
The Inevitable Pain of Software Development,
Including of Extreme Programming,
Caused by Requirements Volatility

Daniel M. Berry
Faculty of Computer Science

University of Waterloo
Waterloo, Ontario N2L 3G1, Canada

dberry@uwaterloo.ca

Abstract

A variety of programming accidents, i.e., models and
methods, including extreme programming, are examined
to determine that each has a step that programmers find
painful enough that they habitually avoid or postpone the
step. This pain is generally where the programming
accident meets requirements, the essence of software, and
their relentless volatility.

1. Introduction

This paper is about building computer-based systems
(CBS). Since the most flexible component of a CBS is its
software, we often talk about developing its software,
when in fact we are really developing the whole CBS. In
this paper, “software” and “CBS” are used interchange-
ably.

This paper is based on personal observation. Some-
times, I describe an idea based solely on my own observa-
tions over the years. Such ideas carry no citation and have
no formal or experimental basis. If your observations
disagree, then please write your own rebuttal.

Sometimes, I give as a reason for doing or not doing
something that should not be or should be done what
amounts to a belief or feeling. This belief or feeling may
be incorrect in the sense that it is not supported by the
data. Whenever possible, I alert the reader of this mode
by giving the belief-or-feeling-based sentence in Italics.

2. Programming Then and Now

I learned to program in 1965. I can remember the first
large program I wrote in 1966 outside the class room for a

iii

Copyright 2002 Daniel M. Berry

real-life problem. It was a program that implemented the
external functionality of Operation Match, a computer-
based dating and matchmaking service set up in the mid
1960s. I wrote it for my synagogue youth group in order
that it could have a dance in which each person’s date for
the dance was that picked by a variation of the Operation
Match software. The dance and the software were called
“Operation Shadchan”.1 I got a hold of the questionnaire
for Operation Match, which was being used to match a
new client of one gender with previously registered
clients of the opposite gender. Each client filled out the
form twice, once about him or herself and the second time
about his or her ideal mate. For each new client, the data
for the client would be entered. Then the software would
find all sufficiently good matches with the new clients
from among the previously registered clients. Presum-
ably, the matches had to be both good and balanced; that
is, the total number of questions for which each answered
the way the other wanted had to be greater than a thres-
hold and the difference between the number of matches in
each direction had to be smaller than another threshold. I
adapted this questionnaire for high school purposes. For
example, I changed “Do you believe in sex on the first
date?” to “Do you believe in kissing on the first date?”.2

I then proceeded to write a program. I remember doing
requirements analysis at the same time as I was doing the
programming in the typical seat-of-the-pants build-it-
and-fix-it-until-it-works method of those days:
g discover some requirements,
g code a little,
g discover more requirements,
g code a little more,

ii

1 “Shadchan” is Yiddish for “Matchmaker”. The “ch” in “shadchan” is
pronounced as the “X” in “TEX”. One person attending the dance
thought the name of the dance was “Operation Shotgun”.
2 Remember, this was during the mid 1960s!

1

g etc, until the coding was done;
g test the whole thing,
g discover bugs or new requirements,
g code some more, etc.
The first requirements were fairly straightforward to iden-
tify. Since this matching was for a dance, unlike with
Operation Match, each person would be matched with
one and only one person of the opposite gender.3 Obvi-
ously, we had to make sure that in the input set, the
number of boys was equal to the number of girls, so that
no one would have the stigma of being unmatched by the
software. The next requirements were not so easy to iden-
tify. Each boy and each girl should be matched to his or
her best match. So, I wrote a loop that cycled through
each person and for each, cycled through each other per-
son of the opposite gender to find the best match. But
whoa! what is a match? Ah, it cannot be just one way. It
must be a mutually balanced match. But double whoa! I
have to remove from the list of those that can be cycled
through in either loop those that have been matched
before. But triple whoa! Suppose the best mutual match
for someone is among those not considered because that
best mutual match has already been matched to someone
else, and that earlier match is not as good. Worse than
that, suppose that what is left to match with someone are
absolute disasters for the someone. This simple algorithm
is not so hot.

In those days and at that age, couples in which the girl
was taller than the boy was a disaster, especially if the
difference was big. Also, it was not considered so good if
the girl of a couple were older than the boy. Therefore, to
avoid being painted into a disastrous-match corner, I
decided to search in a particular order, from hardest-to-
find-non-disastrous matches to easiest. That is, I searched
for matches for the tallest girls and shortest boys first and
the shortest girls and tallest boys last. Presumably the tal-
lest boys get assigned fairly early to the tallest girls and
the shortest girls would get assigned fairly early to the
shortest boys. I randomly chose the gender of the first
person to be matched and alternated the gender in each
iteration of the outer loop. To help avoid disastrous
matches, I gave extra weight to the height and age ques-
tions in calculating the goodness of any potential match.
Each “whoa” above represents a scrapping of previously
written code in favor of new code based on the newly
discovered requirements. Thus, I was discovering require-
ment flaws and correcting them during coding as a result
of what I learned during coding.

The biggest problem I had was remembering all the
requirements. It seemed that each thought brought about

ii

3 It was assumed that each person wanted someone of the opposite
gender.

the discovery of more requirements, and these were piling
up faster than I could modify the code to meet the
requirements. I tried to write down requirements as I
thought of them, but in the excitement of coding and
tracking down the implications of a new requirement,
which often included more requirements, I neglected to or
forgot to write them all down, only to have to discover
them again or to forget them entirely.

Basically, programming felt like skiing down a narrow
downhill valley with an avalanche following me down the
hill and gaining on me.

Nowadays, we follow more systematic methods. How-
ever, the basic feelings have not changed. Since then, I
have maintained and enhanced a curve fitting application
for chemists4. I built a payroll system. I have participated
in the writing of a collection of text formatting software.
I have watched my graduate students develop tools for
requirements engineering. I watched my ex-wife build a
simulation system. I have watched my ex-wife and former
students and friends involved in start ups building large
CBSs. To me and, I am sure the others, programming still
feels like skiing with an avalanche following closely be-
hind. I see all the others undergoing similar feelings and
being as empathic as I am, I get the same skiing feeling.
No matter how much we try to be systematic and to docu-
ment what we are doing, we forget to write things down,
we overlook some things, and the discoveries seem to
grow faster than the code.

The real problem of software engineering is dealing
with ever-changing requirements. It appears that no mod-
el, method, artifact, or tool offered to date has succeeded
to put a serious dent into this problem. I am not the first to
say so. Fred Brooks and Michael Jackson, among others,
have said the same for years. Let us examine their argu-
ments.

3. The Search for a Silver Bullet

Some time ago, Fred Brooks, in saying that there is no
software engineering silver bullet, classified software is-
sues into the essence and the accidents [13]. The essence
is what the software does and the accidents are the tech-
nology by which the software does the essence or by
which the software is developed. That is, the requirements
are the essence, while the language, tools, and methods
used are the accidents. He went on to say, “The hardest
single part of building a software system is deciding pre-
cisely what to build No other part of the work so crip-
ples the resulting system if it is done wrong. No other part
ii

4 This was my second system, and it suffered Brooks’s second system
syndrome [14], as I tried to build a super-duper, all-inclusive, fancy
whiz-bang general curve fitting application with all sorts of fantastic
options.

2

is more difficult to rectify later.” This quotation captures
the essential difficulty with software that must be ad-
dressed by any method that purports to alter fundamen-
tally the way we program, that purports to make program-
ming an order of magnitude easier, that purports to be the
silver programming bullet we have all been looking for.
Heretofore, no single method has put a dent into this
essential problem, although all the discovered methods
have combined to improve programming by at least an
order of magnitude since 1968, the year the term “soft-
ware engineering” was invented [26]. Moreover, Brooks
says based on his experience, the silver bullet will never
be found: “No major improvement in the software
engineering area will ever appear.”

The obvious question is “Why is there no silver bullet,
and why can there not be a silver bullet?” The contention
of this paper is that every time a new method that is
intended to be a silver bullet is introduced, it does make
many parts of the accidents easier. However, as soon as
the method needs to deal with the essence or something
affecting or affected by the essence, suddenly one part of
the method becomes painful, distasteful, and difficult, so
much so that this part of the method gets postponed,
avoided, and skipped. Consequently, the method ends up
being only slightly better than no method at all in dealing
with essence-borne difficulties.

But, what is so difficult about understanding require-
ments? I mean, it should be possible to sit down with the
customer and users, ask a few questions, understand the
answers, and then synthesize a complete requirements
specification. However, it never works out that way.
Michael Jackson, Paul Clements, David Parnas, Meir
Lehman, Bennet Lientz, Burton Swanson, and Laszlo
Belady explain why.

4. Requirements Change

Michael Jackson, in his Keynote address at the 1994
International Conference on Requirements Engineering
[22] said that two things are known about requirements:
1. They will change.
2. They will be misunderstood.
The first implies that a CBS will always have to be modi-
fied, to accommodate the changed requirements. Even
more strongly, there ain’t no way that requirements are
not gonna change, and there is as much chance of stop-
ping requirements change as there is stopping the growth
of a fully functioning and heartily eating teenager. The
second implies that a CBS will always have to be modi-
fied, to accommodate the changes necessitated by better
understanding, as the misunderstandings are discovered.
Clements and Parnas describe how difficult it is to under-

stand everything that might be relevant [29].
Meir Lehman [23] classifies a system that solves a

problem or implements an application in some real world
domain as an E-type system. He points out that once
installed, an E-type system becomes inextricably part of
the application domain so that it ends up altering its own
requirements.

Certainly, not all changes to a CBS are due to require-
ment changes, but the data show that a large majority of
them are. Bennett Lientz and Burton Swanson found that
of all maintenance of application software, 20% deal with
correcting errors, and 80% deal with changing require-
ments. Of the requirement changes, 31% are to adapt the
software to new platforms, and 69% are for perfecting the
software, to improve its performance or to enhance its
functionality [24].

Laszlo Belady and Meir Lehman observed the phenom-
enon of eventual unbounded growth of errors in legacy
programs that were continually modified in an attempt to
fix errors and enhance functionality [6, 7]. That is, as pro-
grams undergo continual change their structure decays to
the point that it is very hard to add something new or
change something already there without affecting seem-
ingly unrelated parts of the program in a way that causes
errors. It can be difficult even to find all the places that
need to be modified. The programmers make poor gues-
ses and the program, if it even runs, behaves in strange
and unpredicted ways.

Release Number

B
ug

s
Fo

un
d

Pe
r

R
el

ea
se

Figure 1: Belady-Lehman Graph

They modeled the phenomenon mathematically and de-
rived a graph like that of Figure 1, showing the expected
number of errors in a program as a function of time, as
measured by the ordinal numbers of releases during
which modifications are made. In practice, the curve is
not as smooth as in the figure, and it is sometimes neces-
sary to get very far into the upswing before being sure
where the minimum point is. The minimum point repre-
sents the software at its most bug-free release. After this
point, during what will be called the Belady-Lehman

3

(B-L) upswing, the software’s structure has so decayed
that it is very difficult to change anything without adding
more errors than have been fixed by the change.

The alternative to continuing on the B-L upswing for a
CBS is to roll back to the best version, that is, the version
that existed at the minimum point. Of course, rolling
back assumes that all versions have been saved. All the
bugs in this best version are declared to be features, and
no changes are ever made in the CBS from then on. Usu-
ally not changing a CBS means that the CBS is dead, that
no one is demanding changes because no one is using the
software any more. However, some old faithful, mature,
and reliable programs e.g, cat and other basic UNIX ap-
plications, vi, and ditroff,5 have gone this all-bugs-are-
features route. The user community has grown to accept,
and even, require that they will never change. If the re-
maining bugs of the best version are not acceptable fea-
tures or the lack of certain new features begins to kill
usage of the CBS, then a new CBS has to be developed
from scratch to meet all old and new requirements, to
eliminate bugs, and to restore a good structure to make
future modifications possible. Another alternative that
works in some special cases is to use the best version as a
feature server for what it can do well and to build a new
CBS that implements only the new and corrected features
and has the feature server do the features of the best ver-
sion of the old CBS.

The time at which the minimum point comes and the
slopes of the curves before and after the minimum point
vary from development to development. The more com-
plex the CBS is, the steeper the curve tends to be. More-
over, most of the time, for a carefully developed CBS, the
minimum point tends to come in later releases of that
CBS. However, occasionally, the minimum point is
passed during the development of the first release, as a
result of extensive requirements creep during that initial
development. The requirements have changed so much
since the initial commitment to architecture that the archi-
tecture has had to be changed so much that it is brittle. It
has become very hard to accommodate new or changed
requirements without breaking the CBS. Sometimes, the
minimum point is passed during the initial development
as a result of code being slapped together into the CBS
with no sense of structure at all. The slightest require-
ments change breaks the CBS.

5. Purpose of Methods

One view of software development methods is that each

ii

5 Well, at least I think so! One great thing about these programs that
have not been modified since the 1980s is that their speed doubles every
18 months!

method has as its underlying purpose to tame the B-L
graph for the CBS developments to which it is applied.
That is, each method tries to delay the beginning of the
B-L upswing or to lower the slope of that B-L upswing or
both. For example, Information Hiding [28] attempts to
structure a system into modules such that each implemen-
tation change results in changing only the code, and not
the interface, of only one module. If such a modulariza-
tion can be found, then all the code affecting and affected
by any implementation change is confined to one module.
Thus, it is easier to do the modifications correctly and
without adversely affecting other parts of the system.
Hence, arrival at the minimum point is delayed and the
slope of the upswing is reduced.

In this sense, each method, if followed religiously,
works. Each method provides the programmer a way to
manage complexity and change so as to delay and moder-
ate the B-L upswing. However, each method has a catch,
a fatal flaw, at least one step that is a real pain to do, that
people put off. People put off this painful step in their
haste to get the software done and shipped out or to do
more interesting things, like write more new code. Conse-
quently, the software tends to decay no matter what. The
B-L upswing is inevitable.

What is the pain in Information Hiding? Its success in
making future changes easy depends on having identified
a right decomposition. If a new requirement comes along
that causes changes that bridge several modules, these
changes might very well be harder than if the code were
more monolithic, simply because it is generally easier on
tools to search within one, even big, module than in
several, even small, modules [17, 20]. Moreover, future
changes, especially those interacting with the new re-
quirement, will likely cross module boundaries.6 Conse-
quently, it is really necessary to restructure the code into a
different set of modules. This restructuring is a major
pain, as it means moving code around, writing new code,
and possibly throwing out old code for no externally
observable change in functionality. It is something that
gets put off, causing more modifications to be made on an
inappropriate structure.

The major irony is that the reason that the painful
modifications are necessary is that the module structure
no longer hides all information that should be hidden.
Because of changes in requirements, there is some infor-
mation scattered over several modules and exposed from
each of these modules. Note that these changes are

ii

6 For an example that requires minimum explanation, consider two
independently developed modules, for implementing unbounded preci-
sion integer and real arithmetic. Each can have its implementation
changed independently of the other. However, if the requirement of
intertype conversion is added, suddenly the two modules have to be
programmed together with representations that allow conversion.

4

requirements changes rather than implementation chan-
ges, which continue to be effectively hidden. The painful
modifications being avoided are those necessary to restore
implementation information hiding, so that future imple-
mentation changes would be easier. Without the painful
changes, all changes, both implementation and require-
ments-directed, will be painful. This same pain applies
to any method based on Information Hiding, such as
Object-Oriented Programming.

In the subsequent sections, each of a number of models,
methods, and tools is examined to determine what its
painful step is. In some cases, the whole model, method,
or tool is the pain; in others, one particular step is the
pain. No matter what, when people use these models,
methods, and tools, they tend to get stopped by a painful
step.

6. Development Models and Global Methods

This section considers several development models and
general programming methods to identify their painful
parts. The set chosen is only a sampling. Space limita-
tions and reader boredom preclude covering more. It is
hoped that after reading these, the reader is able to iden-
tify the inevitable pain in his or her own favorite model or
method. In fact, for many models and methods, the pain
lies in precisely the same or corresponding activities, all
in response to requirements change. The models covered
are the Build-and-Fix Model, the Waterfall Model, and
Requirements Engineering. The general methods covered
are Structured Programming, Extreme Programming, and
Program Generation.

6.1. Build-and-Fix Model

The non-method that I applied when I built the Opera-
tion Shadchan program was the build and fix model. As
indicated by Steve Schach [32], the basic cycle is:
1. Build the first version of the software.
2. Modify the software until client is satisfied.
3. Operate program until a problem is found; when a

problem is found, go back to Step 2.
In this case, there is actually no pain, unless the
customer’s dissatisfaction, the repeated difficulties with
the software, or the feeling of skiing in front of an
avalanche gives the programmer pain. On the other hand,
the model is not purported to be a silver bullet, and the
B-L upswing can start almost immediately and can be
rather steep, unless the program is small enough to be
written entirely by one person.

6.2. Waterfall Model

The waterfall model [31] is an attempt to put discipline
into the software development process by forcing under-
standing and documentation of the requirements before
going on to design, by forcing understanding and docu-
mentation of design before going on to coding, by forcing
thorough testing of the code while coding each module,
etc. The model would work if the programmers could
understand a stage thoroughly and document it fully
before going on to the next stage [29]. However, under-
standing is difficult and elusive, and in particular, docu-
mentation is a pain. The typical programmer would prefer
to get on to coding before documenting. Consequently,
some programmers consider the whole model to be a
pain, because it tries to force a disciplined way of work-
ing that obstructs programmers from getting on with the
coding in favor of providing seemingly endless, useless
documentation. However, even for the programmers who
do believe in discipline, the waterfall becomes a pain in
any circumstance in which the waterfall cannot be fol-
lowed, e.g., when the full requirements are learned only
after significant implementation has been carried out or
when there is significant repeated backtracking, when
new requirements are continually discovered.

6.3. Structured Programming

I can recall the first systematic programming method I
learned, used, and taught, from 1973 until it fell out of
fashion in the mid 1980s, namely, Structured Program-
ming or Stepwise Refinement [35, 15]. After having done
build-it-and-fix-it programming for years, Structured Pro-
gramming appeared to be the silver bullet, at last, a way
to put some order into the chaotic jumble of thoughts that
characterized my programming, at last, a way to get way
ahead of or to the side of the avalanche that was coming
after me all the time.

In fact, I found that Structured Programming did work
as promised for the development of the first version of
any CBS. If I used the clues provided by the nouns that
appeared in more than one high-level statement [8, 9],
Structured Programming did help me keep track of the
effects of one part of the program on another. It did help
me divide my concerns and conquer them one-by-one,
without fear of forgetting a decision I had made, because
these decisions were encoded in the lengthy, well-chosen
names of the abstract, high-level statements that were yet
to be refined. Best of all, the structured development itself
was an ideal documentation of the structure of the pro-
gram.

However, God help me if I needed to change something

5

in a program developed by stepwise refinement, particu-
larly if the change was due to an overlooked or changed
requirement. I was faced with two choices:
1. Patch the change into the code in the traditional way

after a careful analysis of ripple effects; observe that
the documented structured development assists in
finding the portions of the code affected by and affec-
ting the change.

2. Redo the entire structured development from the top
downward, taking into account the new requirement
and the old requirements, all in the right places in the
refinement.

The problems with the first choice are that:
1. no matter how careful I was, always some ripple

effects were overlooked, and
2. patching destroys the relation between the structured

development and the code, so that the former is no
longer accurate documentation of the abstractions
leading to the code. This disrepancy grows with each
change, thus hastening the B-L upswing.7 Thus, the
new code contradicts the nice structure imposed by
the structured development. Moreover, the names of
the high level abstractions that get refined into code no
longer imply their refinements.

Therefore, the correct alternative was the second, to start
from scratch on a new structured development that recog-
nizes the modified full set of requirements. However, then
the likelihood is that the new code does not match the old
code. Most structured programmers do this redevelop-
ment with an eye to reusing as much as possible. That is,
whenever one encounters a high-level statement with
identical name and semantics as before, what it derived
before is put there. However, the programmer must be
careful to use the same high-level statements as refine-
ments whenever possible, and he or she must be careful
that in fact the same semantics is wanted as before and
that he or she is not self deluding to the point of falsely
believing a high-level statement has the same semantics
as before.

This second alternative turned out to be so painful that I
generally opted to the first alternative, patching the code
and thus abandoned the protection, clarity, and documen-
tation offered by Structured Programming.

About that time, I learned the value of faking it. Do the
modification by patching up the code, and then go back
and modify the original structured development to make it
look like the new program was derived by Structured Pro-
gramming. However, faking it was also painful, and
soon, unless I was required to do so for external reasons,
e.g., preparing a paper for publication or a contract, I

ii

7 It is clear that there is a disrepancy, because if the abstractions had
derived the new code, then the new code would have been there before.

quickly stopped even faking it. Adding to the pain of fak-
ing it was the certainty of not doing the faking perfectly
and being caught. It was only later that David Parnas and
Paul Clements legitimized faking it [29] and relieved my
guilt.

6.4. Requirements Engineering

The basic premise of requirements engineering is spend
sufficient time up front, before designing and coding, to
anticipate all possible requirements and contingencies, so
that design and coding consider all requirements and con-
tingencies from the beginning [10, 27]. Consequently,
fewer changes are required, and the B-L upswing is both
delayed and moderated. Data show that errors found dur-
ing requirements analysis cost one order of magnitude
less to fix than errors found during coding and two orders
of magnitude less to fix than errors found during opera-
tion [12]. These economics stems from the very factors
that cause the B-L upswing, namely, the fact that in a full
running program, there is a lot more code affecting and
affected by the changes necessary to fix an error than in
its requirements specification. There are data and experi-
ences that show that the more time spent in requirements
engineering, the smoother the implementation steps are
[19, 16], not only in software engineering, but also in
house building [11, 34]. When the implementation goes
smoother, it takes less time, it is more predictable, and
there are fewer bugs.

However, for reasons that are not entirely clear to me,8

a confirmed requirements engineer, people seem to find
haggling over requirements a royal pain. They would
much rather move on to the coding, and they feel restless,
bored, or even guilty when forced to spend more time on
the requirements. A boss with his or her eyes focused on
an unrealistically short deadline does not help in this
respect. I would bet that Arnis Daugulis [16], his col-
leagues, and bosses at Latvenergo felt the pain of not
being able to move on to implementation, even though in
the end, they were happy that they did not move on to
implement the first two requirements specifications,
which were, in retrospect, wrong.

The pain is exacerbated, and is felt even by those wil-
ling to haggle the requirements, because the requirements
engineer must make people discover requirements by
clairvoyance rather than by prototyping. The pain is in-
creased even more as the backtracking of the waterfall
model sets in, as new requirements continue to be discov-
ii

8 Then again, I always read the manual for an appliance or piece of
hardware or software completely before using the appliance or piece. I
return the appliance or piece for a refund if there is any disagreement
between what the manual says and the appliance or piece does, even if it
is in only format of the screen during the set up procedure.

6

ered, even after it was thought that all requirements had
been found.

There appear to be at least two ways of carrying out RE
in advance of CBS design and implementation, what are
called in the agile software development community [1]
“Big Modeling Up Front (BMUF)” [3] and “Initial Re-
quirements Up Front (IRUF)” [2]. They differ in the
ways they treat the inevitable requirements changes.

In BMUF, the CBS developers try to create comprehen-
sive requirement models for the whole system up front,
and they try to specify the CBS completely before begin-
ning its implementation. They try to get these models and
specifications fully reviewed, validated, agreed to, and
signed off by the customer and users. Basically, the
developers try to get the requirements so well understood
that they can be frozen, no matter how painful it is. How-
ever, as demonstrated in Section 4, the requirements con-
tinue to change as more and more is learned during imple-
mentation. To stem the tide of requirements change, the
powers with vested interest in the freezing of the require-
ments create disincentives for changes, ranging from con-
tractual penalties against the customer who demands
changes to heavy bureaucracy, in the form of a change
review board (CRB). For each proposed change, the CRB
investigates the change’s impact, economic and structural.
For each proposed change, the CRB decides whether to
reject or accept the change, and if it accepts the change,
what penalties to exact. Of course, the CRB requires full
documentation of all requirements models and specifica-
tions and up-to-date traceability among all these models
and specifications.9

Agile developers, on the other hand, expect to be gath-
ering requirements throughout the entire CBS develop-
ment. Thus, they say that we should “embrace change”
[2]. We should explore the effects of a proposed change
against the organizations business goals. If the change is
worth it, do it, carrying out the required modifications,
including restructuring. If the change isn’t worth it, don’t
do it [21]. It’s that simple.

The objective of agile processes is to carry out a CBS
“development project that
(1) focuses and delivers the essential system only, since

anything more is extra cost and maintenance,
(2) takes into account that the content of the essential sys-

tem may change during the course of the project
because of changes in business conditions,

ii

9 The agile development community says that traceability is a waste of
resources. The cost of keeping trace data up to date must be balanced
against the cost of calculating the trace data when they are needed to
track down the ripple effects of a proposed change. The community
believes that updating is so much more frequent than tracing that the
total resources spent in continually updating outstrips the resources spent
in occasional tracing.

(3) allows the customer to frequently view working func-
tionality, recommend changes, and have changes in-
corporated into the system as it is built, and

(4) delivers business value at the price and cost defined as
appropriate by the customer.” [33]

Accordingly, agile developers get the IRUF, with all the
stakeholders, i.e., customers, users, and developers, parti-
cipating actively at all times, in which as many require-
ments as possible are gathered up front from all and only
stakeholders. The goals of getting the IRUF are [2]
1. to identify the scope of the CBS being built,
2. to define high-level requirements for the CBS, and
3. to build consensus among stakeholders as to what the

requirements imply.
The IRUF session ideally is as short as a few hours, but it
can stretch into days and even weeks in less than ideal
circumstances, such as not all stakeholders being in one
place or particularly tricky requirements. Then come
several days of modeling sessions to produce a full set of
models of the CBS as conceived by the IRUF. These
models include use cases, which are eminently suitable
for discussions between users and developers.

Following this modeling, the requirements are ranked
by priority by all stakeholders. Business goals are taken
into account during this ranking process, which typically
requires about a day. Detailed modeling of any require-
ment takes place only during the beginning of the itera-
tion during which it is decided to implement that require-
ment.

Notice that BMUF and IRUF differ in their approaches
to dealing with the relentless, inevitable requirements
changes. BMUF tries to anticipate all of them. IRUF does
not; it just lets them come. BMUF is considered as not
having succeeded totally if it fails to find a major require-
ment. The pain of dealing with the change with BMUF is
felt during the RE process. IRUF practitioners embrace
the change and decide on the basis of business value
whether or not to do the change. The pain of dealing with
the change with IRUF is felt in the re-implementation
necessitated by the change, e.g., in the refactoring that
can be necessary. See Section 6.5 for details about refac-
toring pain. Ultimately, neither approach can prevent a
new requirement from appearing.

6.5. Extreme Programming

Extreme Programming (XP) [5] argues that the preplan-
ning that is the cornerstone of each the various disciplined
programming methods, such as the Waterfall model, doc-
umentation, requirements engineering, is a waste of time.
This preplanning is a waste of time, because most likely,
its results will be thrown out as new requirements are

7

discovered. XP consists in simply building to the require-
ments that are understood at the time that programming
commences. However, the requirements are given, not
with a specification but with executable test cases. Unfor-
tunately, these test cases are not always written because
of the pain of writing test cases in general and in particu-
lar before it known what the code is supposed to do [25].
During this programming, a number of proven, minimum
pain, and lightweight methods are applied to insure that
the code that is produced meets the requirements and does
so reliably. The methods include continual inspection,
continual testing, and pair programming. Thus, the sim-
plest architecture that is sufficient to deal with all the
known requirements is used without too much considera-
tion of possible changes in the future and making the
architecture flexible enough to handle these changes. It is
felt that too much consideration of the future is a waste,
because the future requirements for which it plans for
may never materialize and an architecture based on these
future requirements may be wrong for the requirements
that do come up in the future.

What happens when a requirement comes along that
does not fit in the existing architecture? XP says that the
software should be refactored. Refactoring consists in
stepping back, considering the new current full set of
requirements and finding a new simplest architecture that
fits the entire set. The code that has been written should
be restructured to fit the new architecture, as if it were
written with the new architecture from scratch. Doing so
may require throwing code out and writing new code to
do things that were already implemented. XP’s rules say
that refactoring should be done often. Because the code’s
structure is continually restructured to match its current
needs, one avoids having to insert code that does not
match the architecture. One avoids having to search
widely for the code that affects and is affected by the
changes. Thus, at all times, one is using a well-structured
modularization that hides information well and that is
suited to be modified without damaging the architecture.
Thus, the B-L upswing is delayed and moderated.

However, refactoring, itself, is painful [18]. It means
stopping the development process long enough to con-
sider the full set of requirements and to design a new
architecture. Furthermore, it may mean throwing out per-
fectly good code whose only fault is that it no longer
matches the architecture, something that is very painful to
the authors10 of the code that is changed. Consequently, in
the rush to get the next release out on time or early, refac-
toring is postponed and postponed, frequently to the point
that it gets harder and harder. Also, the programmers real-
ize that the new architecture obtained in any refactoring
ii

10 Remember that it’s pair programming.

will prove to be wrong for some future new requirements.
Ironically, the rationale for doing XP and not another
method, is used as an excuse for not following a key step
of extreme programming.

Indeed, Elssamadisy and Schalliol report on an attempt
to apply a modified XP approach to a software develop-
ment project that was larger than any previous project to
which they had applied XP, with great success. They use
the term “bad smells” to describe symptoms of poor prac-
tice that can derail XP from its usual swift track [18].
Interestingly, each of these bad smells has the look, feel,
and odor of an inevitable pain.
1. In XP, to ensure that all customer requirements are

met, a customer representative has to be present or at
least available at all times and he or she must partici-
pate in test case construction. The test cases, of
course, are written to test that the software meets the
requirements. Elssamadisy and Schalliol report that
over time, the customer representatives begin to
“refrain from that ‘toil’” and begin to rely on the test
cases written by the developers. Consequently, the test
cases ceased to be an accurate indication of the
customer’s requirements, and in the end, the product
failed to meet the customer’s requirements even
though it was running the test cases perfectly. It ap-
pears to me that participation in the frequent test case
construction was a pain to the customer that was
caused by the relentless march of new requirements.

2. XP insists on the writing of test cases first and on
delivery of running programs at the ends of frequent
development iterations in an attempt to avoid the
well-known horror of hard-and-slow-to-fix bug-ridden
code that greets many software development teams at
delivery time. However, as a deadline for an iteration
approaches, and it is apparent that programming speed
is not where it should be, managers begin to excuse
developers from having to write test cases; developers
refrain from just barely necessary refactorings; testers
cut back on the thoroughness of test cases; and devel-
opers fail to follow GUI standards and to write docu-
mentation, all in the name of sticking to the iteration
schedule. Speed is maintained, but at the cost of
buggy code. It appears to me that all curtailed activi-
ties were painful in XP, just as they are in other
methods.

3. Elssamadisy and Schalliol report that there was a rou-
tine of doing unbooking and rebooking of a lease
(URL). The first version of the routine did URL in the
only way that was required by the first story. As a new
story required a different specific case of URL, the re-
quired code was patched in to the routine as a special
case. With each such new specific case of URL, the

8

code became patchier and patchier; it became more
and more apparent that a more and more painful refac-
toring was needed so that each specific case of URL is
a specialization of a more generic, abstract URL.
Elssamadisy and Schalliol

were the ones who got stuck with fixing the
problem. Also, because one of them is a big
whiner, he kept complaining that “we knew
this all along — something really stank for
iterations and now I’m stuck with fixing it.”
The sad truth is that he was right. Every de-
veloper after the initial implementation knew
that the code needed to be refactored, but for
one reason or another ..., they never made the
refactoring.

This type of smell has no easy solution.
The large refactoring had to be made because
the inertia of the bad design was getting too
high (footnote: Look ahead design would
have been useful here also.) By taking the
easy road from the beginning and completely
ignoring the signs, we coded ourselves into a
corner. So the moral of the story is this: when
you find yourself making a large refactoring,
stop and realize that it is probably because
that you have skipped many smaller refactor-
ings [18].

Is this ever a description of pain? It comes in a method
which has been carefully designed to avoid many painful
activities that programmers dislike.

The claim by agile developers is that the requirements
to be addressed in the first iterations are those with the
biggest business values. Any other requirements to be
considered later are less important, and are even less
likely to survive as originally conceived or even at all,
due to the relentless change of requirements. Thus, refac-
toring becomes less and less important with each itera-
tion.

However, this claim presupposes that the initial set of
requirements, the IRUF, is so comprehensive that no new
important requirements, forcing a major, painful refactor-
ing, will ever be discovered. It’s hard for me to imagine,
and it runs counter to my experience that, any require-
ments modeling that is not the result of BMUF be so suc-
cessful so as to effectively make refactoring completely
unnecessary. Certainly, even if BMUF is done, it’s hard
not to ever need refactoring. Thus in the end, the potential
for pain is there.

6.6. Program Generation

One approach to simplifying programming is to use a
program generator to write a complete program from a
declarative specification of the program. For example,
one can use a compiler-compiler to write most of a com-
piler from some syntax and semantic specifications for the
language being compiled. These program generators do
significantly simplify the process of writing a complete
program. However, program generators are generally for
application domains that are so well understood that re-
quirement surprises are unlikely. These programs are
really more manufactured than they are programmed.

However, even program generators are not without
pain. I recall that my third third major software develop-
ment project, for a summer job, was to develop a set of
report programs operating on a single employee database.
All the programs in the set were to be generated by RPG,
the old Report Program Generator. To produce any pro-
gram in the set, I specified the input data it needed in the
database and the format and formulae for the output data,
called the report. RPG would read this specification and
write a program in assembly language which then had to
be assembled. I was glad that I did not have to modify the
generated program, which looked nothing like what a
human being would write. To change a program, all I had
to do was change its specification and to submit the new
specification to RPG, which generated the new program.
What could be simpler?

Nevertheless, after a while, after the number of related
programs grew to a number, n, about 10, each change of
data format, each new field, each deleted field, etc. be-
came a nightmare as the ripple effects reverberated to all
n programs. I felt like I was skiing ahead of an avalanche
even though it was a summer job in an area noted for its
90s (90°F and 90% humidity) weather.11 If I forgot to
make a change or made the wrong change in one or more
of the specifications, the next payroll would be a mess.

Basically, a program generator, and for that matter all
automatic programming schemes [4], just move program-
ming back to earlier in the lifecyle to a specification that
is of a higher level than the normal program. However,
even a high-level specification, because it must be inter-
nally consistent, gives pain when it must be modified.

7. Conclusions

Thus, it appears that there is no software engineering
silver bullet. All software engineering bullets, even those
that contain some silver, are made mostly of lead. It is too

ii

11 On the other hand, in those days, computer rooms were so fiercely
airconditioned that I had to wear my skiing sweater in the machine room.

9

hard to purify the painful lead out of the real-life software
engineering bullet to leave a pure painless silver software
engineering bullet. This observation applies even to
Extreme Programming, which tries to avoid painful
processes entirely.

The situation with software engineering methods is not
unlike that stubborn chest of drawers in the old slapstick
movies; a shlimazel12 pushes in one drawer and out pops
another one, usually right smack dab on the poor
shlimazel’s knees or shins. If you find a new method that
eliminates an old method’s pain, the new method will be
found to have its own source of pain.

There cannot be any significant change in programming
until someone figures out how to deal, with a lot less pain,
with the relentless change of requirements and all of its
ripple effects. Perhaps, we have to accept that CBS de-
velopment is an art and that no amount of systematization
will make it less so. To the extent that we can know a
domain so well that production of software for it becomes
almost rote, as for compiler production these days, we can
go the engineering route for that domain, to make build-
ing software for it as systematic as building a bridge or a
building. However, for any new problem, where the
excitement of innovation is, there is no hope of avoiding
relentless change as we learn about the domain, the need
for artistry, and the pain.

The key concept in the Capability Maturity Model
(CMM) [30] is maturity. Getting the capability to do the
recommended practices is not a real problem. The real
problem is getting the maturity to stick to the practices
despite the real pain.

Acknowledgments

I thank Matt Armstrong, Andrew Malton, Daniel
Morales Germán, and Davor Svetinović for useful discus-
sions about specific methods. I thank the anonymous
referees of previous versions of this paper for their careful
comments. Dealing with them led to what I believe is a
better paper. I was supported in part by NSERC grant
NSERC-RGPIN227055-00.

References

[1] “Principles: The Agile Alliance,” The Agile Alliance
(2001), http://www.agilealliance.org/.

[2] Ambler, S.W., “Agile Requirements Modeling,” The
Official Agile Modeling (AM) Site (2001),
http://www.agilemodeling.com/essays/agileRequirementsModeling.htm.

ii

12 “Shlimazel” is Yiddish for “one who always suffers bad luck”.

[3] Ambler, S.W., “Agile Software Development,” The Official
Agile Modeling (AM) Site (2001),
http://www.agilemodeling.com/essays/agileSoftwareDevelopment.htm.

[4] Balzer, R.M., “Transformational Implementation: An
Example,” IEEE Transactions on Software Engineering
SE-7(1), pp. 3–14 (January 1981).

[5] Beck, K., Extreme Programming Explained: Embrace
Change, Addison-Wesley, Reading, MA (1999).

[6] Belady, L.A. and Lehman, M.M., “A Model of Large Pro-
gram Development,” IBM Systems Journal 15(3), pp.
225–252 (1976).

[7] Belady, L.A. and Lehman, M.M., “Program System
Dynamics or the Metadynamics of Systems in Maintenance
and Growth,” in Program Evolution, ed. M.M. Lehman and
L.A. Belady, Academic Press, London, UK (1985).

[8] Berry, D.M., “An Example of Structured Programming,”
UCLA Computer Science Department Quarterly 2(3) (July
1974).

[9] Berry, D.M., “Program Proofs Produced Practically,” Tuto-
rial Notes of Fifth International Conference on Software
Engineering (March 1981).

[10] Berry, D.M. and Lawrence, B., “Requirements Engineer-
ing,” IEEE Software 15(2), pp. 26–29 (March 1998).

[11] Berry, D.M., “Software and House Requirements Engineer-
ing: Lessons Learned in Combating Requirements Creep,”
Requirements Engineering Journal 3(3&4), pp. 242–244
(1998).

[12] Boehm, B.W., Software Engineering Economics, Prentice-
Hall, Englewood Cliffs, NJ (1981).

[13] Brooks, F.P. Jr., “No Silver Bullet,” Computer 20(4), pp.
10–19 (April 1987).

[14] Brooks, F.P. Jr., The Mythical Man-Month: Essays on
Software Engineering, Addison Wesley, Reading, MA
(1995), Second Edition.

[15] Dahl, O.-J., Dijkstra, E.W., and Hoare, C.A.R., Structured
Programming, Academic Press, London, UK (1972).

[16] Daugulis, A., “Time Aspects in Requirements Engineering:
or ‘Every Cloud has a Silver Lining’,” Requirements
Engineering 5(3), pp. 137–143 (2000).

[17] Dunsmore, A., Roger, M., and Wood, M., “Object-Oriented
Inspection in the Face of Delocalization,” pp. 467–476 in
Proceedings of the Twenty-Second International Confer-
ence on Software Engineering (ICSE2000), Limerick, Ire-
land (June 2000).

[18] Elssamadisy, A. and Schalliol, G., “Recognizing and
Responding to “Bad Smells” in Extreme Programming,” in
Proceedings of the Twenty-Fourth International Confer-
ence on Software Engineering (ICSE2002), Orlando, FL
(May 2001).

[19] Forsberg, K. and Mooz, H., “System Engineering Over-
view,” in Software Requirements Engineering, ed. R.H.
Thayer and M. Dorfman, IEEE Computer Society, Wash-
ington (1997), Second Edition.

[20] Griswold, W.G., Yuan, J.J., and Kato, Y., “Exploiting the
Map Metaphor in a Tool for Software Evolution,” pp.
265–274 in Proceedings of the Twenty-Third International
Conference on Software Engineering (ICSE2001), Toronto,

10

ON, Canada (June 2001).
[21] Highsmith, J. and Cockburn, A., “Agile Software Develop-

ment: The Business of Innovation,” IEEE Computer 34(9),
pp. 120–122 (September 2001).

[22] Jackson, M.A., “The Role of Architecture in Requirements
Engineering,” pp. 241 in Proceedings of the First Interna-
tional Conference on Requirements Engineering, IEEE
Computer Society, Colorado Springs, CO (April 18–22
1994).

[23] Lehman, M.M., “Programs, Life Cycles, and Laws of
Software Evolution,” Proceedings of the IEEE 68(9), pp.
1060–1076 (September 1980).

[24] Lientz, B.P. and Swanson, E.B., “Characteristics of Appli-
cation Software Maintenance,” Communications of the
ACM 21(6), pp. 466–481 (June 1978).

[25] Müller, M.M. and Tichy, W.F., “Case Study: Extreme Pro-
gramming in a University Environment,” pp. 537–544 in
Proceedings of the Twenty-Third International Conference
on Software Engineering (ICSE2001), Toronto, ON,
Canada (June 2001).

[26] Naur, P. and Randell, B., “Software Engineering: Report on
a Conference Sponsored by the NATO Science Commis-
sion,” Garmisch, Germany, 7–11 October 1968, Scientific
Affairs Division, NATO, Brussels, Belgium (January
1969).

[27] Nuseibeh, B. and Easterbrook, S., “Requirements Engineer-
ing: A Roadmap,” in The Future of Software Engineering
2000, ed. A. Finkelstein, ACM, Limerick, Ireland (June
2000).

[28] Parnas, D.L., “On the Criteria to be Used in Decomposing
Systems into Modules,” Communications of the ACM
15(2), pp. 1053–1058 (December 1972).

[29] Parnas, D.L. and Clements, P.C., “A Rational Design Pro-
cess: How and Why to Fake It,” IEEE Transactions on
Software Engineering SE-12(2), pp. 196–257 (February
1986).

[30] Paulk, M.C., Curtis, B., Chrissis, M.B., and Weber, C.V.,
“Key Practices of the Capability Maturity Model,” Techni-
cal Report, CMU/SEI-93-TR-25, Software Engineering
Institute (February 1993).

[31] Royce, W.W., “Managing the Development of Large
Software Systems: Concepts and Techniques,” in Proceed-
ings of WesCon (August 1970).

[32] Schach, S.R., Software Engineering, Aksen Associates &
Irwin, Boston, MA (1992), Second Edition.

[33] Schwaber, K., “Agile Processes — Emergence of Essential
Systems,” The Agile Alliance (2002),
http://www.agilealliance.org/articles/.

[34] Wieringa, R., “Software Requirements Engineering: the
Need for Systems Engineering and Literacy,” Requirements
Engineering Journal 6(2), pp. 132–134 (2001).

[35] Wirth, N., “Program Development by Stepwise Refine-
ment,” Communications of the ACM 14(4), pp. 221–227
(April 1971).

11

