
Improving the Quality of Natural Language Requirements Specifications

through Natural Language Requirements Patterns

Sri Fatimah Tjong Nasreddine Hallam Michael Hartley

University of Nottingham Malaysia Campus
{kcx4sfj, Nasreddine.Hallam, Michael.Hartley}@nottingham.edu.my

Abstract

This paper presenst an approach for reducing the

problem of ambiguity and imprecision in natural
language requirements specifications with the use of
language quality patterns and guiding rules. To ensure
the applicability of our approach, we study different
sets of requirements documents from several domains.
We further validate our approach by rewriting the
requirements statements derived from these
requirements documents.

Keywords: Natural Language Requirements
Specifications, Guiding Rules, Language Patterns

1. Introduction

Requirements engineering, being the core of
software development, is concerned with identifying
the purpose of a software system and the contexts in
which it will be used. It also facilitates effective
communication of the requirements among different
stakeholders, users, and clients. In general, some
requirements are not properly communicated and
documented, which results in incorrectness,
inconsistency, incompleteness, and even
misinterpretation. More importantly, the inherent
ambiguity of natural language is another issue of
requirements represented in natural language.

To reduce the ambiguity in natural language, several
authors have proposed the use of different modeling
techniques and methods as summarised in QUASAR
[3]. Some have even developed a controlled language
for specifying requirements in an almost natural
language [10]. These methods are either the formal
languages expressing the requirements or a set of
procedures formalising the requirements. Formal
languages use precise mathematical notations to
eliminate ambiguity (such as Z and B, VDM, LOTOS,
Petri Nets, etc.) [15].

This paper describes the works that have been done
on analysing several sets of requirements documents in

the aim of producing sets of guiding rules and language
patterns for the use of better analysis of natural
language requirements specifications (NLRSs). From
our analysis, we find that certain keywords such as
“and”, “or”, “and/or”, “but” and “both” have
occasionally contributed to the introduction of
ambiguity and defects. Therefore, the rules and
language patterns are hoped to aid the writing of better
quality requirements with less linguistic inaccuracies
and defects.

This paper is organised as follows. Section 2 is a
brief literature review of NLRSs. Section 3 describes
rules and language patterns for improving the quality of
NLRSs. Section 4 briefs on the analysis and rewriting
the original requirements process. Finally, Section 5
concludes the content of the report and future work to
be done.

2. Related Work

A survey has been conducted on identifying and
classifying techniques and approaches that claim to
reduce the inherent ambiguities in NLRSs [3]. In
general, these approaches can be classified into three
categories:

• Approaches that define linguistic rules and
analytical keywords [6, 7, 19].
The approaches present Quality Attributes, Model
and Indicators used in evaluating the quality of the
existing NLRSs. Frequently used keywords,
phrases and sentence structures that cause
imprecision are grouped and counted by computer
programs. They are thought to be effective in
detecting defects and ambiguous NLRSs found in
the requirements document.

• Approaches that define guideline-rules [11, 13].
These approaches summarise rules and guidelines
to be adapted in preparing NLRSs. The guidelines
avoid incorrect constructions of NLRSs by
detecting the potential defects and ambiguities in
NLRSs. The definition of rules can be used as a
checklist by a requirement engineer to decide the

correctness of the written NLRSs. This would
avoid the introduction of natural language
ambiguities by restricting the level of freedom in
preparing or writing NLRSs.

• Approaches that define specific language patterns
to be used in writing the NLRSs for different
respective domains [2, 4, 17, 18].
A pattern language is a devised description of
language in a more restricted way. There are
several types of patterns such as architectural
patterns that show the high level architectures of a
software system, design patterns that are focused
on the programming aspects, or even patterns for
project management [16]. The patterns defined by
Ohnishi and by Rolland and Proix [17, 18]
concentrate to lessen the NLRSs imprecision in the
domain of information system and database. Both
Barr and Denger [2, 4] focused on the patterns for
embedded system. Denger even devises a
metamodel for requirements-statements in the
embedded system.

It is worth noting that besides the above three
approaches, others discuss the use of quality
characteristics that are necessary in writing the well-
defined NLRSs [12, 8].

Hooks [12] raises the common problem found in
producing the requirements and defined the ways to
prevent them. Moreover, she also conducts an in-depth
survey on the principal sources of defects in NLRSs
and the associated risks. Firesmith [8] summarises a list
of good-quality requirements characteristics and also
the requirements’ problem.

The work from Ambriola and Gervasi [1]
concentrates on achieving high-quality of NLRSs
through CIRCE (Cooperative Interactive Requirement-
Centric Environment). CIRCE is based on the concept
of successive transformations that are applied to the
requirements, in order to obtain concrete (i.e.,
rendered) views of models extracted from the
requirements.

In this work, we identify general language patterns
that are sufficient enough to reduce the informality,
imprecision and ambiguity of the NLRSs. We focus on
language patterns for sentence parts (phrases or
clauses), and also for complete-sentence patterns.
Based on the studies and analysis on the imprecise and
ambiguous requirements statements in the requirements
documents [20, 21, 22, 23, 24], we produce a set of
language patterns along with their corresponding
transformation process in order to reduce the
requirements defects. The idea is to transform some
ambiguous NLRSs into more simplistic (in terms of
less ambiguous) ones. We use rules of inferences to
prove the reliability of the transformations. On the
other hand, our guiding rules are built up on top of the
Denger’s authoring rules [2] by extending and adding

more guiding rules to be used along with the language
patterns. The rules basically describe how to use
natural language in writing the requirements whereas
the patterns restrict the writing freedom in the purpose
of reducing imprecision and ambiguity of NLRSs.

3. Language Patterns and Guiding Rules

This section presents the excerpt of the language
patterns and guiding rules that are applicable in general
writing of NLRSs in most domains.

3.1 Language Patterns

We examined several case studies and real

requirements documents [20, 21, 22, 23, and 24] and
extracted NLRS writing schemes. Unlike previous
works [2, 4, 17, 18] that concentrate on specific
domains, we develop general standardised language
patterns that are applicable in most domains and
adaptable in the process of writing NLRSs.

In our studies of real requirements documents, we
notice the frequent use of “and”, “or”, “and/or”, “but”
and “both” has caused the introduction of inherent
ambiguity in requirements statements. To facilitate our
explanation and due to space limitation, we concentrate
on describing a variety of “and” and “or” patterns and a
few other general patterns in this paper. The full set of
language patterns can be found in the first author’s
technical report [25].

3.1.1 AND Pattern. The word “and” is generally
and always used to represent several combinations of
requirements in one requirements statement. From the
analysis on the requirements documents, the use of
“and” in requirements statements have occasionally
made the requirements implicitly ambiguous. For
instance:

E.g. An authorised user shall be able to connect to
the database server at ease and at will.
There are also requirements statements that use

comma “,” to list down sets of requirements. Therefore,
comma is commonly treated to be similar to “and”.
The use of “but” in writing the requirements statement
may cause different interpretations as well. For
instance:

E.g. The LVL1 result will also provide secondary
RoIs which did not pass the thresholds, but do pass
lower thresholds.
 Hence, we suggest to avoid the use of “but”.

Instead of “but”, use “and” since “but” is just another
way of saying “and” [25].

Table 1 summarises the sets of “and” and “if and
only if” language patterns. The table’s left-hand-side
column describes the patterns generally adapted in

existing requirements documents. The table’s middle
column illustrates our language patterns transformation.
The table’s right-hand-side column gives our language
patterns.

The following abbreviations are used in this table:
GAND = Generic AND Pattern, CACP = Compound
AND Condition Pattern, and IFFP= If and Only If
Pattern. It is worth noting that CACP3, CACP4, and
CACP5 are patterns for Negation AND.

Let: - R be the requirement statement, and 1R , 2R ,… nR are the requirements set.

 - S be the reaction implied by R , and 1S , 2S ,… nS are the reactions set.

 - C be the condition to R , and 1C , 2C ,… nC are the conditions set.

Table 1. ANDTable 1. ANDTable 1. ANDTable 1. AND and IFFand IFFand IFFand IFF Language Patterns Language Patterns Language Patterns Language Patterns
Patterns found in

Requirements Documents

Suggestion to the Language

Patterns Transformation

Trivial

1R , 2R ,… and nR GAND:- 1R

 - 2R
 - …

 - nR

GAND:- 1R

 - 2R
 - …

 - nR

1C and 2C … and

nC

then S

CACP1:

1C then S

or 2C then S

() () ()()SCSCSCC →∨→⇔→∧ 2121

 1C⇔ then S or 2C then S

C

then 1S and 2S

CACP2:

C then 1S and

C then 2S

() () ()()2121 SCSCSSC →∧→⇔∧→

 C⇔ then 1S and C then 2S

{Not | Never | Neither}

(1C {and | nor } 2C)

then S

CACP3:

1C¬ then S and

2C¬ then S

() () ()SCSCSCC →¬∧→¬⇔→∧¬ 2121

 1C¬⇔ then S and

 2C¬ then S

{Not | Never } 1C

 and 2C

 then S

CACP4:

1C¬ then S or

2C then S

() () ()SCSCSCC →∨→¬⇔→∧¬ 2121

 1C¬⇔ then S or 2C then S

1C and 2C {Not | Never

}

 then S

CACP5:

1C then S or

2C¬ then S

() () ()SCSCSCC →¬∨→⇔→¬∧ 2121

 1C⇔ then S or 2C¬ then S

C if and only if S IFFP:

C then S and

C¬ then S¬

() ()SCSCSC ¬→¬∧→⇔↔

 C⇔ then S and C¬ then S¬

CACP1 describes several or compound conditions that should occur before the system can trigger a reaction or response in

return. CACP2 describes the occurrence of a specific condition will cause the system triggers several or compound

reactions or responses in return. CACP3 describes the compound of negated conditions in which when they occur, the

system will trigger a specific reaction or action in return. CACP4 and CACP5 describe the occurrence one particular

negated condition will cause the system to trigger a specific reaction in return. IFFP describes if the condition is true then
the system will trigger a specific reaction in return. If the negated condition occurs, then the system will trigger another
reaction to it.

3.1.2 OR Pattern. We observe that the improper
uses of “or”, “/”, or “and/or” in writing requirements
statements have also contributed in introducing the
inherent ambiguity in NLRSs. They occasionally cause
an open and subjective interpretation in realising the
requirement. For instance:

E.g. The user shall either be trusted or not trusted.
Besides that, the use of “and/or” should also be

avoided in writing requirements statements due to its
inherent defects it may cause. For instance:

E.g. An authorised user shall have the ability to edit
and/or void a log entry.

Since “and/or” is logically the same with “or” [25],
therefore a proper use of “or” is preferable instead of
“and/or”.

Table 2 summarises the sets of “or” language
patterns. The table’s left hand side column describes
the patterns generally adapted in existing requirements
documents. The table’s middle column illustrates our
language patterns transformation. and the table’s right
hand column devises our language patterns. The
following abbreviations are used in this table: GOR =
Generic OR Pattern and COCP = Compound OR
Condition Pattern. It is worth noting that COCP5,
COCP6, and COCP7 are patterns for Negation OR.

Table 2. OR Language PatternsTable 2. OR Language PatternsTable 2. OR Language PatternsTable 2. OR Language Patterns
Patterns found in

Requirements

Documents

Suggestion to the

Language Patterns

Transformation

Trivial

1R or 2R … or nR GOR: 1R or 2R or …

nR

1R or 2R or … nR

1C or 2C … or nC

then S

COCP1:

- 1C then S

- 2C then S

- …

() () ()()SCSCSCC →∧→⇔→∨ 2121

 1C⇔ then S and 2C then S

And according to GAND rule, it can be simplified to:

- 1C then S

- 2C then S

-…

C then 1S or 2S COCP2:

C then 1S or

C then 2S

() () ()()2121 SCSCSSC →∨→⇔∨→

 C⇔ then 1S or C then 2S

SC → { else |

otherwise } S

COCP3:

() ()SCSC →∨→ 1

() ()SCSC →∨→ 1

1SC→ { else |

otherwise }

2S

COCP4:

() ()21 SCSC →∨→

() ()21 SCSC →∨→

{Not | Never | Neither}

(1C {or | nor } 2C)

then S

COCP5:

1C¬ then S or 2C¬

then S

() () ()SCSCSCC →¬∨→¬⇔→∨¬ 2121

 1C¬⇔ then S or 2C¬ then S

{Not | Never }

1C or 2C

 then S

COCP6:

1C¬ then S and

 2C then S

() () ()SCSCSCC →∧→¬⇔→∨¬ 2121

 1C¬⇔ then S and 2C then S

1C or 2C {Not | Never

}

then S

COCP7:

1C then S and

 2C¬ then S

() () ()SCSCSCC →¬∧→⇔→¬∨ 2121

 1C⇔ then S and 2C¬ then S

COCP1 describes several or compound conditions that should occur before the system can trigger a reaction or response in

return. COCP2 describes the occurrence of a specific condition will cause the system to trigger several or compound

reactions or responses in return. COCP3 and COCP4 describe the occurrence of a specific condition will cause the system
to trigger appropriate reaction. However, if the condition is negated, the system must trigger another response or action.

COCP5, COCP6 and COCP7 describe the combined occurrence of negated conditions will cause the system to trigger
specific reaction in return.

3.1.3 Some Other Patterns. Two of the general
sentence patterns can be found in Table 3. These
patterns should be adapted as guidelines in preparing
the NLRSs. GP (Generic Pattern) is meant for writing a
simple and affirmative requirements statement whereas
GNP (Generic Negated Pattern) is for a negated
requirement.

ECP1, ECP2 and ECP3 (Event Condition Pattern)
are patterns designed to enable the different ways of
representing requirements that are caused by some
events and conditions. Denger has also defined sets of
event patterns in his work [4, 5]. He clarifies that there
is a difference between an event and a condition. An
event is a change in the value of a variable in the
system state; whereas a condition concerns the value of
that variable[5]. Nevertheless, we design the ECP1,
ECP2, and ECP3 that are commonly adaptable to
writing requirements statement that is caused by either
an event or a condition.

TP1, TP2, TP3, and TP4 (Time Pattern) are the
patterns to be adapted in writing requirements that
concern with time.

We suggest that a clause(s) or a phrase(s) should be
taken as guided reference tailored to the requirements.
This will eliminate the informality or ambiguity caused
by long sentences (due to the occurrence of clauses or
phrases) [25].

The following notation conventions are used: sans
serif term refers to textual element, a boldface sans
serif term refers to the definition of the language
pattern, capitalised sans serif term refers to the
definition part of speech that should be in place, a
lower-case sans serif term refers to the possible role of
instantiations of a language pattern element, an italic
boldface serif refers to occurrence of text elements in
the pattern. The serif term inside curly braces “{ }” and
“[]” refers to optional pattern element.

Table Table Table Table 3333. . . . Some OtherSome OtherSome OtherSome Other Patterns Patterns Patterns Patterns

Generic

Patterns

GP: NOUN_PHRASE (variable | actor | receiver) {MV | PV} [VERB]
(action) COMPLEMENT

GNP: NOUN_PHRASE (variable | actor | receiver) {MV | PV} not [VERB]

 (action) NOUN_PHRASE

Event

Condition

Patterns

Condition: {Unless | If | When} (conjunction) NOUN_PHRASE (variable |

 actor | receiver) [MV | PV] VERB (action) [COMPLEMENT]
ECP1: Condition, GP
ECP2: GP Condition
ECP3: GNP Condition

Time

Patterns

TP1: {within} TIME_UNIT

TP2: [for] {at least | at most} [DATA_UNIT]

TP3: {as soon as | as long as …} ADJECTIVE

TP4: {for | of} { [not | no] {more| less} than } TIME_UNIT

Clause

Patterns

Subordinate Clause (Sub_Clause) 1:

{that | which} VERB [COMPLEMENT]

Subordinate Clause (Sub_Clause) 2:

{but | as | since | while | where } NOUN_PHRASE VERB [COMPLEMENT]

Subordinate Clause (Sub_Clause) 3:

 {in order to | in [the] case of | such that | regardless [of] | given that |…}

 NOUN_PHRASE VERB [COMPLEMENT]

3.2 Guiding Rules

Our guiding rules are built up on top of the

authoring rules [4]. We add more rules to be used
together with the language patterns. The majority of the
rules are produced based on the analysis on different
sets of requirements documents [20, 21, 22, 23, 24],
with a few derived from the literature review discussed
in Section 2.

The rules are intended to be used along with the
language patterns in order to maximise the reduction of
ambiguity and possible introduction of imprecision in
writing the NLRSs. Therefore, the requirements writer
must consider these rules when applying the language
patterns.

Due to the space restriction, we present only some
of the guiding rules (a more detailed description can be
found in [25]) as below:
[Rule 1] Use simple affirmative declarative sentence

that consists only 1 main verb [13].
[Rule 2] Avoid writing requirement sentences in

passive voice [11].
[Rule 3] Rewrite sentence of the type “There should be

X in Y” or “X should exist in Y” into “Y
should have X” [13]

[Rule 4] Avoid requirement sentences that contain
subjective option in realising the requirement
(keywords such as “either”, “whether”,
“otherwise”, etc. shall be avoided) [25]

 [Rule 5] Avoid the use of keywords such as
“eventually”, “at last”, etc. [25].

[Rule 6] Avoid the use of keywords such as
“maximum”, “minimum”, etc. Alternatively,
use “at most”, “at least” followed by specific
X data or time unit (as defined in TP2) [25].

[Rule 7] To reduce the possibility of arising ambiguity,
avoid the use of “both”, since “both” is just
simply “and” [25].

[Rule 8] Avoid the use of keyword “but”. Since “but”
is just another way of saying “and”, therefore
use only “and” instead of “but” [25].

[Rule 9] Avoid the use of “/” in writing the
requirements statements. Alternatively, use
only “or” instead of “/” [25].

[Rule 10] Avoid the use of “and/or” in writing
requirements statements. Alternatively, use
only “or” instead of “and/or” because they
carry the same logical interpretation [25].

[Rule 11] Avoid the use of unnecessary conjunctions
that work as additional commentary to the
requirements statements. The following
conjunctions shall be avoided such as “not
only”, “but also”, etc. [25].

[Rule 12] Avoid the use of brackets or parentheses “(
)”, “{ }”, “[]” due to the ambiguity it may
cause. It is generally difficult to interpret

whether the parentheses contain optional
information or even multiple requirements
[25].

[Rule 13] Define a glossary to explain important terms
and nominalisations that are used in the
requirements statements [11].

[Rule 14] Define an acronym list to explain the used
acronyms in the requirements statements
[11].

[Rule 15] Define an abbreviation list to explain the
used abbreviations in the requirements
statements [11].

We realise the aspects as listed in “[Rule 13]”,
“[Rule 14]”, and “[Rule 15]” should be followed so
that the requirements writer can differentiate between
real requirements and referenced information tailored
to the requirements.

4. Validation: Analysis and Rewriting the

Original Requirements

We validated the guiding rules and our suggested

patterns by rewriting existing requirements documents
using the guiding rules and patterns.

Before we rewrote the requirements, the
requirements statements from the original requirements
documents and case studies were studied to identify the
possible defects and imprecision. The original
requirements were reviewed by referring to the guiding
rules. Whenever the original requirements statement
violated a rule, the nature of the violation was then
noted. Then, we rewrote the statements by adapting to
our suggested language pattern. The following are
some examples of the original requirements statements:
R1. When a client makes a one-way send, the server

must eventually receive data.
The requirement does not specify the type of data (one-
way send or other type of send) and exactly when the
server must receive. As long as the server receives the
data, then the requirement is fulfilled. Unfortunately,
the client won’t be aware when the server will be
receiving the data. The recommendation to rewrite the
requirements statement is:
R1. When a client makes a one-way send, the server

must receive the one-way send data.
Or alternatively:
R1. When a client makes a one-way send, the server

must receive the sent data.

R2. The system shall return minimum results to the

user.
The above example shows a vague and ambiguous
requirement caused by keyword “minimum”. The
system will never be able to decide itself the number of
results and the type of results it has to return to the

user. Adapting to “[Rule 6]”, GP and GAND patterns,
the recommendation to rewrite the requirements
statement is:
R2. The system shall return at least 1 search-result to

the user.

R3. A reward system must be established not only for

the teams of employees, but also for organisations.
Since the conjunctions serve only as additional
commentary to the requirements statement, they should
be discarded. Adapting to “[Rule 11]”, GP and GAND
patterns, the recommendation to rewrite the
requirements statement according to the rules and
language pattern is:
R3.1. A reward system must be established for the

teams of employees.
R3.2. A reward system must be established for the

organisations.

R4 Neither if the system receives the requested data

nor the one-way sent data within 24 hours, then the
system must automatically alert the user.

We rewrote the statement to be more precise by
adapting to COCP5 pattern as shown below:
R4.1 If the system doesn’t receive the requested data

within 24 hours, then the system must
automatically prompt an alert message to the
user

R4.2 If the system doesn’t receive the one-way data
within 24 hours, then the system must
automatically prompt an alert message to the
user

Due to the space limitation, we can only describe
the validation and rewritten process by using 4
examples of ambiguous requirements found on the
existing requirements documents and case studies [20,
21, 22, 23, 24]. More examples and rewritten
requirements can be found in the first author’s
Technical Report [25].

5. Conclusion and Future Direction

We address the current research work in defining
guiding rules and our suggested language patterns to be
used in writing the NLRSs. The introduced rules and
language patterns are developed from the studies of
several sets of requirements documents and series of
literature reviews and NLRS state of practice.

We validate the usefulness and applicability of the

guiding rules and suggested language patterns by
rewriting the ambiguous requirements sentences
applying both the language patterns and rules.

This research work will further continue on
developing a system coined SREE (Systemised
Requirements Engineering Environment). SREE that
incorporates all our suggested language patterns, is
mainly designated as an environment for the analysis of
natural language requirements. SREE is expected as a
work companion for the requirements engineer or
software developers that reads NLRSs as inputs and in
anticipation, produces views on different aspects of
requirements (such as requirements specification to be
presented in diagrammatic ways). One may also think
of SREE as Requirements Management tool.
Overview of the transformation of Higher Quality
NLRSs to be incorporated in SREE:

• First, the requirements document is analysed,
sorted and rewritten into a set of structured
requirements sentences by applying the guiding
rules and language patterns

• Next, the produced structured and unambiguous
requirements will be parsed and tagged by an
automated tool.

• The parsed attributes of the requirements will be
represented in diagrammatic notations as modeling
aid.

Figure Figure Figure Figure 1111. . . . Improving the qualtiy of NLRSs Improving the qualtiy of NLRSs Improving the qualtiy of NLRSs Improving the qualtiy of NLRSs
through natural language requirements patternsthrough natural language requirements patternsthrough natural language requirements patternsthrough natural language requirements patterns

SREE is also expected to be highly adaptable to

different applications domains and requirements. It will
later be tested in a new product development
environment so that the effects on the process can be

Requirements

Documents

Authoring Rules

&

Language Patterns

• ___________

• ___________

• ___________

• ___________

• ___________

• ___________

Requirements Sentence will be restructured

according to the formulated Natural Language

Patterns and Authoring Rules for Requirements

Requirements

Document Structured

Requirements

Sentences

Structured Requirements Sentences will

be represented in diagrammatic notations

for understandable viewing purposes.

monitored. We expect that the combination use of the
tool and requirements engineer as the human inspectors
will achieve the best maximum result of engineering
the software requirements.

Acknowledgement

The authors thank D. M. Berry for his invaluable
and significant advises, comments and reviews.

10. References

[1] Ambriola, V. and Gervasi, V., “The CIRCE approach to
the systematic analysis of NL requirements”, Technical
Report: TR-03-05, Università Di Pisa, 2003
[2] Barr V., “Identifikation von Spezifikationsmustern im
Echtzeitentwurf anhand der Fallstudie Antiblockiersystem”,
Diplomarbeit der Universitaet Oldenburg, Fachbereich
Informatik, 1999
[3] Denger C., Jőrg D., Kamsties E., “QUASAR A Survey on
Approaches for Writing Precise Natural Language
Requirements”, Fraunhofer IESE, 2001
[4] Denger C., “High Quality Requirements Specifications
for Embedded Systems through Authoring Rules and
Language Patterns”, M.Sc. Thesis, Fraunhofer Institute for
Experimental Software Engineering, Kaiserslautern,
Germany, 2002
[5] Denger C., Berry D.M., Kamsties E., “Higher Quality
Requirements Specifications through Natural Language
Patterns”, Proceedings of the IEEE International Conference
on Software – Science, Technology & Engineering
(SwSTE’03), 2003
[6] Fabbrini F., Fusani M., Gnesi G. and Lami G., “Quality
Evolution of Software Requirements Specifications”,
Proceedings Software and Internet Quality Week 2000
Conference, San Fransisco, CA, 2000
[7] Fabbrini F., Fusani M., Gnesi G. and Lami G., “The
Linguistic Approach to the Natural Language Requirements
Quality: Benefit of the use of an Automatic Tool”,

Proceedings of the 26th Annual NaSA Goddard Software
Engineering Workshop (SEW’01), 2002
[8] Firesmith D., “Specifying Good Requirements”, Journal
of Object Technology 2, 2003
[9] Fliedl G., Kop C., Mayerthaler W., Mayr H.C., Winkler
C., “Linguistic Aspects of Dynamics in Requirements
Specifications & Linguistically Based Requirements
Engineering”, Data & Knowledge Engineering,
Netherlands, 2000
[10]Fuchs N.E. and Schwitter R., “Controlled English for
Requirements Specification”, IEEE Computer Special Issue
on Interactive Natural Language Processing, 1996
[11] Götz R. and Rupp C., “Regelwerk Natürlichsprachliche
Methode”, Sophist, Nürnberg, Germany, 1999
[12] Hooks I., “Writing Good Requirements”, Vol. 2, pp.
197-203, Proceedings of the Fourth International Symposium
of the NCOSE 2, San Jose, CA, 1994
[13] Juristo N., Moreno A.M. and Lopez M., “How to Use
Linguistic Instruments for OOA”, pp. 80-89 Proceedings of
the IEEE International Conference on Software, 2000

[14] Lami Giuseppe., “QuARS: A Tool for Analysing
Requirements”, Carnegie Mellon University, September
2005
[15] Lanman J. T., “Using Formal Methods in Requirements
Engineering Version 1.0”, Department of Computing and
Mathematics, Embry-Riddle Aeronautical University, 2002
[16] Martinez A., Pastor O., Estrada H., “A pattern language
to join early and late requirements”, pp 51-64 Anais do
WER04 - Workshop em Engenharia de Requisitos, Tandil,
Argentina, 2004
[17] Ohnishi A., “Customizable Software Requirements
Languages”, Proceedings of the Eighth International
Computer Software and Application Conference
(COMPSAC), IEEE Computer Society, Los Alamitos, CA,
1994
[18] Rolland C. and Proix C., “A Natural Language
Approach for Requirements Engineering”, pp. 257-277 in
Proceedings of Conference on Advanced Informations
Systems Engineering, CAiSE, Manchester UK, 1992
[19] Wilson W.M., Rosenberg L.H. and Hyatt L.E.,
“Automated Quality Analysis of Natural Language
Requirements Specifications”, NASA Software Assurance
Technology Center, The Software Assurance Technology
Center (SATC), NASA Goddard Space Flight Center
(GSFC), Greenbelt, MD, 1996
[20] Nelbach F.J., “Software Requirements Document For
the Data Cycle System (DCS) Of The SOFIA Project”,
Universities Space Research Association, 2002
http://www.astro.ucla.edu/~shuping/SOFIA/Documents/DCS
_SRD_Rev1.pdf
[21] Moeser R., Perley P., “EVLA Operations Interface,
Software Requirements”, EVLA-SW-003 Revision: 2.5,
2003
http://www.aoc.nrao.edu/evla/techdocs/computer/workdocs/a
rray-sw-rqmts.pdf
[22] Dubois R., “Large Area Telescope (LAT) Science
Analysis Software Specification”, GE-0000X-DO, 2000
http://www-
glast.slac.stanford.edu/IntegrationTest/DataHandling/docs/L
AT-SS-00020-06.pdf
[23] George S., “PESA High-Level Trigger Selection
Software Requirements”, 2001
http://www.pp.rhul.ac.uk/atlas/newsw/requirements/1.0.2/
[24] Bray, I.K., “An Introduction To Requirements
Engineering”, 2002, © Pearson Education Limited
[25] Tjong, S.F., “Improving the Quality of Natural
Language Requirements Specifications through Natural
Language Requirements Patterns”, Technical Report,
University of Nottingham Malaysia Campus, March 2006

