual Conference. New York: ACM, Aug.
1972.
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ers to think about software development in terms ofAbstract: Higher-order programming languages
(i.e., languages in which procedures or labels can these concepts. This approach defines a system as
occur as values) are usually defined by interpreters consisting of a set of components arranged in a par-
which are themselves written in a programming ticular structure.  The components are specified
language based on the lambda calculus (i.e., an ap- using languages developed for that purpose.  Some
plicative language such as pure LISP).  Examples properties of the specifications can be evaluated by
include McCarthy’s definition of LISP, Landin’s on-line tools; others can be measured by subjective
SECD machine, the Vienna definition of PL/I, evaluation. The languages and tools of HDM have
Reynolds’ definitions of GEDANKEN, and recent been designed to enforce its concepts and to realize
unpublished work of L. Morris and C. Wadsworth. its mechanisms.
Such definitions can be classified according to

This volume describes the basic concepts of HDM.whether the interpreter contains higher-order func-
The stages provide a suggested ordering of systemtions, and whether the order of the application (i.e.,
development. Guidelines for the use of HDM arecall-by-value versus call-by-name) in the defined
also presented.language depends on the order of application in the

defining language.  As an example, we consider the
definition of a simple applicative programming lan- Rolph
guage by means of an interpreter written in a Rolph, S. and T. Alfano. Statemate by Example.
similar language. Definitions in each of the above Burlington, MA:  i-Logix, date unknown.
classifications are derived from one another by in-

This book shows by use of a simplified, but realformal but constructive methods.  The treatment of
example how STATEMATE might be used to de-imperative features such as jumps and assignment
sign a reactive system.  (The book has no sign ofis also discussed.
any publication date!)

Ritchie74
Rombach87Ritchie, D.M. and K.L. Thompson. “The UNIX
Rombach, H.D. Software Specification: ATime-Sharing System.” Comm. ACM 17, 7 (July
Framework. Curriculum Module SEI-CM-11, Soft-1974), 365-375.
ware Engineering Institute, Carnegie Mellon Univer-

Abstract: UNIX is a general-purpose, multi-user, sity, Pittsburgh, Pa., Oct. 1987.
interactive operating system for the Digital Equip-
ment Corporation PDP-11/40 and 11/45 computers. (From Capsule Description) This module provides a
It offers a number of features seldom found even in framework for specifying software processes and
larger operating systems, including: (1) a hierar- products. The specification of a software product
chical file system incorporating demountable type describes how the correspoding products
volumes; (2) compatible file, device, and inter- should look. The specification of a sofwtare proc-
process I/O; (3) the ability to initiate asynchronous ess type describes how the corresponding processes
processes; (4) system command language selectable should be performed.
on a per-user basis; (5) over 100 subsystems includ-
ing a dozen languages.  This paper discusses the Ruggiero79nature and implementation of the file system and of

Ruggiero, W., G. Estrin, R. Fenchel, R. Razouk,the user command interface.
D. Schwabe, and M. Vernon.  “Analysis of Data
Flow Models Using the SARA Graph Model ofRobinson79
Behavior.” National Computer Conference.Robinson, L. The HDM Handbook, Volume I: The Montvale, NJ: AFIPS, June 1979.Foundations of HDM. SRI Project 4828, Computer

Science Laboratory, SRI International, Menlo Park,
Rushby91aCA, June 1979.
Rushby, J., F. von Henke, and S. Owre. An Intro-

(From the Introduction) HDM provides an inte- duction to Formal Specification and Verification
grated collection of languages and tools that aid in Using EHDM. CSL Technical Report, SRI-
the software development process. HDM addresses CSL-91-02, Computer Science Laboratory, SRI In-
many of the aspects of the general software problem ternational, Menlo Park, CA, Aug. 1991.
— namely that software is often late, too costly,
unreliable, and noncompliant with its Abstract: This report is a tutorial on formal speci-
requirements.... fication and verification using EHDM.  The EHDM

specification language is very expressive, based onIn developing HDM, we have selected some partic-
a strongly typed higher-order logic, enriched withularly useful concepts and integrated them into a
elements of the Hoare (relational) calculus.  Theunified approach that encourages software develop-
type system provides subtypes, dependent types, and
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certain forms of type-polymorphism.  Modules are Rushby91c
used to structure large specifications and support Rushby, J. Formal Specification and Verification for
hierarchical development.  The language has a Critical Systems: Tools, Achievements, and
complete formal semantic characterization and is Prospects. Computer Science Laboratory, SRI Inter-
supported by a fully mechanized specification and

national, Menlo Park, CA, Aug. 1991.verification environment that has been used to de-
velop large specifications and perform very hard Abstract: Formal specification and verification use
formal verifications. mathematical techniques to help document, specify,

design, analyze, or certify computer software andThe tutorial uses simple examples to describe the
hardware. Mathematically-based notation can pro-EHDM language, methodology, and tools.  The first
vide specifications that are precises [sic] and un-examples illustrate the basic ideas of specification
ambiguous and that can be checked mechanicallyand theorem proving in EHDM. We then introduce
for certain types of error.  Formal verification usesthe ideas of testing specifications, of horizontal and
theorem proving techniques to establish consistencyvertical hierarchy, and of consistency and conser-
between one level of formal specification andvative extension. Later chapters cover more ad-
another.vanced topics including subtypes, higher-order

logic, proofs by induction, and program verification This paper describes some of the issues in the de-
using Hoare logic. The tutorial is illustrated sign and use of formal specification languages and
throughout with self-contained examples of EHDM verification systems, outlines some examples of the
specifications and proofs, all of which have been application of formal methods to critical systems,
mechanically checked. and identifies the benefits that may be obtained

from this technology.
Rushby91b
Rushby, J. and F. von Henke. Formal Verification of Scheid83a
the Interactive Convergence Clock Synchronization Scheid, J. Implementation Specification.
Algorithm. CSL Technical Report, SRI-CSL-89-3R, TM-7315/000/00, System Development Corpora-
Computer Science Laboratory, SRI International, tion, Santa Monica, CA, 1983.
Menlo Park, CA, Aug. 1991.

(From the Introduction) The Implementation Speci-
Abstract: We describe a formal specification and a fication provides the capability for the user to ex-
mechanically checked verification of the Interactive press the connection between an abstract Ina Jo
Convergence Clock Synchronization Algorithm of specification and the implementation of it in a
Lamport and Melliar-Smith ....  In the course of this Higher-Order Language (HOL) code.
work, we discovered several technical flaws in the
analysis given by Lamport and Melliar-Smith, even Scheid83b
though their presentation is unusually precise and

Scheid, J. The Design of the Ina Jo Verification Con-detailed. As far as we know, these flaws (affecting
dition Generator (VCG) for Modula.the main theorem and four of its five lemmas) were
TM-7393/000/00, System Development Corpora-not detected by the “social process” of informal
tion, Santa Monica, CA, 1983.peer scrutiny to which the paper has been subjected

since its publication.  We discuss the flaws in the
(From the Introduction) This document contains thepublished proof and give a revised presentation of
functional design of the Ina Jo verification con-the analysis that not only corrects the flaws in the
dition generator (VCG) for the Modula I program-original, but is also more precised and, we believe,
ming language.  Although the VCG can be usedeasier to follow.  This informal presentation was
only for programs written in York Modula forderived directly from our formal specification and
PDP-11/Unix [sic] systems, much of the design isverification. Some of our corrections to the flaws in
also applicable to other compilers / languages /the original require slight modifications to the as-
operating systems / computers. One reason for thissumptions underlying the algorithm and to the con-
partial design independence is the use of a modifiedstraints on its parameters, and thus change the ex-
version of Ina Jo (Inamod) on both sides of the Inaternal specification of the algorithm.
Jo/VCG interface, i.e. in the implementation speci-

The formal analysis of the Interactive Convergence fications and imbedded [sic] in the Modula code
Clock Synchronization Algorithm was performed [sic].
using the EHDM formal specification and verifica-
tion environment.  This application of EHDM pro- Scheid86avides a demonstration of some of the capabilities of

Scheid, J., S. Anderson, R. Martin, and S. Holtsberg.the system.
The Ina Jo Specification Language Reference
Manual. TM-(L)-6021/001/02, SDC, A Burroughs
Company, Santa Monica, CA, Jan. 1986.
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uniform framework in which to specify and formallyScheid86b
verify both safety and progress (liveness) propertiesScheid, J. and S. Holtsberg. Enhancements to For-
of the protocol.mal Development Methodology (FDM): Ina Jo

Definition. TM-7527/016/00, SDC, A Burroughs
Shostak82Company, Santa Monica, CA, March 1986.
Shostak, R.E., R.L. Schwartz, and P.M. Melliar-
Smith. “STP: A Mechanized Logic for SpecificationScheid89
and Verification.” In Proceedings of the Sixth Con-Scheid, J. and S. Holtsberg. The Ina Jo Specification
ference on Automated Deduction. Lecture Notes inLanguage Reference Manual. TM-(L)-6021/001/05,
Computer Science, no. 138.  Berlin: Springer-Ver-Unisys Corporation, Culver City, CA, May 1989.
lag, 1982.

(From the Introduction) Ina Jo is the specification
(From the Introduction) This report describes alanguage of the Formal Development Methodology
logic and proof theory that has been mechanized(FDM). This reference manual describes Ina Jo as
and successfully applied to prove nontrivialit is implemented in Release 12.4 of the FDM tools.
properties of a fully distributed fault-tolerant sys-
tem. We believe the system is closer to achieving

Schmidt86 the critical balance in a man-machine interaction
Schmidt, D.A. Denotational Semantics, A Method- necessary for successful application by users other
ology for Language Development. Boston: Allyn than the system developers.
and Bacon, 1986.

STP is an implemented system supporting specifi-
cation and verification of theories expressed in anThis book presents the topic of denotational seman-
extension of multisorted first-order logic.  The logictics from an engineering standpoint, focusing on
includes type parameterization and type hierarchies.programming language description and implemen-
STP support includes syntactic checking and prooftation. Chapter 12 covers denotational semantics of
components as part of an interactive environmentnondeterminism and concurrency.
with a certain core theory that comprises a set of
primitive types and function symbols, and extendsSchwabe85
this theory by introducing new types and symbols,Schwabe, D. and A.R. Cavalli. “Temporal Logic together with axioms that capture the intended com-

Specification of a Virtual Ring Lan Access plete decision procedure for a certain syntactically
Protocol.” In Protocol Specifications, Testing, and characterizable subtheory.  By providing aid to this
Verification, IV, Y. Yemini, R. Strom, and component in the form of the selection of appro-
S. Yemini, eds. Amsterdam:  North-Holland, 1985. priate instances of axioms and lemmas, the user

raises the level of competence of the prover to en-Abstract: This paper presents the use of temporal
compass the extended theory in its entirety.  As alogic for the specification of the access protocol of
result of a successful proof attempt using STP, onea local area network, REDPUC, developed at the
obtains the sequence of intermediate lemmas, to-Department of Informatics of the Catholic Univer-
gether with the axioms, auxiliary lemmas, and theirsity in Rio de Janeiro. The particular temporal
necessary instantiations, which lead to the theorem.logic system used allows the application of the auto-
The system automatically keeps track of which for-mated proof techniques developed ... [by Cavalli et
mulas have been proved and which have not, so thatal]. The protocol described here exhibits a higher
the user is not forced to prove lemmas in advance ofdegree of complexity than other protocols
their application.  The system also monitors the in-previously described in the literature, especially if
cremental introduction and modification of specifi-one considers only efforts using temporal logic.
cations to maintain soundness.

Schwartz81
Silverberg79Schwartz, R.L. and P.M. Melliar-Smith.  “Temporal
Silverberg, B., L. Robinson, and K.N. Levitt. TheLogic Specification of Distributed Systems.” Second
HDM Handbook, Volume II: The Languages andInternational Conference on Distributed Computing
Tools of HDM. SRI Project 4828, Computer Sci-Systems. Washington, DC: IEEE Computer Society,
ence Laboratory, SRI International, Menlo Park, CA,April 1981, 446-454.
June 1979.

Abstract: This paper describes the use of temporal
(From the Introduction) In this volume, we presentlogic to specify protocols for distributed network
the languages and tools of the SRI Hierarchical De-communications. The Alternating Bit protocol, cho-
velopment Methodology (HDM).  The languagessen for illustration, provides a simple yet non-trivial
provide a way of recording and communicating de-example of the method.  Temporal logic lends a
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cisions made throughout stages of system design, ology, and formal verification of the specifications
specification, implementation, and verification.  The written in the Ina Jo language is accomplished by
tools assist the system developer during this devel- using FDM’s Interactive Theorem Prover (ITP).
opment process.  The current set of tools is used
primarily to determine whether certain well- Smyth78
formedness and consistency criteria are satisfied. Smyth, M.B. “Powerdomains.” J. Comp. and Syst.
The languages of HDM are intended to capture the Sci. 17 (1978), 23-36.
concepts and computational model described in

(From the Introduction) If the meaning of a deter-Volume I. SPECIAL (SPECIfication and Assertion
ministic program may be considered to be a func-Language) is used to specify modules and mapping
tion from D to D, where D is some domain offunctions. HSL (Hierarchy Specification Language)
“states”, then it would seem that the meaning of ais used to describe the structuring of modules into
nondeterministic program is a function from D tomachines, and machines into systems.  ILPL D D D2 , or perhaps from 2 to 2 . To apply the meth-(Intermediate Level Programming Language) is
ods of fix-point semantics, then, we should findused to record module implementation decisions. In
some way to construe the power set of a domain asaddition, the final implementation code is written in
itself a domain, with a suitable ordering.some executable programming language such as

Pascal, Euclid, Ada, etc.  Such implementation lan-
guages could also be considered “languages of Stein80
HDM”, though we will take a narrower view and Stein, J. and D.V. Schorre. The Interactive Theorem
restrict our attention to SPECIAL, HSL, and HLPL. Manual (ITP) User Manual. TM-(L)-6889/000/001,

System Development Corporation, Santa Monica,
Smith85 CA, Dec. 1980.
Smith, M.K. and R.M. Cohen. “Gypsy Verification

(From the Introduction) The interactive theoremEnvironment: Status.” ACM Software Eng. Notes 10, prover (ITP) uses the rule of mathematical logic to
4 (April 1985). generate, with the active and occasionally imagi-

native help of a human operator, proofs of complex(From the Introduction) The Gypsy methodology is
theorems derived from specifications written in thean integrated system of methods, languages, and
INA JO language.  These proofs would be ex-tools for designing and building formally verified
tremely laborious if done without mechanized toolssoftware systems. The methods provide for the
as the theorems are usually quite long and manyspecification and coding of programs that can be
proof steps are required.  The ITP uses the principlerigorously verified by logical deduction always to
of reductio as absurdum (or indirect derivation) torun according to specification. These specification,
prove the theorems. To show that a particular set ofprogramming, and verification methods dictated the
conditions are true, the assumption is made thatdesign of the program description language
they are not true. From this assumption, contradic-Gypsy.... Gypsy consists of two intersection com-
tions (statements that negate each other) are de-ponents: a formal specification language and a veri-
rived; therefore, the original negated statements arefiable, high level programming language. These
contradictions and the original set of conditions arecomponent languages can be used separately or col-
true.lectively. The methodology makes use of the Gypsy

Verification Environment (GVE) to provide auto-
mated support.  The GVE is a large interactive sys- Sunshine82
tem that maintains a Gypsy program description Sunshine, C.A., D.D. Thompson, R.W. Erickson,
library and provides a highly integrated set of tools S.L. Gerhart, and D. Schwabe. “Specification and
for implementing the specification, programming, Verification of Communication Protocols in AF-
and verification methods. FIRM Using State Transition Models.” IEEE Trans.

Software Eng. SE-8, 5 (1982), 460-489.
Smith86

Abstract: It is becoming increasingly importantSmith, G. and D.V. Schorre. The Interactive
that communication protocols be formally specifiedTheorem Manual (ITP) User’s Manual.
and verified. This paper describes a particular ap-TM-(L)-6889/000/006, SDC, A Burroughs Compa-
proach—the state transition model—using a collec-

ny, Santa Monica, CA, Dec. 1986. tion of mechanically supported specification and
verification tools incorporated in a running system(From the Introduction) SDC’s Formal Develop-
called AFFIRM.  Although developed for the speci-ment Methodology (FDM) is an integrated method-
fication of abstract data types and the verificationology for the design, specification, implementation
of their properties, the formalism embodied in AF-and verification of software.  The Ina Jo specifi-
FIRM can also express the concepts underlyingcation language forms the basis for this method-
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state transition machines.  Such models easily ex- Wegner70
press most of the events occurring in protocol sys- Wegner, P. “Three Computer Cultures: Computer
tems, including those of the users, their agent proc- Technology, Computer Mathematics, and Computer
esses, and the communication channels.  The paper Science.” In Advances in Computers. New York:
reviews the basic concepts of state transition

Academic Press, 1970, 7-78.models and the AFFIRM formalism and methodol-
ogy and describes their union.  A detailed example, Abstract: Computers have proved so useful as sci-
the alternating bit protocol, illustrates various entific and technical tools that computer science is
properties of interest for specification and verifi- widely regarded as a technological discipline whose
cation. Other examples explored using this for- purpose is to create problem-solving tools for other
malism are briefly described and the accumulated disciplines. Within computer science there is a
experience is discussed. group of theoreticians who build mathematical

models of computational processes.  Yet computerThe paper is an excellent introduction to AFFIRM,
science is neither a branch of technology nor aand a demonstration of its practical utility in a
branch of mathematics. It involves a new way ofrealistic problem domain.
thinking about computational schemes that is partly
technological and partly mathematical, but contains

Tanenbaum87 a unique ingredient that differs qualitatively from
Tanenbaum, A.S. Operating Systems: Design and those of traditional disciplines.  This paper il-

lustrates the special quality which distinguishesImplementation. Englewood Cliffs, NJ: Prentice-
computer science from technology and mathematicsHall, 1987.
by means of examples from the emerging theory of

This book describes operating systems in general programming languages.
via the construction of MINIX, a UNIX look-alike
that runs on IBM-PC compatibles.  The book con- Wegner72
tains a complete MINIX manual and a complete

Wegner, P. “The Vienna Definition Language.”listing of its C code.
ACM Computing Surveys 4, 1 (March 1972), 5-63.

Thompson81 Abstract: The Vienna Definition Language (VDL)
is a programming language for defining program-Thompson, D.H. and R.W. Erickson. AFFIRM Ref-
ming languages.  It allows us to describe preciselyerence Manual. USC Information Sciences Institute,
the execution of the set of all programs of a pro-Marina del Rey, CA, Feb. 1981.
gramming language.  However, the Vienna Defini-

Abstract: Affirm is an experimental interactive tion Language is important not only as one defini-
system for the development of specifications and the tion technique among many others but as an illus-
verification of abstract data types and algorithms. tration of a new information-structure-oriented ap-
This document discusses the major concepts behind proach to the study of programming languages.
Affirm, and explains the purpose and use of each of This paper may be regarded as a case study in the
the abstract machines comprising the structure of information structure modeling of programming
the system as seen by the user. languages, as well as an introduction to a specific

modeling technique....

Vernon80
Wing89Vernon, M., W. Overman, and R. Razouk. GMB
Wing, J.M. and M. Nixon. “Extending Ina Jo withPL1 Preprocessor Reference Manual. Computer
Temporal Logic.” IEEE Trans. Software Eng.Science Department, University of California, Los
SE-15, 2 (Feb. 1989), 181-197.Angeles, CA, Jan. 1980.

Abstract: Toward the overall goal of putting for-
Wegner68 mal specifications to practical use in the design of
Wegner, P. Programming Languages, Information large systems, we explore the combination of two

specification methods: using temporal logic to spec-Structures, and Machine Organization. New York:
ify concurrency properties and using an existingMcGraw-Hill, 1968.
specification language, Ina Jo, to specify functional

This book introduces the concept of Information behavior of nondeterministic systems.  In this paper,
Structure Model and uses it to describe program- we give both informal and formal descriptions of
ming languages and computers. both current Ina Jo and Ina Jo enhanced with tem-

poral logic. We include details of a simple example
to demonstrate the use of the proof system and de-
tails of an extended example to demonstrate the ex-
pressiveness of the enhanced language.  We discuss
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at length our language design goals, decisions, and separately, in the simplest possible context. The
their implications.  The appendix contains a list of specification is then the conjunction of all these re-
axioms, rules of inference, derived rules, and quirements. As each is developed as a predicate
theorem schemata for the enhanced formal system. over traces of the observable events in the system, it

is also implemented as a simple communicating
processs; the implementation of the entire system isWirth66
then merely the parallel composition of these proc-Wirth, N. and H. Weber. “EULER: A Generalization esses. The laws of CSP are then used to transform

of ALGOL and its Formal Definition.” Comm. ACM the system to achieve the required degree of concur-
9, 1 & 2 (January & February 1966), 13-23 & 89-99. rency, to make it suitable for execution in a

multiple-tasking system, for example. Finally, thereAbstract: A method for defining programming lan-
is a discussion of how state-based systems may beguages is developed which introduces a rigorous
developed using this approach together with somerelationship between structure and meaning. The
appropriate notation for specifying and refiningstructure of a language is defined by a phrase struc-
data structures and operation upon them and ofture syntax, the meaning in terms of the effects
how the system may be implemented.  This work iswhich the execution of a sequence of interpretation
intended as a case study in the use of CSP.rules exerts upon a fixed set of variables, called the

Environment. There exists a one-to-one correspon-
dence between syntactic rules and interpretation Woodward79
rules, and the sequence of executed interpretation Woodward, J. “Applications for Multilevel Secure
rules is determined by the sequence of correspond- Operating Systems.” National Computer
ing syntactic reductions which constitute a parse. Conference. Montvale, NJ: AFIPS, 1979, 319-328.
The individual interpretation rules are explained in
terms of an elementary and obvious algorithmic (From the Introduction) The need for secure com-
notation, A constructive method for evaluating a puter systems has been identified in many areas of
text is provided, and for certain decidable classes of DoD operations, but in the past these systems have
languages their unambiguity is proved. As an ex- not been built in a secure manner because a secure
ample, a generalization of ALGOL is described in operating system on which to run has not existed.
full detail to demonstrate that concepts like block- Now that verifiably secure microcomputer operat-
structure, procedures, parameters, etc. can be de- ing systems are becoming a reality, applications for
fined adequately and precisely by this method. secure systems are becoming more clearly thought-

out, designed and implemented.  This paper surveys
some proposed DoD and non-DoD secure computerWolper82
applications.Wolper, P. “Specification And Synthesis of Commu-

nicating Processes Using an Extended Temporal
Yu90Logic.” Conference Record Ninth Annual ACM Sym-
Yu, C.-F. and V.D. Gligor. “A Specification andposium on Principles of Programming Languages.
Verification Method for Preventing Denial ofNew York: ACM, Jan. 1982, 20-33.
Service.” IEEE Trans. Software Eng. SE-16, 6

Abstract: We apply an Extended Propositional (1990), 581-592.
Temporal Logic (EPTL) to the specification and
synthesis of the synchronization part of communi- Abstract: In this paper, we present a specification
cating processes.  To specify a process, we give an and verification method for preventing denial of
EPTL formula that describes its sequence of com- service in the absence of failures and of integrity
munications. The synthesis is done by constructing violations. We introduce the notion of “user
a model of the given specifications using a tableau- agreements” and argue that lack of specifications
like satisfiability algorithm for the extended tem- for these arguments and for simultaneity conditions
poral logic.  This model can then be interpreted as makes it impossible to demonstrate denial-of-
a program. service prevention, in spite of demonstrably fair ser-

vice access.  We illustrate the use of this method
with an example and explain why current methodsWoodcock87
for specification and verification of safety and live-Woodcock, J.C.P. “Transaction Processing Primi-
ness properties of concurrent programs do not

tives and CSP.” IBM Journal of Research and De- handle this problem.  The proposed specification
velopment 31, 5 (1987), 535-545. and verification method is meant to augment cur-

rent methods for secure system design.Abstract: Several primitives for transaction proc-
essing systems are developed using the notations of
Communicating Sequential Processes. The ap-
proach taken is to capture each requirement
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forced to confront its difficulties rather than avoidZave72
or change them.Zave, P. “An Operational Approach to Requirements

Specification for Embedded Systems.” IEEE Trans. The case studies fit into two major categories,
Software Eng. SE-8, 3 (1972), 250-269. “Academic Problems” are all relatively simple, rela-

tively unrealistic problems that have been posed for
Abstract: The approach to requirements specifi- the benefit of researchers.  Because of their simplic-
cation for embedded systems described in this paper ity, they are solved in great detail.  “Real Systems”
is called ‘operational’ because a requirements are just that—system-development projects onspecification is an executable model of the proposed

which PAISLey has been used.  Due to their sizessystem interacting with its environment.  The ap-
the specifications of real systems are described inproach is embodied by the language PAISLey,
general rather than presented in detail.which is motivated and defined herein.  Embedded

systems are characterized by asynchronous paral-
Zave91lelism, even at the requirements level; PAISLey

specifications are constructed by interacting proc- Zave, P. “An Insider’s Evaluation of PAISLey.”
esses so that this can be represented directly.  Em- IEEE Trans. Software Eng. 17, 3 (March 1991),
bedded systems are also characterized by urgent 212-225.
performance requirements, and PAISLey offers a

Abstract: PAISLey is an executable specificationformal, but intuitive treatment of performance.
language, accompanied by specification methods,
analysis techniques, and software tools; it was theZave87a
subject of a long-term research project. The paper

Zave, P. PAISLey User Documentation, Volume 1: also discusses research methods—both how the
REFERENCE MANUAL. Computer Technology results were obtained, and how the project might
Research Laboratory, AT&T Bell Laboratories, have been improved.
1987.

Zave87b
Zave, P. PAISLey User Documentation, Volume 2:
TUTORIAL. Computer Technology Research Labo-
ratory, AT&T Bell Laboratories, 1987.

(From Prologue) PAISLey is an executable specifi-
cation language. It is fully formal and can be ex-
ecuted by an interpreter, just like any programming
language. But it is also meant to be as
implementation-independent as possible, so that it
can describe the required properties and behavior of
a digital system without constraining how those
properties and behavior are implemented.

Zave87c
Zave, P. PAISLey User Documentation, Volume 3:
CASE STUDIES. Computer Technology Research
Laboratory, AT&T Bell Laboratories, 1987.

(From the Introduction) The purpose of this volume
of documentation is to provide examples of PAIS-
Ley specifications. There are plenty of examples in
the tutorial, but the specifications in this volume are
different in two important ways: (1) Most of the
examples in the tutorial are fragments of specifi-
cations selected to illustrate particular points about
PAISLey. The specifications here are all described
in their entirety, and they are presented so as to
simulate the mental processes that created them.  (2)
I made up all the examples in the tutorial by myself,
with no outside constraints. The case studies are
exactly the opposite—each specification solves a
problem that came from somewhere else, and I was
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