

NATURAL LANGUAGE INTERFACES FOR

REQUIREMENTS ENGINEERING

Sri Fatimah Tjong, BSc.

Technical Report submitted to the

University of Nottingham

 for the degree of Doctor of Philosophy

March 2006

Abstract

Studies have been continuously conducted to find effective approaches and

techniques to better analyse Natural Language Requirements Specifications

(NLRSs). NLRs are widely used in software development and they are highly

prone to ambiguity and imprecision. We recognise the need of defining an

approach that will solve the NLRS inherent problem in most domains.

This report presents an approach for reducing the problem of ambiguity

and imprecision in NLRSs with the use of quality language patterns and

guideline rules. To ensure the applicability of our approach, we studied

different sets of requirements documents from several domains. We further

validate our approach by rewriting the requirements statements derived from

the requirements documents.

Table of Contents

1. Introduction 1

2. Literature Review and Natural Language Requirements

State of Practice 3

3. Guiding Rules and Language Patterns

3.1 Guiding Rules 8

3.2 Language Patterns 14

4. Future Direction 35

5. Conclusion 37

6. References 38

List of Tables

Table 1. Standard ARM Indicators [Wilson, et. al, 1996]

 3

Table 2. QUARS Indicators [Fabbrini et. al, 2000]

 4

Table 3. More QUARS Indicators [Fabbrini et. al, 2000]

 5

Table 4. Logical Representation of () ()()BABA ∧∨∨ is similar to

()BA∨ 10

Table 5. Logical Representation of ()SCC →∧ 21 is similar to

() ()()SCSC →∨→ 21 19

Table 6. Logical Representation of ()21 SSC ∧→ is similar to

() ()()21 SCSC →∧→ 20

Table 7. Logical Representation of () SCC →∧¬ 21 is similar to

() ()SCSC →¬∧→¬ 21 21

Table 8. Logical Representation of () SCC →∧¬ 21 is similar to

() ()SCSC →∨→¬ 21 23

Table 9. Logical Representation of () SCC →¬∧ 21 is similar to

() ()SCSC →¬∨→ 21 24

Table 10. Logical Representation of () SCC →∨ 21 is similar to

() ()()SCSC →∧→ 21 27

Table 11. Logical Representation of ()21 SSC ∨→ is similar to

() ()()21 SCSC →∨→ 28

Table 12. Logical Representation of () SCC →∨¬ 21 is similar to

() ()SCSC →¬∨→¬ 21 30

Table 13. Logical Representation of () SCC →∨¬ 21 is similar to

() ()SCSC →∧→¬ 21 32

Table 14. Logical Representation of () SCC →¬∨ 21 is similar to

() ()SCSC →¬∧→ 21 32

List of Figures

Figure 1. Transformation of Natural Language Requirements 36

TR by Sri Fatimah Tjong - 1 -

1. Introduction

Requirements Engineering being the core of software development, is

concerned with identifying the purpose of a software system and the contexts

in which it will be used. It also facilitates effective communication of the

requirements among different stakeholders, users and clients. In general,

some requirements are not properly communicated and documented, which

resulted incorrectness, inconsistency, incompleteness, or even

misinterpretation. More importantly, the inherent ambiguity of natural

language is another issue of requirements represented in natural language.

To reduce the ambiguity in natural language, several authors have

proposed the use of different modeling techniques and methods as

summarised in QUASAR [Denger et. al., 2001]. Some have even developed a

controlled language for specifying requirements in an almost natural language

[Fuchs and Schwitter, 1996]. These methods are either the formal languages

expressing the requirements or a set of procedures formalising the

requirements. Formal languages use precise mathematical notations to

eliminate ambiguity (such as Z and B, VDM, LOTOS, Petri Nets, etc.)

[Lanman, 2002].

This Technical Report describes the works that have been done on

analysing several sets of Requirements Document in the aim of producing

sets of guiding rules and language patterns for the use of better analysis of

natural language requirements specification (NLRSs). From our analysis, we

find that keywords such as “and”, “or”, “and/or”, “but”, “both” have

TR by Sri Fatimah Tjong - 2 -

occasionally contributed to the introduction of ambiguity and defects.

Therefore, the rules and language patterns are hoped to aid the writing of

better quality requirements with less linguistic inaccuracies and defects.

The presentation of the report is organised as follows. Chapter 2 outlines a

brief literature review of NLRSs. Chapter 3 describes guiding rules and

language patterns for improving the quality and rewriting the original

requirements process. Chapter 4 briefs on the continuing present and future

work, and also the ultimate goal of the research work. Chapter 5 concludes

the content of the report. Finally, chapter 6 encloses the list of supporting

references used in the report.

TR by Sri Fatimah Tjong - 3 -

2. Literature Review and Natural Language Requirements

State of Practice

A survey has been conducted on identifying and classifying techniques and

approaches that claim to reduce the inherent ambiguities in NLRSs [Denger

et. al., 2001]. In general, these approaches can be classified into three

categories:

• Approaches that define linguistic rules and analytical keywords [Fabbrini

et. al., 2000; Fabbrini et. al., 2002; Wilson et. al., 1996].

The approaches present Quality Attributes, Model and Indicators used in

evaluating the quality of the existing NLRSs. Frequently used keywords,

phrases and sentence structures that cause imprecision are grouped and

counted by computer programs. They are thought to be effective in

detecting defects and ambiguous NLRSs found in the requirements

document.

 Imperative Continuance Directive Option
Weak

Phrases
Incompletes

shall below: e.g. can adequate TBD

must as follows: i.e. may
as

appropriate
TBS

is required

to
following:

for

example
optionally be able to TBE

I

N

D

I

C

A

T

are

applicable
listed: figure

be capable

of
TBC

TR by Sri Fatimah Tjong - 4 -

are to
in

particular:
table

capability

of/to
not defined

respon-

sible for
support: note: easy to

not

determined

will and effective
but not

limited to

should : as required
as a

minimum

 normal

 provide for

O

R

S

 timely

Table 1. Standard ARM Indicators [Wilson, et. al, 1996]

Implicit

Sentence

Multiple

Sentence

Optional

Sentence

Weak

Sentence

Demonstrative Adjective:

this, these, that, those
>1 subject possibly can

Pronouns: it, they > 1 main verb eventually could

Preposition: above,

below,…

>1 direct

complement
in case of may

Adjective: previous, next,

last, first, following, …

>1 indirect

complement
if possible

 if appropriate

I

N

D

I

C

A

T

O

R

S

if needed

…

Table 2. QUARS Indicators [Fabbrini et. al, 2000]

TR by Sri Fatimah Tjong - 5 -

 Subjective

Sentence

Vague

Sentence

Underreferenced

Sentence

Having in mind Easy According to

Take (into) account Strong On (the) basis of

Take into consideration Good Relatively to

Similar Bad Compliant with

Similarly Useful Conformant to

Better Significant …

Worse Adequate

As [adjective] as possible recent

I

D

I

C

A

T

O

R

S …

Table 3. More QUARS Indicators [Fabbrini et. al, 2000]

• Approaches that define guideline-rules [Götz and Rupp, 1999; Juristo et.

al., 2000].

These approaches summarise rules and guidelines to be adapted in

preparing NLRSs. The guidelines avoid incorrect constructions of NLRSs by

detecting the potential defects and ambiguities in NLRSs. The definition of

rules can be used as a checklist by a requirement engineer to decide the

correctness of the written NLRSs. This would avoid the introduction of

natural language ambiguities by restricting the level of freedom in

preparing or writing NLRSs.

• Approaches that define specific language patterns to be used in writing

the NLRSs for different respective domains [Barr, 1999; Denger, 2002;

Ohnishi, 1994; Rolland and Proix, 1992].

TR by Sri Fatimah Tjong - 6 -

A pattern language is a devised description of language in a more

restricted way. There are several types of patterns such as architectural

patterns that show the high level architectures of a software system,

design patterns that are focused on the programming aspects, or even

patterns for project management [Martinez et. al., 2004]. The patterns

defined by Ohnishi and by Rolland and Proix [Ohnishi, 1994; Rolland and

Proix, 1992] concentrate to lessen the NLRSs imprecision in the domain of

information system and database. Both Barr and Denger [Barr, 1999;

Denger, 2002] focused on the patterns for embedded system. Denger

even devises a metamodel for requirements-statements in the embedded

system.

It is worth noting that besides the above three approaches, others discuss

the use of quality characteristics that are necessary in writing the well-defined

NLRSs [Firesmith, 2003; Hooks, 1994].

Hooks [Hooks, 1994] raises the common problem found in producing the

requirements and defined the ways to prevent them. Moreover, she also

conducts an in-depth survey on the principal sources of defects in NLRSs and

the associated risks. Firesmith [Firesmith, 2003] summarises a list of good-

quality requirements characteristics and also the requirements’ problem.

The work from Ambriola and Gervasi [Ambriola and Gervasi, 2003]

concentrates on achieving high-quality of NLRSs through CIRCE (Cooperative

Interactive Requirement-Centric Environment). CIRCE is based on the concept

of successive transformations that are applied to the requirements, in order

TR by Sri Fatimah Tjong - 7 -

to obtain concrete (i.e., rendered) views of models extracted from the

requirements.

In this work, we identify general language patterns that are sufficient

enough to reduce the informality, imprecision and ambiguity of the NLRSs.

We focus on language patterns for sentence parts (phrases or clauses), and

also for complete-sentence patterns. Based on the studies and analysis on the

imprecise and ambiguous requirements statements in the requirements

documents [DCS, 2002; EVLA, 2003; LAT, 2000; PESA, 2001; Bray, 2002],

we produce a set of language patterns along with their corresponding

transformation process in order to reduce the requirements defects. The idea

is to transform some ambiguous NLRSs into more simplistic (in terms of less

ambiguous) ones. We use rules of inferences to prove the reliability of the

transformations. On the other hand, our guiding rules are built up on top of

the Denger’s authoring rules [Barr, 1999] by extending and adding more

guiding rules to be used along with the language patterns. The rules basically

describe how to use natural language in writing the requirements whereas the

patterns restrict the writing freedom in the purpose of reducing imprecision

and ambiguity of NLRSs.

TR by Sri Fatimah Tjong - 8 -

3. Guiding Rules and Language Patterns

This chapter includes the guiding rules and language patterns that are

adaptable in most domains. Section 3.1 documents the guiding rules that

requirements engineer or software developer shall adhere to. Section 3.2

presents the general language patterns along with associated examples of

requirements statements. We validate our guiding rules and suggested

language patterns by directly rewriting on the requirements. Before we

rewrote, first, we reviewed the ambiguous requirements and requirements

with defects. Whenever the original requirements statements violated a rule,

the nature of violation was noted. Then, we rewrote the statements by

adapting to our suggested language patterns.

3.1 Guiding Rules

Our guiding rules are built up on top of the authoring rules [Denger,

2002]. We add more rules to be used together with the language patterns.

The majority of the rules are produced based on the analysis on different sets

of requirements documents [DCS, 2002; EVLA, 2003; LAT, 2000; PESA,

2001; Bray, 2002], with a few derived from the literature review discussed in

Chapter 2.

The rules are intended to be used along with the language patterns in

order to maximise the reduction of ambiguity and possible introduction of

imprecision in writing the NLRSs. Therefore, the requirements writer must

consider these rules when applying the language patterns. Following is the list

of guiding rules:

TR by Sri Fatimah Tjong - 9 -

[Rule 1]

Use simple affirmative declarative sentence that consists only 1 main verb

[Juristo, et. al, 2000].

E.g. The system shall store 20 GB of processed data per day.

[Rule 2]

Avoid writing requirement sentences in passive form.

[Rule 3]

Rewrite sentence of the type “There should be X in Y” or “X should exist in Y”

into “Y should have X” [Juristo, et. al., 2000].

[Rule 4]

Avoid requirement sentences that contain subjective option in realising the

requirement (keywords “either”, “whether”, “otherwise”…).

E.g. The user shall either be trusted or not trusted [EVLA].

E.g. The system shall inform the user whether the new version is required

or recommended [EVLA].

[Rule 5]

Avoid the use of “eventually”, “at last”, … in order to eliminate any possible

disambiguation arisen.

E.g. When a client makes a one-way send, the server must eventually

receive data.

Recommendation:

- When a client makes a one-way send, the server must receive the sent

data

TR by Sri Fatimah Tjong - 10 -

[Rule 6]

To eliminate the disambiguation caused by “maximum” and “minimum”,

Replace “maximum” with “at most” and “minimum” with “at least” followed by

X data or time unit.

E.g. The system shall return minimum results to the user.

Recommendation:

- The system shall return at least 1 result to the user.

[Rule 7]

Avoid the use of “/” in writing the requirement sentence. Alternatively,

substitute the use of “/” with “or”.

[Rule 8]

Avoid the use of “and/or” in writing requirement sentences. Alternatively,

substitute the use of “and/or” with “or” because they carry the same logical

interpretation (as proven in Table 4.).

A B BA∨ BA∧ () ()BABA ∧∨∨

0 0 0 0 0

0 1 1 0 1

1 0 1 0 1

1 1 1 1 1

Table 4. Logical Representation of () ()()BABA ∧∨∨ is similar to ()BA∨

E.g. An authorised user shall have the ability to edit and/or void a log

entry.

Recommendation:

- An authorised user shall have the ability to edit or void a log entry.

TR by Sri Fatimah Tjong - 11 -

[Rule 9]

Since “but” is just another way of saying “and”, therefore substitute “but”

with “and”.

E.g. The LVL1 result will also provide secondary RoIs which did not pass

the thresholds, but do pass lower thresholds [PESA].

Recommendation:

- The LVL1 result will also provide secondary RoIs which did not pass

thresholds, and do pass lower thresholds [PESA].

[Rule 10]

Avoid the use of “both”, since “both” is just simply “and”, therefore discards

“both”.

E.g. The system should print reports for both users and clients.

Recommendation:

- The system should generate reports for users.

- The system should generate reports for clients.

[Rule 11]

Avoid the use of unnecessary conjunctions that work as additional

commentary to the requirement sentence. The following conjunctions shall be

avoided such as “not only”, “but also” …

E.g. A reward system must be established not only for the individuals, but

also for organisations and teams of employees.

Recommendation:

- A reward system must be established for the individuals.

- A reward system must be established for organisations.

- A reward system must be established for teams of employees.

TR by Sri Fatimah Tjong - 12 -

[Rule 12]

Simplify requirement sentence that has more than 1-time occurrence of

“and”, “from”, “for”, “,”.

E.g. All monitor points from weather-related equipment, for the array and

for individual antennas, shall be available to the user [EVLA].

There are 2 recommendation of rewriting the above requirement and both of

them carry different meaning:

Recommendation 1:

– All monitor points from weather-related equipment shall be available

to the user.

– All monitor points for the array shall be available to the user.

– All monitor points for individual antennas shall be available to the user.

Recommendation 2:

– All monitor points from weather-related equipment for the array shall be

 available.

– All monitor points from weather-related equipment for individual

antennas shall be available to the user.

[Rule 13]

Avoid the use of brackets or parentheses “()” due to the ambiguity it carries.

It is difficult to interpret whether the parentheses contain optional information

or even multiple requirements. Requirement that comes with bracketed

information will be taken as guided referenced information to the

requirement.

E.g. The lift should never be allowed to move above the top floor or below

the bottom floor. (There is an emergency shut down system that will stop the

motor if the lift goes above the top floor or below the bottom floor by more

TR by Sri Fatimah Tjong - 13 -

than 10 cm but this shut down system is beyond the scope of the lift control

system.) [Bray, 2002].

Recommendation:

- The lift should never be allowed to move above the top floor or

below the bottom floor.

[Rule 14]

Define a glossary to explain important terms and nominalisations that are

used in the requirement. (refer to [Götz and Rupp, 1999]).

[Rule 15]

Define an acronym list to explain the used acronyms in the requirement.

(refer to [Götz and Rupp, 1999]).

[Rule 16]

Define an abbreviation list to explain the used abbreviations in the

requirement. (refer to [Götz and Rupp, 1999]).

[Rule 17]

Dependent requirement (requirement with mother and child relationship)

should be group together.

E.g. The SDP shall provide the Level 1 data to the P1 sites in a manner of

TBR. The Level 1 data should arrive at the sites no later than 24 hours

(TBR) after completion of processing in the SDP. Then, the SDP may

(TBR) provide the Level 0 data to the P1 sites [LAT].

TR by Sri Fatimah Tjong - 14 -

3.2 Language Patterns

We examined several case studies and real requirements documents

[DCS, 2002; EVLA, 2003; LAT, 2000; PESA, 2001; Bray, 2002] and extracted

NLRS writing schemes. Unlike previous works [Barr, 1999; Denger, 2002;

Ohnishi, 1994; Rolland and Proix, 1992] that concentrate on specific domains,

we develop general standardised language patterns that are applicable in

most domains and adaptable in the process of writing NLRSs.

An alphabetised list of definitions for special terms used in this report is listed

as follows:

• COMPLEMENT- Noun, Noun_Phrase, Adverb, Adjective

• Modal Auxiliary Verb (MV)- can, may, shall, must, will, should

• Primary Auxiliary Verb (PV)- is, are, was, were

• Pattern- the unstructured model of language pattern generally used in

writing the NLRs (as studied from the requirements documents)

The following notation convention is used in this report:

- A verdana term refers to textual element

- A bolded verdana term refers to the definition of the language pattern

- A capitalised verdana term refer to definition part of speech that should be

in place

- A lower-case verdana term refers to the possible role of instantiations of a

language pattern element

- A bolded Times-New-Roman Italic refers to occurrence of text elements in

the pattern

TR by Sri Fatimah Tjong - 15 -

- The Times-New-Roman term inside curly braces “{ }” and “[]” refers to

optional pattern element

� Generic Pattern (GP)

E.g. The user can enter details of: boat-class, boat, race, series, race-

entry, series-entry.

Rewrite requirement according to the pattern:

• The user can enter details of boat-class.

• The user can enter details of boat.

• …

• The user can enter details of series-entry.

� Generic Negation Pattern (GNP)

Let:

- R be the requirement statement, and 1R , 2R ,… nR are the

requirements set.

- S be the reaction implied by R , and 1S , 2S ,… nS are the reactions

set.

(Each reaction should be written by adopting the GP pattern)

- C be the condition to R , and 1C , 2C ,… nC are the conditions set.

GNP: NOUN_PHRASE (variable | actor | receiver) {MV | PV} not

[VERB] (action) NOUN_PHRASE

GP: NOUN_PHRASE (variable | actor | receiver) {MV | PV} [VERB]

(action) COMPLEMENT

TR by Sri Fatimah Tjong - 16 -

E.g. The system should not remove the messages from POP server until

the messages are retrieved successfully.

� Event Condition Pattern (ECP)

The ECPs are designed to enable different ways of representing

requirements that are caused by some events and conditions. Denger has

also defined sets of event patterns in his work [Denger, 2002; Denger et.

al., 2003]. He clarifies that there is a difference between an event and a

condition. An event is a change in the value of a variable in the system

state; whereas a condition concerns the value of that variable [Denger et.

al., 2003]. Nevertheless, we design the ECP1, ECP2, and ECP3 that are

commonly adaptable to writing requirements statement that is caused by

either an event or a condition.

ECP1: Condition, GP

E.g. If the boat’s details are amended, the boat’s details will not affect

the outcome of any races.

ECP2: GP Condition

E.g. A boat may only be entered into a handicap race (series) if the

boat’s handicap type matches that of the race.

ECP3: GNP Condition

E.g. A boat’s information can not be entered into the system unless the

boat has a boat class.

Condition: {Unless | If | When} (conjunction) NOUN_PHRASE

(variable | actor | receiver) [MV | PV] VERB (action)

[COMPLEMENT]

TR by Sri Fatimah Tjong - 17 -

� “AND” Pattern

The word “and” is generally and always used to represent several

combinations of requirements in one requirements statement. From the

analysis on the requirements documents, the use of “and” in requirements

statements have occasionally made the requirements implicitly

ambiguous. There also requirements statements that use comma “,” to list

down sets of requirements. Therefore, comma is commonly treated to be

similar to “and”

Generic ‘AND’ Pattern (GAND)

Pattern: 1R , 2R ,… and nR

Theorem: nRRR ...21 ∧∧ can be simplified into:

E.g. The system shall have the ability to create, add, and delete a new

account.

Recommendation:

- The system shall have the ability to create a new account.

- The system shall have the ability to add a new account.

- The system shall have the ability to delete a new account.

GAND: - 1R

 - 2R

 - …

 - nR

TR by Sri Fatimah Tjong - 18 -

Compound AND Condition Pattern (CACP)

Pattern: 1C and 2C … and nC

then S

Theorem: nCCC ∧∧∧ ...21

then S , can be simplified into:

CACP1 describes several or compound conditions that should occur before

the system can trigger a reaction or response in return.

E.g. When the message has been created and the user finished editing

the message, then the message will be placed in the Outbox.

Recommendation:

- When the message has been created, then the message will be placed

in the Outbox or when the user finished editing the message, then the

message will be placed in the Outbox.

1C 2C S ()SCC →∧ 21 () ()()SCSC →∨→ 21

0 0 0 1 1

0 0 1 1 1

0 1 0 1 1

0 1 1 1 1

1 0 0 1 1

CACP1: () () ()()SCSCSCC →∨→⇔→∧ 2121

1C⇔ then S or 2C then S

(refer to Table 5. for a logical proof)

TR by Sri Fatimah Tjong - 19 -

1 0 1 1 1

1 1 0 0 0

1 1 1 1 1

Table 5. Logical Representation of ()SCC →∧ 21 is similar to

() ()()SCSC →∨→ 21

Pattern: C

 then 1S and 2S

Theorem: C

then 1S ∧ 2S , can be simplified into:

CACP2 describes the occurrence of a specific condition will cause the

system triggers several or compound reactions or responses in return.

E.g. If the system’s connection to the server is not available then the

system will report an error and reconnect to the server.

Recommendation:

- If the system’s connection to the server is not available then the

system will report an error and if the system’s connection to the server

is not available then the system will reconnect to the server

Refinement:

- If the system’s connection to the server is not available then the

system will report an error.

CACP2: () () ()()2121 SCSCSSC →∧→⇔∧→

 C⇔ then 1S and C then 2S

(refer to Table 6. for a logical proof)

TR by Sri Fatimah Tjong - 20 -

- If the system’s connection to the server is not available then the

system will reconnect to the server.

C 1S 2S ()21 SSC ∧→ () ()()21 SCSC →∧→

0 0 0 1 1

0 0 1 1 1

0 1 0 1 1

0 1 1 1 1

1 0 0 0 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

Table 6. Logical Representation of ()21 SSC ∧→ is similar to

() ()()21 SCSC →∧→

Pattern: {Not | Never | Neither} (1C {and | nor } 2C) then S

Theorem Proof: () () SCCSCC →¬∨¬⇔→∧¬ 2121

Let 2;1 CYCX ¬=¬= () SYX →∨⇔

(Derived from C0CP1) () ()SYSX →∧→⇔

 () ()SCSC →¬∧→¬⇔ 21

CACP3: () () ()SCSCSCC →¬∧→¬⇔→∧¬ 2121

 1C¬⇔ then S and 2C¬ then S

 (refer to Table 7. for a logical proof)

TR by Sri Fatimah Tjong - 21 -

CACP3 describes the compound of negated conditions in which when they

occur, the system will trigger a specific reaction or action in return.

E.g. If the user has neither an unidentified nor unauthorised account, the

system shall never grant an access to the database.

Recommendations:

- If the user does not have an unidentified account, the system shall

never grant an access to the database and if the user does not have

an unauthorised account, the system shall never grant an access to

the database.

Refinement:

- If the user does not have an unidentified account, the system shall

never grant an access to the database.

- If the user does not have an unauthorised account, the system shall

never grant an access to the database.

1C 2C S () SCC →∧¬ 21 () ()SCSC →¬∧→¬ 21

0 0 0 0 0

0 0 1 1 1

0 1 0 0 0

0 1 1 1 1

1 0 0 0 0

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

Table 7. Logical Representation of () SCC →∧¬ 21 is similar to

() ()SCSC →¬∧→¬ 21

TR by Sri Fatimah Tjong - 22 -

Pattern: {Not | Never } 1C and 2C then S

 or

 1C and 2C {Not | Never } then S

Theorem Proof: () ()SCCSCC ∧¬∨⇔→∧¬ 2121

 () ()SCSC ∧¬∨∧⇔ 21

 () ()SCSC →∨→¬⇔ 21

 and so does

 () () ()SCSCSCC →¬∨→⇔→¬∧ 2121

CACP4 and CACP5 describe the occurrence one particular negated

condition will cause the system to trigger a specific reaction in return.

E.g. If the connection is not made to the server but is resetting network

component to initial state, then the system shall log an error report.

Recommendations:

- If the connection is not made to the server, the system shall log an

error report or if the connection is resetting network component to

initial state, then the system shall log an error report.

CACP4: () () ()SCSCSCC →∨→¬⇔→∧¬ 2121

 1C¬⇔ then S or 2C then S

(refer to Table 8. for a logical proof)

CACP5: () () ()SCSCSCC →¬∨→⇔→¬∧ 2121

 1C⇔ then S or 2C¬ then S

(refer to Table 9. for a logical proof)

TR by Sri Fatimah Tjong - 23 -

1C 2C S () SCC →∧¬ 21 () ()SCSC →∨→¬ 21

0 0 0 1 1

0 0 1 1 1

0 1 0 0 0

0 1 1 1 1

1 0 0 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

Table 8. Logical Representation of () SCC →∧¬ 21 is similar to

() ()SCSC →∨→¬ 21

1C 2C S () SCC →¬∧ 21 () ()SCSC →¬∨→ 21

0 0 0 1 1

0 0 1 1 1

0 1 0 1 1

0 1 1 1 1

1 0 0 0 0

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

Table 9. Logical Representation of () SCC →¬∧ 21 is similar to

() ()SCSC →¬∨→ 21

TR by Sri Fatimah Tjong - 24 -

� “If and only if” Pattern (IFFP)

Theorem Proof: () ()SCSCSC ¬∧¬∨∧⇔↔

 () ()SCSC ∨¬∧¬∨⇔

() ()SCSC →∧¬→¬⇔

() ()SCSC ¬→¬∧→⇔

IFFP describes if the condition is true then the system will trigger a

specific reaction in return. If the negated condition occurs, then the

system will trigger another reaction to it.

E.g. The system shall print the customer data if and only if the

customer data is inputted to it.

Recommendations:

- If the customer data is inputted to the system then the system shall

print the customer data.

- If the customer data is not inputted to the system then the system

shall not print the customer data.

� “OR” Pattern

We observe the improper uses of “or”, “/”, or “and/or” in writing

requirements statements have also contributed in introducing the inherent

ambiguity in NLRSs. They occasionally cause an open and subjective

interpretation in realising the requirement. Hence, in our study, we

IFFP: () ()SCSCSC ¬→¬∧→⇔↔

 C⇔ then S and C¬ then S¬

TR by Sri Fatimah Tjong - 25 -

introduce several “or” patterns to be adapted in writing the requirements

statements.

Generic ‘OR’ Pattern (GOR)

Pattern: 1R or 2R … or nR

Theorem: nRRR ∨∨∨ ...21 will remains as such

E.g. The system should never allow the lift to move above the top floor

or below the bottom floor.

Compound OR Condition Pattern (COCP)

 Pattern: 1C or 2C … or nC

then S

Theorem Proof: () ()()SCCSCC ∨∨¬⇔→∨ 2121

()()SCC ∨¬∧¬⇔ 21

() ()()SCSC ∨¬∧∨¬⇔ 21

() ()()SCSC →∧→⇔ 21

GOR: 1R or 2R or … nR

TR by Sri Fatimah Tjong - 26 -

-

COCP1 describes several or compound conditions that should occur before

the system can trigger a reaction or response in return.

E.g. If the book’s ISBN or title is not in the system then the book is not

available.

Recommendation:

- If the book’s ISBN is not in the system, then the book is not available.

- If the book’s title is not in the system, then the book is not available.

1C 2C S () SCC →∨ 21 () ()()SCSC →∧→ 21

0 0 0 1 1

0 0 1 1 1

0 1 0 1 1

0 1 1 1 1

1 0 0 1 1

1 0 1 1 1

COCP1: () () ()()SCSCSCC →∧→⇔→∨ 2121

1C⇔ then S and 2C then S

(refer to Table 10. for a logical proof)

And according to GAND rule, 1C then S and 2C then S can be

simplified to:

COCP1: - 1C then S

- 2C then S

TR by Sri Fatimah Tjong - 27 -

1 1 0 0 0

1 1 1 1 1

Table 10. Logical Representation of () SCC →∨ 21 is similar to

() ()()SCSC →∧→ 21

Pattern: C then 1S or 2S

Theorem Proof: () ()()2121 SSCSSC ∨∨¬⇔∨→

() ()()21 SCSC ∨¬∨∨¬⇔

() ()()21 SCSC →∨→⇔

⇔ (C → S1) ∨ (C → S2)

COCP2 describes the occurrence of a specific condition will cause the

system to trigger several or compound reactions or responses in return.

E.g. If the user logs in to the system as a Project Manager, then the Add

or Update buttons on the system’s screen will be enabled.

Recommendation:

- If the user logs in to the system as a Project Manager, then the Add

button on the system’s screen will be enabled or if the user logs in to

the system as a Project Manager, then the Update buttons on the

system’s screen will be enabled.

COCP2: () () ()()2121 SCSCSSC →∨→⇔∨→

 C⇔ then 1S or C then 2S

(refer to Table 11. for a logical proof)

TR by Sri Fatimah Tjong - 28 -

1C 2C S ()21 SSC ∨→ () ()()21 SCSC →∨→

0 0 0 1 1

0 0 1 1 1

0 1 0 1 1

0 1 1 1 1

1 0 0 0 0

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

Table 11. Logical Representation of ()21 SSC ∨→ is similar to

() ()()21 SCSC →∨→

Pattern: SC → { else | otherwise } S

COCP3 describes the occurrence of a specific condition will cause the

system to trigger appropriate reaction.

E.g. If the book’s title is in the system, the user can borrow the book

otherwise the user can’t borrow the book.

Recommendation:

- If the book’s title is in the system, the user can borrow the book.

- If the book’s title is not in the system, the user can’t borrow the book.

COCP3: () ()SCSC →∨→ 1

TR by Sri Fatimah Tjong - 29 -

Pattern: 1SC→ { else | otherwise } 2S

COCP4 describes if the condition is negated, the system must trigger

another response or action.

E.g. If the book’s title is in the system, the user can borrow the book

otherwise the user will submit book’s request to the librarian.

Recommendation:

- If the book’s title is in the system, the user can borrow the book or if

the book’s title is not in the system, the user will submit book’s

request to the librarian.

Refinement:

- If the book’s title is in the system, the user can borrow the book.

- If the book’s title is not in the system, the will submit book’s request

to the librarian.

COCP5, COCP6 and COCP7 describe the combined occurrence of negated

conditions will cause the system to trigger specific reaction in return.

Pattern: {Not | Never | Neither} (1C {or | nor } 2C) then S

Theorem Proof: () () SCCSCC →¬∧¬⇔→∨¬ 2121

Let 2;1 CYCX ¬=¬= () SYX →∧⇔

(Derived from CACP1) () ()SYSX →∨→⇔

 () ()SCSC →¬∨→¬⇔ 21

COCP4: () ()21 SCSC →∨→

TR by Sri Fatimah Tjong - 30 -

E.g. Neither if the system receives the requested data nor the one-way

sent data within 24 hours, then the system must automatically alert

the user.

Recommendations:

- If the system doesn’t receive the requested data within 24 hours, then

the system must automatically prompt an alert message to the user.

- If the system doesn’t receive the one-way data within 24 hours, then

the system must automatically prompt an alert message to the user.

1C 2C S () SCC →∨¬ 21 () ()SCSC →¬∨→¬ 21

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 1 1

1 0 0 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 1 1

Table 12. Logical Representation of () SCC →∨¬ 21 is similar to

() ()SCSC →¬∨→¬ 21

COCP5: () () ()SCSCSCC →¬∨→¬⇔→∨¬ 2121

 1C¬⇔ then S or 2C¬ then S

 (refer to Table 12. for a logical proof)

TR by Sri Fatimah Tjong - 31 -

Pattern: {Not | Never } 1C or 2C then S

 or

 1C or 2C {Not | Never } then S

Theorem Proof: () ()()SCCSCC ∨¬∧⇔→∨¬ 2121

 () ()SCSC ∨¬∧∨⇔ 21

 () ()SCSC →∧→¬⇔ 21

and so does

 () () ()SCSCSCC →¬∧→⇔→¬∨ 2121

E.g. If the user does not load data or enter illegal strings into the

system, then an information window will pop-up.

Recommendations:

- If the user does not load data into the system, then an information

window will pop-up and if the users enter illegal strings into the

system, then an information window will pop-up.

Refinement:

- If the user does not load data into the system, then an information

window will pop-up.

- If the users enter illegal strings into the system, then an information

window will pop-up.

COCP6: () () ()SCSCSCC →∧→¬⇔→∨¬ 2121

 1C¬⇔ then S and 2C then S

(refer to Table 13. for a logical proof)

COCP7: () () ()SCSCSCC →¬∧→⇔→¬∨ 2121

1C⇔ then S and 2C¬ then S

(refer to Table 14. for a logical proof)

TR by Sri Fatimah Tjong - 32 -

1C 2C S () SCC →∨¬ 21 () ()SCSC →∧→¬ 21

0 0 0 0 0

0 0 1 1 1

0 1 0 0 0

0 1 1 1 1

1 0 0 1 1

1 0 1 1 1

1 1 0 0 0

1 1 1 1 1

Table 13. Logical Representation of () SCC →∨¬ 21 is similar to

() ()SCSC →∧→¬ 21

1C 2C S () SCC →¬∨ 21 () ()SCSC →¬∧→ 21

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 1 1

1 0 0 0 0

1 0 1 1 1

1 1 0 0 0

1 1 1 1 1

Table 14. Logical Representation of () SCC →¬∨ 21 is similar to

() ()SCSC →¬∧→ 21

TR by Sri Fatimah Tjong - 33 -

� Time Pattern (TP)

TPs are the patterns to be adapted in writing requirements that concern

with time.

� Clause

Phrase(s) that is considered as clause will be taken as guided reference to

the requirement(s) that it’s tailored to. This will eliminate the informality

or ambiguity caused by long sentences (due to the occurrence of clauses

or phrases).

E.g. A popup box that requires a response from the user will remain in

the system’s foreground until the user clicks on the popup box.

E.g. The DCS shall be able to display the status of ongoing projects,

where the DCS is maintaining information and the user has access

[DCS].

TP1 {within} TIME_UNIT

TP2 [for] {at least | at most} [DATA_UNIT]

TP3 {as soon as | as long as …} ADJECTIVE

TP4 {for | of} { [not | no] {more| less} than } TIME_UNIT

Subordinate Clause (Sub_Clause) 1:

{that | which} VERB [COMPLEMENT]

Subordinate Clause (Sub_Clause) 2:

{but | as | since | while | where } NOUN_PHRASE VERB [COMPLEMENT]

TR by Sri Fatimah Tjong - 34 -

E.g. The monitoring system should be lightweight, such that when

running online, the system’s consumption of memory, CPU, and

other resources of HLT processing node are small (~ 1%) compared

to the demands of the software being monitored.

Subordinate Clause (Sub_Clause) 3:

{in order to | in [the] case of | such that | regardless [of] | given that

|…} NOUN_PHRASE VERB [COMPLEMENT]

TR by Sri Fatimah Tjong - 35 -

4. Future Direction

This research work will further continue on developing a tool that incorporates

all the defined language patterns. A system coined SREE (Systemised

Requirements Engineering Environment), is mainly designated as an

environment for the analysis of natural language requirements. SREE is

expected as a work companion for the requirements engineer or software

developers that reads NLR as inputs and in anticipation, produces views on

different aspects of requirements (such as requirements specification to be

presented in diagrammatic ways). One may also think of SREE as

Requirements Management tool.

Overview of the transformation of Higher Quality NLRs to be incorporated in

SREE:

• First, the requirements document is analysed, sorted and rewritten into a

set of structured requirements sentences by applying the authoring rules

and language patterns

• Next, the produced structured and unambiguous requirements will be

parsed and tagged by an automated tool.

• The parsed attributes of the requirements will be represented in

diagrammatic notations as modeling aid.

TR by Sri Fatimah Tjong - 36 -

Figure 1. Transformation of Higher Quality Natural Language Requirements

Specifications through Natural Language Requirements Pattern

SREE is also expected to be highly adaptable to different applications domains

and requirements. It will later be tested in a new product development

environment so that the effects on the process can be monitored. We expect

that the combination use of the tool and requirements engineer as the human

inspectors will achieve the best maximum result of engineering the software

requirements.

Requirements

Documents

Authoring Rules

&

Language Patterns

• ___________

• ___________

• ___________

• ___________

• ___________

• ___________

Requirements Sentence will be restructured

according to the formulated Natural Language

Patterns and Authoring Rules for Requirements

Requirements

Document Structured

Requirements

Sentences

Structured Requirements Sentences will

be represented in diagrammatic notations

for understandable viewing purposes.

TR by Sri Fatimah Tjong - 37 -

5. Conclusion

This report addresses the current research work in defining guiding rules and

language patterns to be used in writing the NLRSs. The introduced rules and

language patterns are developed from the studies of several sets of

requirements documents and series of literature reviews and NLR state of

practice.

We believe that by adopting the language patterns while writing the

NLRSs, the level of ambiguity and possible introduction of imprecision can be

reduced. Furthermore, the language patterns are specifically designed not

only to be adaptable in one particular domain, but in most general domains.

On the other hand, the rules works as guidelines that assist the requirements

engineer in authoring the NLRs writing. Therefore, the rules and language

patterns should be used in combination to achieve maximum reduction of

ambiguity and imprecisions.

To validate the usefulness and adaptable of the guiding rules and

language patterns, we have conducted studies on several sets of

requirements and extracted some real industrial requirements to be

presented as examples. From there, we have rewritten the ambiguous

requirements sentences by applying both the language patterns and rules.

TR by Sri Fatimah Tjong - 38 -

6. References

[Ambriola and Gervasi, 2003]

Ambriola, V. and Gervasi, V.: The CIRCE approach to the systematic

analysis of NL requirements, 2003, Technical Report: TR-03-05, Università

Di Pisa

[Barr, 1999]

Barr V., Identifikation von Spezifikationsmustern im Echtzeitentwurf

anhand der Fallstudie Antiblockiersystem, 1999, Diplomarbeit der

Universitaet Oldenburg, Fachbereich Informatik

[Denger et. al., 2001]

Denger C., Jőrg D., Kamsties E., QUASAR A Survey on Approaches for

Writing Precise Natural Language Requirements, 2001, Fraunhofer IESE

[Denger, 2002]

Denger C., High Quality Requirements Specifications for Embedded

Systems through Authoring Rules and Language Patterns, M.Sc. Thesis,

Fraunhofer Institute for Experimental Software Engineering,

Kaiserslautern, 2002 Germany

[Denger et. al., 2003]

Denger C., Berry D.M., Kamsties E., Higher Quality Requirements

Specifications through Natural Language Patterns, 2003, Proceedings of

the IEEE International Conference on Software – Science, Technology &

Engineering (SwSTE’03)

[Fabbrini et. al., 2000]

Fabbrini F., Fusani M., Gnesi G. and Lami G., Quality Evolution of Software

Requirements Specifications, 2000, Proceedings Software and Internet

Quality Week 2000 Conference, San Fransisco, CA

TR by Sri Fatimah Tjong - 39 -

[Fabbrini et. al., 2002]

Fabbrini F., Fusani M., Gnesi G. and Lami G., The Linguistic Approach to

the Natural Language Requirements Quality: Benefit of the use of an

Automatic Tool, 2002, Proceedings of the 26th Annual NaSA Goddard

Software Engineering Workshop (SEW’01)

[Firesmith, 2003]

Firesmith D., Specifying Good Requirements, 2003, Journal of Object

Technology 2

[Fliedl et. al., 2000]

Fliedl G., Kop C., Mayerthaler W., Mayr H.C., Winkler C., Linguistic

Aspects of Dynamics in Requirements Specifications & Linguistically Based

Requirements Engineering,, 2000, Data & Knowledge Engineering,

Netherlands

[Fuchs and Schwitter, 1996]

Fuchs N.E. and Schwitter R., Controlled English for Requirements

Specification, 1996, IEEE Computer Special Issue on Interactive Natural

Language Processing

[Götz and Rupp, 1999]

Götz R. and Rupp C., Regelwerk Natürlichsprachliche Methode, 1999,

Sophist, Nürnberg, Germany

[Hooks, 1994]

Hooks I., Writing Good Requirements, 1994, Vol. 2, pp. 197-203,

Proceedings of the Fourth International Symposium of the NCOSE 2, San

Jose, CA

[Juristo et. al., 2000]

TR by Sri Fatimah Tjong - 40 -

Juristo N., Moreno A.M. and Lopez M., How to Use Linguistic Instruments

for OOA, 2000, pp. 80-89 Proceedings of the IEEE International

Conference on Software

[Lami, 2005]

Lami Giuseppe., QuARS: A Tool for Analysing Requirements, September

2005, Carnegie Mellon University

[Lanman, 2002]

Lanman J. T., Using Formal Methods in Requirements Engineering Version

1.0, 2002, Department of Computing and Mathematics, Embry-Riddle

Aeronautical University

[Martinez et.al., 2004]

Martinez A., Pastor O., Estrada H., A pattern language to join early and

late requirements, 2004, pp 51-64 Anais do WER04 - Workshop em

Engenharia de Requisitos, Tandil, Argentina

[Ohnishi, 1994]

Ohnishi A., Customizable Software Requirements Languages, 1994,

Proceedings of the Eighth International Computer Software and

Application Conference (COMPSAC), IEEE Computer Society, Los Alamitos,

CA

[Rolland and Proix, 1992]

Rolland C. and Proix C., A Natural Language Approach for Requirements

Engineering, 1992, pp. 257-277 in Proceedings of Conference on

Advanced Informations Systems Engineering, CAiSE, Manchester UK

[Wilson et. al., 1996]

Wilson W.M., Rosenberg L.H. and Hyatt L.E., Automated Quality Analysis

of Natural Language Requirements Specifications, 1996, NASA Software

TR by Sri Fatimah Tjong - 41 -

Assurance Technology Center, The Software Assurance Technology Center

(SATC), NASA Goddard Space Flight Center (GSFC), Greenbelt, MD

Requirements Documents

[DCS, 2002] available at

http://www.astro.ucla.edu/~shuping/SOFIA/Documents/DCS_SRD_Rev1.pdf

Nelbach F.J., Software Requirements Document For the Data Cycle

System (DCS) Of The SOFIA Project, 2002, Universities Space Research

Association

[EVLA, 2003] available at

http://www.aoc.nrao.edu/evla/techdocs/computer/workdocs/array-sw-

rqmts.pdf

Moeser R., Perley P., EVLA Operations Interface, Software Requirements,

EVLA-SW-003 Revision: 2.5, 2003

[LAT, 2000] available at

http://www-glast.slac.stanford.edu/IntegrationTest/DataHandling/docs/LAT-

SS-00020-06.pdf

Dubois R., Large Area Telescope (LAT) Science Analysis Software

Specification, 2000, GE-0000X-DO

[PESA, 2001] available at

http://www.pp.rhul.ac.uk/atlas/newsw/requirements/1.0.2/

George S., PESA High-Level Trigger Selection Software Requirements,

2001

[Bray, 2002]

Bray, I.K., An Introduction To Requirements Engineering, 2002, ©

Pearson Education Limited

- The yacht racing results (YRR) case study, p. 337-340

TR by Sri Fatimah Tjong - 42 -

- The lift controller case study, p. 357-358

