
Extended Disambiguation Rules for Requirements
Specifications

Sri Fatimah Tjong1 (kcx4sfj@nottingham.edu.my),
Michael Hartley1 (Michael.Hartley@nottingham.edu.my), and

Daniel M. Berry2 (dberry@uwaterloo.ca)

1 Faculty of Engineering and Computer Science,
University of Nottingham Malaysia Campus,

Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
2 Cheriton School of Computer Science, University of Waterloo,
200 University Ave. West, Waterloo, Ontario, Canada N2L 3G1

Abstract. This paper extends earlier work by the authors in identifying guiding
rules for natural language (NL) requirements specifications (RSs) by analysing a
few sets of requirements documents from different domains. It presents guiding
rules that help reduce ambiguities and imprecision in NL RSs. It validates these
rules by applying them to sentences in several industrial strength NL RSs.

1 Introduction

In industrial requirements engineering (RE), regardless of the availability of various
notations such as diagrams, formal notations or even pseudo-code, natural language
(NL) is still the most frequently used representation in which to state requirements that
are to be met by information technology (IT) products or services.

It is widely known that NL is inherently ambiguous and imprecise and so are re-
quirements specifications (RSs) written in NL. To reduce the ambiguity and imprecision
of NL RSs, several researchers have proposed the use of different modeling techniques
and methods, as summarised by Denger, Jörg, and Kamsties in the QUASAR Report
[1]. Others, e.g., Fuchs, Schwitter, and Schwertel [2, 3], concentrate on developing a
controlled language for specifying requirements in an almost NL.

This work is an extension of work by the first author [4, 5] describing rules that
guide a RS writer in writing less ambiguous and more precise RSs. A thorough dis-
cussion of the rules can be found in the first author’s technical report on the subject
[6]. This paper describes additional guiding rules. The old rules and the new rules are
derived from an analysis of different RSs [7–10]. Some of the rules are derived from
Denger’s rules [11]. Still others are derived from confusions about RS statements that
the authors have observed. It is important to provide rules for the kinds of ambiguities
and imprecisions that exist in the real world.

Even though ambiguity and imprecision are different phenomena [12], this paper
collapses both phenomena into one term, “ambiguity”, since the distinction between
the two do not effect the nature of the guiding rules.

2 S.F. Tjong, M. Hartley, D.M. Berry

Guiding rules aim to reduce ambiguity in writing a RS. Therefore, it is suggested
that a RS writer consider these rules when writing any NL RS. Other, perhaps more
beneficial, uses of the rules are in inspecting

– client-supplied pre-analysis requirements documents and
– post-analysis SRSs (software RSs)

for ambiguities. In the first case, a detected ambiguity should trigger a question to be
asked of the client, particularly to avoid the natural subconscious disambiguation that
occurs when one reads a document and thinks that she understands it because there
appears to be nothing ambiguous about the document.

Section 2 reviews the past work. Section 3 describes the full set of guiding rules
and suggested possible rewritings of potentially ambiguous requirements statements
(RStats). Section 4 describes the validation of the guiding rules on Rstats in several
industrial strength RSs. Finally, Section 5 summarises the paper and suggests future
work.

2 Past Work

RE, being the core of software development, is concerned with identifying the pur-
pose of a software system and the contexts in which it will be used. It facilitates effec-
tive communication of the requirements among different developers, users, and clients.
However, there are times when these requirements are not properly communicated and
documented, which results in incorrectness, inconsistency, incompleteness, and even
misinterpretation.

To overcome this, there have been research works that define rules to limit the level
of freedom in writing NL RSs. Macias and Pulman [13] apply domain-independent Nat-
ural Language Processing (NLP) techniques to control the production of NL require-
ments. Their study discusses how NLP techniques can help in the design of subsets of
English grammar to limit the generation of ambiguous NL requirements.

Fuchs and Schwitter [2] describe a restrictive approach in their definition of a re-
stricted NL called Attempt Controlled English (ACE). ACE uses a subset of English
that is simple enough to avoid ambiguities, yet allows domain specialists to define re-
quirements in NL with the rigour of formal specification languages.

Other works summarised by Denger, Jörg, and Kamsties [1] identify language indi-
cators, sentence structures, and rules that assist the RS reader in detecting ambiguous
RStats in NL RSs. The focus of their rules is RSs in the automotive domain.

3 Guiding Rules

The guiding rules aim to avoid the introduction of ambiguities when writing any RStat.
These rules are intended to be used along with language patterns [11, 4, 5] in order to
reduce ambiguities in the writing of any RStat. In addition, the guiding rules can also
be used to help find ambiguities in an existing RS.

In the rules and in examples, text from a RStat is typeset in a sansserif typeface. A
constant is such text is typeset in an upright sansserif typeface, and a variable in such

Extended Disambiguation Rules for Requirements Specifications 3

text to be replaced by constant text of the variable’s type is typeset in an oblique (a.k.a.,
slanted) sansserif typeface.

Note that we try to obey our own rules but cannot completely, because these rules
cannot be blindly enforced requirements. Theyshould be followed, but there exists
many a circumstance in which a rule cannot and should not be followed.

The unit of application of each of most rules is a single RstatS. Each rule that says
to avoid a construction offers an alternative construction for saying the same thing less
ambiguously; the alternative construction is signalled by “Instead,”.

3.1 Old Rules

The first fifteen rules are from the first author’s early work [4, 5]. Since these rules
are motivated and described in detail elsewhere, they are mostly only listed here. An
example is given only if the rule would be incomprehensible without an example.

Rule 1: S should be written as a simple affirmative declarative sentence that has only
one main verb.

Rule 2: Avoid writing S in passive voice, especially in which no doer of the action is
specified. Instead, writeS in active voice, with the doer of the action as the subject
of S.

Rule 3: Avoid writing S of the formThere is X in Y. or X exists in Y.. Instead, write
Y has X..

Rule 4: Avoid writing S containing a subjective option introduced by a keyword such
aseither, whether, otherwise, velc1. An example isThe user shall either be
trusted or not trusted. Instead, specify under what condition each option happens.

Rule 5: Avoid writing S containing an indefinite timing introduced by the keyword
eventually, at last, velc. Instead, specify strict sequencing of events with no timing
or specify timing with tolerances, both in measurable units.

Rule 6a: Avoid writing S containing a noun phrase containingmaximum or minimum
as an adjective modifying the main noun, e.g.The system shall return maximum
results. Instead, replace the adjective with a more detailed, complete characterisa-
tion of the noun.

Rule 6b: Avoid writing S containing the phraseas much as possible or as little as
possible. Instead, replace the phrase with a more detailed, complete characterisa-
tion of what is as much or as little as possible.

Rule 7: Avoid writing S containingboth X and Y . Instead, write onlyX and Y .
Rule 8: Avoid writing S containingX but Y . Instead, writeX and Y .
Rule 10: Avoid writing S containingX and/or Y . Instead, writeX, Y, or both.2

Rule 9: Avoid writing S containingX /Y . Instead, writeX or Y .
Rule 11: Avoid writing S containing anyand equivalent, e.g.,not only, but also, as

well as, etc., that provides additional commentary. Instead write simplyand.

1 “velc.” (“vel cetera”) is to “or” as “etc.” (“et cetera”) is to “and”.
2 This use ofboth is not excluded by Rule 10, which suggests avoidingboth when it is combined

with a followingand.

4 S.F. Tjong, M. Hartley, D.M. Berry

Rule 12a: Avoid writing S containing any pair of parentheses, braces, or brackets, i.e.,
(), { }, or [], that encloses unnecessary text. Instead, remove the unnecessary text
and the enclosing pair of parentheses, braces, or brackets.

Rule 12b: Avoid writing S containing any pair of parentheses, braces, or brackets, i.e.,
(), { }, or [], that encloses necessary text. Instead, move the necessary text to its
own Rstat, and remove pair of parentheses, braces, or brackets.

Rule 12c: Avoid writing S containing any pair of parentheses, braces, or brackets, i.e.,
(), { }, or [], in which the purpose of the pair of parentheses, braces, or brackets is
to causeS to mean two or more Rstats, e.g.,Turning the switch down (up) turns
the light on (off). Instead, rewriteS as a sequence of as many Rstats thatS means.

Rule 13: Provide a glossary to explain each domain-specific term or nominalisation,
velc. that appears in the RS.

Rule 14: Provide an acronym list to explain each acronym that appears in the RS.
Rule 15: Provide an abbreviation list to explain each abbreviation that appears in the

RS.

Because in some cases, what results after rewriting a Rstat is not what the writer
intended, the stakeholder who owns a rewritten Rstat must be asked if the new Rstat is
what he or she intended. For example, even though/ meansor, an occasional writer or
reader believes that/ meansand, and he or she would be surprised when presented with
a / replaced by anor.

3.2 New Rules

The following rules are from the first author’s latest work.

Rule 16: Avoid writing S containingall or any modifying a direct object, e.g.:
E1: The operator log will record all warning messages prompted by
the system.

or
E2: The operator log will record any warning messages prompted
by the system.

The use ofall forces the use of plural which is ambiguous in its own right, as
suggested by Rule 25, and is to be avoided. The use ofany is confusing, because
any can be interpreted as an existential quantifier instead of the desired universal
quantifier. Instead, writeeach in place ofall or any e.g.:

E3: The operator log will record each warning message prompted
by the system.

However, not every instance ofall should be replaced byeach, e.g.:
E4: The system must put all displayed text into one file, in order to
facilitate software maintenance for developers and to ease future
translations to local languages.

The difference between the use ofall in E4 and the use ofall in E1 is that in E4, the
intention is to specify something that happens to the entire set of displayed texts,
while in E1, the intention is to specify something that happens to each element of
the set of warning messages. It is hard to describe this difference in a rule.

Extended Disambiguation Rules for Requirements Specifications 5

Rule 17: Avoid writing S containingsome, many, few, e.g., velc. to describe a set of
objects by example rather than by describing the set itself, e.g.:

E5: Some of the software packages (e.g. each HLT algorithm, the
selection control, the data access) shall be documented for both the
user, developer, and maintainer.

Note that E5 violates also some other rules, i.e., Rules 7 and 12b. Instead, specify
the specific instances that are supposed to be in the set, e.g.:

E6: Each HLT algorithm, the selection control, and the data access
shall be documented for the user, developer, and maintainer.

Rule 18: Avoid writing S containing any ofmeanwhile, whereas, on the other
hand, velc. Each such phrase is usually used to combine two or more related Rstats.
Each should be avoided as unnecessarily complicating or lengthening the contain-
ing RS without providing any essential information.

E7: Each officer can print the report by selecting an associate. Mean-
while, an associate can only view the report which contains the pay-
ment details entered by the associate himself.

Instead, rewriteS without themeanwhile, whereas, on the other hand, velc.,
e.g.:

E8: Each officer can print the report by selecting an associate.
An associate can view only the report that contains the payment
details entered by the associate himself.

Note that E7 has also a misplacedonly that is moved to the correct place in E8
according to Rule 27. Moreover, thewhich is changed tothat in accordance with
English rules.

Rule 19: Avoid writing S containing any vague adjective such asprompt, fast, rou-
tine, velc. to describe the timing of a process, e.g.:

E9: The Science Analysis Software performs prompt processing of
Level 0 data to produce Level 1 event data.

Instead, replace the vague adjective with an actual amount of time in a measurable
time unit, e.g.:

E10: The Science Analysis Software performs within 0.1 seconds
the processing of Level 0 data to produce Level 1 event data.

Rule 20: Whenbetween or among is used inS to differentiate one action or process
from another action or process described in the same RS, thenS should not be
changed by any of the other rules. For example,

E11: Relationships between objects made at LVL2 must still be valid
if the objects are passed on to the EF or are stored and retrieved in
the offline environment.

should not be changed by any other rule. This rule prevents upsetting any relation-
ships that exist between the pair of actions or processes.

Rule 21: Avoid writing S containing any vague adjectives such asancillary, relevant,
routine, velc. that requires the reader to do his or her own requirements analysis to
makeS a complete Rstat, e.g.:

6 S.F. Tjong, M. Hartley, D.M. Berry

E12: In support of high-level processing, the SAS extracts from the
LAT and SC Level 0 data ancillary information relevant to event re-
construction and classification.

Instead, the adjective should be replaced by a complete description of whatever is
ancillary, relevant, routine, velc., e.g.:

E13: In support of high-level processing, the SAS extracts the Ground
Observational Data from the LAT and SC Level 0.

Determination of the complete description may require consulting the client or
other stakeholders. Finally, notice that the wordroutine is a signal for two different
rules, Rules 19 and 21; vagueness has multiple uses.

Rule 22: Avoid writing S containingcommon, generic, customary, velc., e.g.:
E14: The simulation shall use instrument geometry that is defined
and is common to all analysis modules.

Each of these words has more than one scope. For example, in E14, it is difficult to
know if the instrument geometry is that which is known world wide in any analysis
module or is that which is assumed in the specific analysis modules appearing in
the system being specified by the RS. Instead, it is necessary to describe the scope
of the commonality, genericity, customariness, velc.

Rule 23: Dependent Rstats should be grouped together, e.g.:
E15: The SDP shall provide the Level 1 data to the P1 sites. The
Level 1 data shall arrive at the sites no later than 24 hours after
completion of processing in the SDP. Then, the SDP shall provide
the Level 0 data to the P1 sites.

Rule 24: Avoid writing S containingshould and similar words, except as an expres-
sion of a non-functional requirement. IfS is supposed to be a functional require-
ment, then rewriteS usingshall.

Rule 25: Avoid writing S containing a plural subject, e.g.:
E16: All persons in the room lift a table.

With such a sentence, it is difficult to determine how many predicate or object
instance is related to each subject instance. In E16, it cannot be determined if each
person in the room lifts his or her own table or if the all the people in the room as a
group lift one table. Instead, try to use only a singular subject, e.g:

E17: Each person in the room lifts his or her own table.
and

E18: The set of all person in the room lifts one table.
If you must use a plural subject, then reserve it for describing properties of the
entire set of subject instances, e.g.:

E19: All persons in the room together lift one table.

Rule 26: Avoid writing S containingA unless B. Instead, useIf 6(B), then A. We
have seen evidence that an occasional person usesA unless B. as 6(B) if and only
if A. Writing an “unless” Rstat as its logical equivalent will force the person who
misinterprets the “unless” Rstat to see what the Rstat really means.

Extended Disambiguation Rules for Requirements Specifications 7

Rule 27: Move anyonly, also, or any other limiting word to before the phrase the
only, also, or other limiting word is intended to limit. For example

E20: An associate can only view the report which contains the pay-
ment details entered by the associate himself.
E21: An associate can view only the report which contains the pay-
ment details entered by the associate himself.

We expect the guiding rules to assist a requirements engineer in inspecting and in writ-
ing a NL RS.

4 Validation: Analysis and Rewriting the Original Requirements

We validated the guiding rules by rewriting existing and ambiguous RSs [7–10] using
recommendations from the guiding rules. Before we rewrote any RS, each RStat in the
RS was examined with the help of the guiding rules in order to identify possible ambi-
guities in the RStat. Whenever a RStat violated one or more rules, we looked carefully
at the Rstat in order to determine if it was indeed ambiguous. If a Rstat was judged to be
ambiguous, the suggestions of the violated rules were followed to guide the rewriting
of Rstat.

Space permits showing only a few of the ambiguous Rstats that we found. However,
note that most of the examples cited in the explanations of the guiding rules are from
the examined RSs.

In E22,meanwhile combines two Rstats into one long Rstat, in violation of Rule
18. Even though the second Rstat has a plural subject and usesall in apparent violation
of Rule 25, the Rstat is describing a property of the entire set of payments, that they are
grouped together into one payment.

E22: If the payment is with payee’s details, then the system will treat
each payment separately meanwhile if users choose “No”, all the pay-
ment records will be grouped together to become one cheque.

Therefore, the suggested change of only Rule 18 is applied to split E22 into two Rstats,
E23 and E24.

E23: If the payment is with the payee’s detail, then the system will treat
each payment separately.

E24: If the user chooses “No”, all the payment records will be grouped
together to become one cheque.

E25 and E26 show the ambiguity resulting from the use ofall in writing a plural subject,
in violation of Rule 25. Note that E25 has (1) a violation of Rule 12b, against the use
of a pair of parentheses to enclose essential information and (2) a violation of Rule
17, against the use ofe.g. to describe example elements of a set of objects instead of
describing the set.

E25: All login attempts shall be done so in a secure manner (e.g. en-
crypted passwords).

8 S.F. Tjong, M. Hartley, D.M. Berry

E26: All pipeline products shall contain keywords, which describe the
pipeline modules used to create them.

The violated rules suggest rewriting E25 and E26 into E27 and E28, respectively.

E27: Every login attempt shall be done with an encrypted password.

E28: Every pipeline product shall contain keywords that describe the
pipeline modules used to create the pipeline product.

The change embodied in E28 assumes that each pipeline product is built from several
pipeline modules. If each pipeline product is built from exactly one pipeline module,
then E26 should be changed to E29.

E29: Every pipeline product shall contain the keyword that describes the
pipeline module used to create the pipeline product.

E30 contains a violation of each of Rule 16, Rule 25, and Rule 12a or Rule 17.

E30: All mission elements shall withstand all environments (e.g. EMI,
shock, and thermal) to be encountered from component fabrication.

If EMI, shock, and thermal are only some of the possible environments that can be
encountered during component fabrication, then a suggested rewriting of E30 is E31.

E31: Each mission element shall withstand each environment that can
be encountered during component fabrication.

If, on the other hand, EMI, shock, and thermal are all of the possible environments
that can be encountered during component fabrication, then an alternative suggested
rewriting of E30 is E32.

E32: Each mission element shall withstand EMI, shock, and thermal
environments.

E33 contains violations of Rule 12b and Rule 17 or a violation of Rule12a.

E33: All users of the system shall login using some form of unique iden-
tification (e.g. username and password).

If the purpose of the information in the pair of parentheses is to give the only form of
unique identification possible, then a suggested rewriting is E34.

E34: Each user of the system shall login by using his username and his
password.

If the purpose of the information in the pair of parentheses is to give one possible form
of unique identification, and it is truly the case thatanyform of unique identification is
to be used for login, then a suggested rewriting is E35.

E35: Each user of the system shall login by using some form of unique
identification.

Extended Disambiguation Rules for Requirements Specifications 9

E36 violates Rule 17 or Rule 21 because the wordroutine requires the reader to do
requirements analysis to determine what sort of processing is really intended. Moreover,
it is not clear if the missing information is timing or functional information.

E36: The SAS is responsible for routine Level 2 processing of the LAT
data.

If the missing information is about the timing of the processing, then a suggested rewrit-
ing is E37.

E37: The SAS is responsible for daily Level 2 processing of the LAT
data.

If the missing information is about the function of the processing, then a suggested
rewriting is E38.

E38: The SAS is responsible for the Level 2 processing of the LAT data
that computes the maximum, minimum, and average values.

E39 gives example Rstats that together fall under the province of Rule 23 and should
be grouped together.

E39: The system shall be designed to accommodate the addition of a
propulsion subsystem. The propulsion subsystem shall be capable of
transferring the system from the circular parking orbit to the operational
orbit.

E40 contains violations of Rules 18 and 24 by its use ofshould and ofwhereas.

E40: The user manual should document the expect results whereas
the user interface should provide information or warning indicating what
changes will occur when a user changes the regional setting.

The violated rules suggest rewriting E40 as E41 and E42.

E41: The user manual shall document the expect results.

E42: The user interface shall provide information or a warning indicating
what changes will occur when a user changes the regional setting.

The main lesson to learn from these examples is that while guiding rules help iden-
tify which Rstats are potentially ambiguous, only a human being can determineif any
Rstat is really ambiguous, and only astakeholder human beingcan explain the intended
meaning of an ambiguous Rstat so that the Rstat can be rewritten correctly.

5 Conclusion and Future Work

This paper describes the latest guiding rules for avoiding ambiguities in NL RSs that
we have found based on examination of several industrial strength RSs. As a partial

10 S.F. Tjong, M. Hartley, D.M. Berry

validation of the new rules, the paper gives some examples of ambiguous sentences
from the RSs and their rewritten, less ambiguous forms.

We expect to continue to examine industrial strength RSs to find additional rules. In
addition, the first author is developing a Systemised Requirements Engineering Envi-
ronment (SREE) that searches for potentially ambiguous Rstats and offers suggestions
for rewriting each potentially ambiguous Rstat it finds. The effectiveness of SREE will
be validated by applying it industrial strength RSs.

The lack of uniformity and the hit-and-miss nature of the guiding rules are a bit
disconcerting. However, these guiding rules cover the kinds of ambiguities we have
found in actual industrial RSs. Of course, the method by which the guiding rules are
found makes it difficult to assess when enough rules have been found. Probably, there
is no limit on the number of rules. However, we expect that at some point, the rate
of addition of new rules will drop off considerably, just because we will eventually
begin not to find new kinds of ambiguities. Thus, the work described in this paper is
complementary to all the other work cited in Section 2 that attempts to find systematic
ways of detecting or avoiding ambiguities.

Another disconcerting property of these rules is the difficulty of finding a pattern for
each of these ambiguities. For any rule, there is no guarantee that every Rstat meeting
the pattern of the rule is an instance of the kind of ambiguity that is intended to be
described by the rule; and conversely, there is no guarantee that the rule describes every
instance of the kind of ambiguity that is intended to be described by the rule. As SREE
is developed, and we see its recall and precision in identifying potentially ambiguous
RStats, we will be able to refine the patterns.

References

1. Denger, C., J̈org, D., Kamsties, E.: QUASAR: A Survey on Approaches for Writing Precise
Natural Language Requirements. IESE Fraunhofer, Kaiserslautern, DE (2001)

2. Fuchs, N.E., Schwitter, R.: Specifying logic programs in controlled natural language. In:
CLNLP’95, Workshop on Computational Logic for Natural language Processing. (1995)

3. Schwertel, U.: Controlling plural ambiguities in Attempto Controlled English. In: Proceed-
ings of the Third Internaltional Workshop on Controlled Language Applications (CLAW),
Seattle, WA, USA (2000)

4. Tjong, S.F.: Improving the quality of natural language requirements specifications through
natural language requirements patterns. Technical report, Faculty of Engineering and
Computer Sciences, University of Nottingham (2006)http://sepang.nottingham.
edu.my/˜kcx4sfj/ .

5. Tjong, S.F.: Improving the quality of natural language requirements specifications through
natural language requirements patterns. In: IEEE International Conference on Computer and
Information Technology. (2006)

6. Tjong, S.F.: Elaborated natural language patterns for requirements specifications. Technical
report, Faculty of Engineering and Computer Sciences, University of Nottingham (2006)
http://sepang.nottingham.edu.my/˜kcx4sfj/ .

7. Moeser, R., Perley, P.: EVLA operations interface, software requirements. Techni-
cal report, EVLA-SW-003 Revision: 2.5 (2003)http://www.aoc.nrao.edu/evla/
techdocs/computer/workdocs/array-sw-rqmts.%pdf .

Extended Disambiguation Rules for Requirements Specifications 11

8. Dubois, R.: Large area telescope (lat) science analysis software specification. Tech-
nical report, GE-0000X-DO (2000)http://www-glast.slac.stanford.edu/
IntegrationTest/DataHandling/docs/LA%T-SS-00020-06.pdf .

9. George, S.: PESA high-level trigger selection software requirements. Technical report, Cen-
tre for Particle Physics at Royal Holloway University (2001)http://www.pp.rhul.
ac.uk/atlas/newsw/requirements/1.0.2/ .

10. Eng, C.S.: Batch poster system, detailed business requirements. Technical report, EDS
MySC, Malaysia (2005)

11. Denger, C.: High quality requirements specifications for embedded systems through author-
ing rules and language patterns. Technical Report M. Sc. Thesis, Fachbereich Informatik,
Universiẗat Kaiserslautern (2002)

12. Bach, K.: Ambiguity. In Craig, E., Floridi, L., eds.: Routledge Encyclopedia of Philosophy,
London, UK, Routledge (1998)

13. Macias, B., Pulman, S.: Natural language processing for requirements specifications. In Red-
mill, F., Anderson, T., eds.: Safety-critical systems: Current issues, techniques and standards,
London, UK, Chapman & Hall (1993) 67–89

