
A Pragmatic, Rigorous Integration of Structural and Behavioral
Modeling Notations

Daniel M. Berry�

GMD-FIRST
12489 Berlin, Germany

dberry@cs.technion.ac.il

Matthias Webery

Research and Technology
Daimler-Benz AG

10559 Berlin, Germany
weber@dbresearch-berlin.de

Abstract

This paper describes a pragmatic, rigorous in-
tegration of the mathematical specification lan-
guage Z with well-known object modeling nota-
tions and an object-oriented variant of statecharts.
The goal is to preserve the abstraction and flexi-
bility of widely-used design notations while being
able to embed the precision and rigor of mathe-
matical specification at selected places. The inte-
gration between the notations is based on a map-
ping between entities of the three models.

1. Introduction

Formal methods have been seriously applied in
recent years in various industrial andacademic pi-
lot projects as reported, for instance, in [4]. How-
ever, the breakthrough, by which formal methods
are routinely applied to software developments,
has not yet been achieved. Many companies in-
volved in such projects are scaling down their
use of formal methods to a level that is inaccor-
dance with their current industrial relevance. For
instance, they have only small teams of highly
trained research staff working on selected critical
aspects of systems.

What are the reasons for the failure of formal
methods to achieve broaderacceptance? From our
own experience and from our analysis of experi-
ence reports ([4, 12], for instance), we believe that
one major reason is that presently formal methods
come with too broad a goal, of complete formal-
ization.

�regularly at Computer Science Department, Technion,
Haifa 32000, Israel

ywork done while at Fachbereich Informatik, Technische
Universität Berlin, 10587 Berlin, Germany

We believe that a more modest approach of in-
tegrating formal techniques into the current sys-
tem design process will lead to a more immediate
application of such techniques. Starting out from
existing and accepted conventional design meth-
ods, one should investigate at which points during
the design process mathematical techniques can be
smoothly and usefully integrated.

Due to space limitations, many formal details
have been omitted. The interested reader can find
them in a technical report of the same title as this
paper available from either author [1].

2. Modeling and Integration

A widely used technique in modern software
engineering is to model a system by a combination
of different, but semantically compatible, views of
that system. In the approach presented here, as is
shown in Figure 1, we divide the modeling into
three views: the architectural model of the system,
the reactive model of the system, and the func-
tional model of the system, and we provide a map-
ping between those views.

Mapping

Architectural Model

class relations

system structure

object interaction

time control

detailed data structure

I/O value transformations

Reactive Model Functional Model

Figure 1. The three modeling views of
a system



The architectural modelof a system describes
the relationships between the types of components
used in the system as well as the actual configu-
ration of the system components itself. For the
description of this model, we adopt the object-
oriented modeling paradigm [2, for instance]. We
understand a system as a hierarchically structured
collection of objects that change state and interact
with each other throughout their lifetime. In this
setting, we use notation from OMT [11] and the
Unified Modeling Language [14].

The two other views are primarily concerned
with the behavioral specification. We make a fun-
damental distinction with respect to the behavior
of system components. Thefunctional modelof
a component comprises data definitions, data in-
variants, and data transformation relations. The
reactive modelcomprises the life-cycle of compo-
nents, i.e. interactions with other components and
the control of time during these interactions.

We specify reactive behavior using an object-
oriented variant of statecharts [7, 8], for two rea-
sons: statecharts have proved to be sufficiently ex-
pressive for modeling complex component inter-
actions and time control, and the use of statecharts
is currently spreading in industry.

We specify the functional behavior of objects
using the state-based formal specification lan-
guage, Z [13], for two main reasons: Z has
proved to be particularly useful for modeling com-
plex functional data transformations, and both in
academia and industry, Z has become a most
widely used formal specification notation. Since
we aim at a practical approach, we try to stick to
a constructive subset of Z, i.e. a subset that can be
compiled into efficient code. The use of a math-
ematical notation, such as Z, for modeling func-
tional behavior enables us to prove many safety
properties about the control system, such as pro-
visions that the system never enters certain haz-
ardous states. Safety conditions imposed on data
structures and data relationships could, of course,
be specified using the full expressive power of the
Z language.

Themappingserves to explicitly relate the ele-
ments in each view that are intended to be descrip-
tions of the same entities of the system. For the
benefit of the humans reading the different views,
it is useful to have a convention that reinforces the
mapping, namely that of giving identical names to
each view’s manifestation of a single entity. Re-
gardless of whether this convention is followed,
the mapping establishes what are supposed to be
describing the same entities. If in some view, there
is no correspondent to an entity defined in another
view, then in the first view, the semantics of the

entity is that implied by its definition in the other
view and that definition’s projection, by the map-
ping, on to the first view. All of this depends on
having demonstrated that the models are consis-
tent under the mapping.1

Mappings are not a new idea. They are used ex-
tensively in automata theory to show different au-
tomata equivalent in power [9]; they are used in
programming language semantics to show equiv-
alence of definining interpreters [10]; they are
used in multi-level formal development methods
to show that a refinement to be a correct realiza-
tion of its abstraction [17]; and they are used in
multi-view system design environments to estab-
lish the relation between the views to enable anal-
yses by tools in the environment [5].

3. A Small Case Study

We consider a simple embedded control sys-
tem, a controller for a heavy hydraulic press that is
operated manually. Hydraulic presses are devices
for pressing workpieces into a certain shape. The
human operator, at the press, places the workpiece
in the press and initiates the closing of the press.
The plunger of the press moves down, presses the
workpiece and subsequently moves up again. The
workpiece can then be removed from the press and
the entire process may be repeated.

Hydraulic presses are dangerous, since the
worker operating the press may hurt himself by ac-
cidentally trapping his hand in the press. A typi-
cal safety device to prevent hand injuries aretwo-
hand controllers, i.e. control units with two but-
tons, located about 1 meter apart, that must both
be kept pressed while a potentially dangerous ac-
tion is performed [6]. In addition, both buttons
must be pressed within a small period of time, in
our example 0.5 sec., in order to successfully ini-
tiate the closing of the press. The obvious inten-
tion behind two-hand controllers is to keep both
of the worker’s hands out of the danger area. If
a button is released while the press is closing, the
press will immediately stop and reopen. However,
after a certain point is reached, which we call the
critical point, the closing press can no longer be
stopped physically, and hence cannot react to the
release of a button. It is hoped that in this case,
the press is closed too much for a hand to even be
inserted.

This system is a good example to introduce and
explain our approach, since it comes with interest-
ing safety and real-time constraints, but is simple

1Related work aims at developing a formal mathematical
foundation, i.e. an integrated model comprising all aspects of
system behavior [16].

2



enough to not clutter the presentation with tech-
nical details. It should be obvious that the above
informal specification is far too sketchy to ade-
quately specify the required system behavior, and
thus a more complete specification is needed.

3.1. Architectural Model

In the previous section, we have presented the
informal requirements of the hydraulic press con-
trol case study. Since this is a very small example,
the analysis and architectural design is straightfor-
ward. The results are summarized in the object
model presented in Figures 2 and 3.

A two-hand press-object is an aggregation of
objects of classesButton, PhysicalPress, andSam-
pler. Aggregation is denoted by links adorned
with a rhombus. Multiplicities may be specified
explicitly by giving numbers along aggregation
links; any missing number is assumed to be “1”.
The multiplicities in the class diagram and the ob-
ject diagram both show that, in fact, the two-hand
press object,THP has two button objects,B1 on
the left andB2 on the right, one physical press ob-
ject, PP, and one sampler object,S. A button is a
specialization of a sensor. It offers an operation to
read its only measured value, indicating whether
the button is currently pressed. A button also in-
corporates additional operations for pressing and
releasing a button. The specialization, i.e. inher-
itance, relationship is denoted by links adorned
with a triangle. In the context of this case study,
the physical press is modeled as an entity special-
izing both a sensor and a motor. In particular, be-
sides an operation to read the current state of the
press, it includes operations to move up, to move
down and to stop. The physical press measures
three values. These values are further described
below.

The communication relationships between ob-
jects of this system are summarized in Figure 3:
The idea is to let the sampler periodically read
the current values measured by the physical press
and the buttons and then, based on these values, to
send control messages to the press control itself.
The sending of these messages can be interpreted
as events affecting control. The press control pro-
cesses these messages and converts them into mo-
tor commands to move the press. In this sense, the
purpose of the sampler is to abstract from the low-
level details of communication with the external
devices and to offer an appropriate interface to the
logical view of the controller. Of course, we must
be concerned that the control does not miss a rel-
evant input, i.e. the maximum time for the control
to react to an input must be less than the length of

sampling interval.

3.2. Reactive Model

The top-level reactive behavior of the Two-
HandPress class is described by the statechart in
Figure 4. Initially, the control remains idle until
the sampler signals that the press is in default po-
sition, i.e. at the top. The control then enters the
Runningmode. In case of a malfunction, the mo-
tor is stopped and a specialMalfunctionstate is
entered. A malfunction is recognized if the sen-
sors deliver values that are not expected at any
point of operation.UnexpectedSignalsis an abbre-
viation for a group of transitions. We return to its
definition below.

Following common conventions, we denote
states by rounded boxes and indicate their names
on the upper left corner. As usual, we use a dot-
anchored kind of arrow to point to default sub-
states to be entered when entering a complex state.
In general we use two kinds of transitions,opera-
tion transitionsandtimeout transitions.

The arrows for operation transitions are in gen-
eral adorned as follows:

ProvidedOperations[Condition]=
RequestedOperations

If the object is in the source state and one of the
indicated provided operations, separated byor, is
requested from an external object, then, if the con-
dition is satisfied, the indicated operations are re-
quested from the indicated external objects and the
object changes into the target state of the arrow.
The condition is optional, an omitted condition
acts as a condition that is always true. Requested
operations are optional too: if no requested op-
erations are indicated, the object just performs a
change of the internal object state. The other form
of transitions, the timeout transition, is explained
below.

TheRunningstate is further refined in Figure 5.
The press is operated in a continuous cycle of clos-
ing and opening. Entering the stateClosingis as-
sociated to a motor command to move down. The
Openstate and the labelInitiateClosingare further
refined below. TheClosingstate may be left by
either releasing one of the buttons, or by reaching
the bottom of the press. Both cases lead to a motor
command to move up.Openingthen continues un-
til the sampler signals the press being again at the
top. Following a common convention about state
transition diagrams, we use stubbed arrows to in-
dicate transitions originating from substates of not
yet sufficiently refined states.

3



The behavior of the control in theOpeningand
Closingstates has not yet been refined to sufficient
detail. First, we have to distinguish between those
states in which the closing press above or below
the critical point, i.e. the point below which the
press can no longer be reopened before closing.
This is clarified in the state transition diagram in
Figure 6.

The two arrows leaving the refinedClosing
state correspond to the two arrows leaving the re-
spective unrefined state in Figure 5. Identification
of such arrows should be unambiguous by graphi-
cal position and by label.

At this point, we have sufficiently exposed the
state structure of the two-hand press, to define
precisely the transition group labeledUnexpected-
Signalsin Figure 4.

UnexpectedSignals� AtTop[ClosingBelow]
or AtBottom[Ready_ Open_ ClosingAbove]
or CrossPonR[Ready_ Open]
or SignalError

The most complex aspect of the press behav-
ior is obviously the transition from theOpen to
theClosingstate. This is described in detail in the
state transition diagram in Figure 7. According to
the logic of the two-hand press, in order to initiate
the closing of the press, the two buttons have both
to be released and subsequently both have to be
pressed within a specific time interval (MaxDelay
milliseconds). Therefore, theSafetyPositionstate,
which the system enters initially, can be left only
when both buttons are released. Now when, e.g.
the left button is pressed after both buttons were
released, the right button must be pressed within a
certain time interval,MaxDelaymilliseconds, oth-
erwise a timeout occurs and the system re-enters
the SafetyPositionstate. If the right button is
pressed soon enough, the system requests the mo-
tor to move the press down and enters theClosing
state.

The transition groups labeledInitiateClosing
and InterruptClosingin Figure 5 can now be de-
fined as follows:

InitiateClosing � PressLeftor PressRight
InterruptClosing � ReleaseLeftor ReleaseRight

This example has made use of the second kind
of transition, the timeout transition. The respec-
tive arrows are adorned as follows:

after TimeExpression: InternalEvent=
RequestedOperations

If the system has been in the source state of such
an arrow for the time specified in the time expres-

sion, then it requests operations from other ob-
jects and changes into the target state of the arrow.
As for operation transitions, the condition and re-
quested operations may be omitted.

After modeling the reactive view of the global
control of the hydraulic press system, we have yet
to describe the reactive behavior of the sampler:
After initialization, the sampler periodically sam-
ples the two button sensors and the press sensor.
For each sensor, the current values of its signals
are read, and, depending on the values of these sig-
nals, a certain operation from the controller is re-
quested. We do not detail the corresponding state
machines at this point. The state machines for the
motor, the buttons, and the physical press are not
part of the controller but part of its environment.

3.3. Functional Model

Following common practice when presenting Z
specifications, we first specify the state space of
the hydraulic press and then the effect of the con-
trol operations on this space. The state space is
made up of appropriatedata modelsof the rele-
vant system components. These models contain
the information necessary for the control to decide
which action to take. In order to highlight seman-
tic dependencies, we will stick a systematic nam-
ing convention: The data model of a unit or a col-
lection of unitsU is namedUModel. Also, enti-
ties in the Z specification that are intended to give
semantics to entities in the architectural and reac-
tive specifications have the same name as the cor-
responding entities, right down to capitalization of
the letters.

State: First, we define the states of the button
control. A button is an object that can be pressed
or released.

Button::= pressedj released

Remember, that the requirements of the press con-
trol described situations in which both buttons
must be released first before they may be pressed
again to initiate closing of the press. To model this
information, we use the following set:

DoubleRelease::= requiredj notrequired

We do not explicitly mirror the full substate struc-
ture of the press control from the reactive view,
e.g. the various substates of open. Rather, in
this functional view, we find it more convenient
to model the buttons explicitly and later define
the states of the state machines in terms of our Z
model.

5



ButtonModel
B1;B2 : Button
doublereleaserequired: DoubleRelease

(B1 = released̂ B2 = released))
doublereleaserequired= notrequired

This schema describes the button model as con-
sisting of the two buttons and a flag that indicates
whether a release of both buttons is required. The
logical constraint dictates that a double release is
not required if both buttons are released.

We introduce an auxiliary schema for describ-
ing those situations in which the press is correctly
triggered to start moving, i.e. both buttons have
been pressed within the permitted delay after both
have been previously released.

PressTriggered
ButtonModel

B1 = pressed
B2 = pressed
doublereleaserequired= notrequired

Note, that in the functional view, we do not model
real-time aspects, rather, these aspects are dele-
gated to the reactive view.

Next, we define the press states. The press,
without the buttons, may be ready, open, closing
above or below the point of no return, opening, or
in a malfunction.

TwoHandPress::=
readyj openj closingabovej closingbelowj
openingj malfunction

The internal model of the press is defined by:

PressModel
THP : TwoHandPress

By means of the notions introduced so far, we can
now specify the state space of the press control
and its initialization as follows:

TwoHandPressState
PressModel
ButtonModel

PressTriggered) THP 6= open
THP= closingabove) PressTriggered

Create
TwoHandPressState0

THP0 = ready

The state schema describes the two-hand press
control as consisting of the press model and the
button model all being subject to two constrain-
ing conditions related to functionality and safety.
The first condition states that the press,THP, can
be open only if it has not been triggered. The sec-
ond condition states that above the critical point,
THP can be closing only if it has been triggered.
These conditions must be satisfied for any state of
the system.

Note that the functional specification of the
state space reexpresses information that is present
in the state structure of the reactive view. For ex-
ample, the definition ofTwoHandPressis closely
related, but not quite identical, to the states used
in the reactive view. For example the states
ReadyandOpencan be defined by the following
schemas.

Ready
TwoHandPressState

THP= ready

Open
TwoHandPressState

THP= open

A state can be defined by this sort of schema,
for each state inTwoHandPress, and we assume
that such states have been defined. Thus, we now
have definitions for theReady, Open, Closing-
Above, ClosingBelow, Opening, andMalfunction
states. We therefore need definitions only for the
substates ofOpen, namely SafetyPosition, Left-
Pressed, andRightPressed.

SafetyPosition
TwoHandPressState

THP= open
B1 = pressed_ B2 = pressed

) doublereleaserequired= required

6



RightPressed
TwoHandPressState

THP= open
B1 = released
B2 = pressed
doublereleaserequired= notrequired

The second condition ofSafetyPositionstates that
in the safety position, if any button is pressed, a
double release is required before the press may be-
gin to close. The substateLeftPressedcan be de-
fined analogously, and we assume that it has been.

We do not need definitions forClosing
and Running because these are composed
uniquely from their substatesClosingAboveand
ClosingBelowon one hand andOpening, Closing,
andOpenon the other hand. Strictly speaking, we
do not need, in the functional model, a definition
of Openand TwoHandPressState, because these
are also composed uniquely from their substates,
but in writing the functional model independently
of the other models, it felt right to define them.

Operations: We now turn to the specification of
the operations of the two-hand press controller.
First, we specify the effect of pressing the left but-
ton, B1. Local to the button model, the effect of
this operation can be specified as follows.

PressLeftLocal
�ButtonModel

B1 = released
B10 = pressed
B20 = B2
doublereleaserequired0 =

doublereleaserequired

This operation can be extended to the two-hand
press state by specifying how the press state is af-
fected by the pressing ofB1. There are two cases.
If the right button,B2, has already been pressed
and no double release is required yet, then the
press begins to close. If this is not the case, the
press remains open.

PressLeft
�PressModel
PressLeftLocal

(THP= open^ B2 = pressed̂
doublereleaserequired= notrequired)

) THP0 = closingabove
(THP 6= open_ B2 = released_

doublereleaserequired= required)
) THP0 = THP

This specification captures very succinctly the
normal behavior of the operation to pressB1. The
effect of pressing the right button,B2, can be spec-
ified analogously, and we assume that it has.

Next, we turn to the release operations. Again,
we begin by specifying the effect of releasing the
left button,B1, local to the button control.

ReleaseLeftLocal
�ButtonModel

B1 = pressed
B10 = released
B20 = B2
B2 = released) doublereleaserequired0

= notrequired
B2 = pressed) doublereleaserequired0

= required

Note, that the release of a button may affect the
release flag. Next, we extend this operation to the
state of the two-hand press. The interesting case
here is to capture the effect of releasing a button at
a time when the press is closing and still above the
point of no return.

ReleaseLeft
�PressModel
ReleaseLeftLocal

THP= closingabove) THP0 = opening
THP 6= closingabove) THP0 = THP

Analogously, we can specify the operation to re-
leaseB2, and we assume that it has been done.

After specifying the button operations, we now
turn to the operations describing state changes re-
sulting from signals received from thephysical
press. For example, the effect of the press indicat-
ing arrival at the top of the press can be specified
as follows:

7



AtTop
�TwoHandPressState

THP2 fopening; readyg
) THP0 = open

THP2 fopening; readyg ^ (B1 = pressed
_ B2 = pressed)

) doublereleaserequired0 = required
THP2 fclosingabove;closingbelowg

) (THP0 = malfunction^
doublereleaserequired0 =
doublereleaserequired)

B10 = B1
B20 = B2

The first implication specifies the normal behav-
ior, i.e. the signal is arriving during initialization
or opening of the press. Note, in this case, the
change of the release flag, i.e. after arriving at the
top, a full release of both buttons is required. The
second implication specifies the abnormal behav-
ior, i.e. the signal is arriving during closing of the
press, in which case the press stops the motor and
goes into the malfunction state. The remaining
operationsCrossPonR, AtBottom, andSignalError
can be specified in similar styles, and we assume
that they have been.

Conditions and Internal events: The condition
that both buttons are released can be defined with
the schema forBothReleased. Finally, we spec-
ify, in the schema forPressTimeOut, the sole in-
ternal event that arises in the case that the press
is open, either one of the buttons was pressed, but
the delay for pressing the other button has been ex-
ceeded. In this case, the event changes the system
back into its safety position.

BothReleased
TwoHandPressState

B1 = released
B2 = released

PressTimeOut
�TwoHandPressState

THP0 = THP= open
B1 = pressed, B2 = released
doublereleaserequired= notrequired
doublereleaserequired0 = required
B10 = B1
B20 = B2

This completes the functional view of the control.
At this point, the reader may argue that this func-
tional view of the system is redundant, since all
behavioral aspects of this finite state system could
have been adequately specified using statecharts
alone. We would argue here that the functional
view is useful in its own since it shows very ex-
plicitly that the internal models of the physical
components satisfy important safety conditions.
Admittedly, one could have expressed all details
of the button logic with statecharts, but this would
have definitely obscured the specification and the
proof of its properties. Furthermore, this is a very
small example, and, in our experience, the data
space and the amount of data transformation tends
to grow quickly in more complex control systems.

4. Integration of Models

The integration of the models is made rigorous
by establishing a mapping between the entities de-
fined and used in the three models. In the pre-
ceding sections, we have implicitly assumed such
a mapping by using, within the models, identi-
cal names for those entities to be mapped toeach
other.

At the end of the paper, after the bibliogra-
phy, Figure 9 gives, in tabular form, the map-
ping between the three models, and Figure 8 gives
a legend explaining the notation used in the ta-
bles. When a given model does not have a corre-
spondent to an entity in another model, then “—”
shows up in the first model’s entry for the entity.
The indentation of the reactive model state names
is intended to illustrate the hierarchical structure
of the states in the reactive model.

The reactive and functional view can be
checked against each other. The basic idea is to
systematically and consistently relate the state hi-
erarchy and the transitions introduced in the state-
charts with the state spaces and operations as de-
fined by the Z schemas.

4.1. Relating State Structures

Due to space limitations, we argue the state-
structure consistency of only the specific Hy-
draulic press example. It is hoped that the reader
can generalize to any situation involving a Z and
a statechart specification. The assertions that must
be proved in the general case are given in the tech-
nical report [1].

In the case of the hydraulic press, to ensure
consistency between these definitions, we have to
prove nonemptyness of primitive states,

8



9Ready, 9Malfunction, 9SafetyPosition,
9 LeftPressed,9RightPressed,9Opening,
9ClosingAbove,9ClosingBelow

we have to prove disjointness of substates,

disjoint(ClosingAbove; ClosingBelow)
disjoint(SafetyPosition; LeftPressed;RightPressed)
disjoint(Opening; Closing; Open)
disjoint(Ready; Malfunction; Running)

and we have to prove the necessity and sufficiency
of theor-compositions:

Open`
(SafetyPosition_ LeftPressed_ RightPressed)

(SafetyPosition_ LeftPressed_ RightPressed) `
Open

TwoHandPressStatè
(Ready_ Malfunction_ Running)

(Ready_ Malfunction_ Running) `
TwoHandPressState

4.2. Relating Computational Structures

We have to demonstrate that the set of compu-
tations, i.e., sequences of states starting with an
initial state and obtained from the previous by ap-
plication of a transition or operation, in the two
models are consistent with each otherunder the
mapping. The standard approach is to use com-
putational induction. That is, show first that the
initial states in the two models are consistent un-
der the mapping; this is the basis of the induction.
Then show that if statesSandSz are consistent un-
der the mapping, then the statesS0 andS0

z obtained
by applying corresponding transitions and opera-
tions toS andSz, respectively, are also consistent
under the mapping; this is the inductive step.

Again, due to space limititations, we argue the
induction for the specific hydraulic press example,
expecting the reader to generalize. See the techni-
cal report [1] for the assertions that must be proved
in the general case.

Basis: In the hydraulic press example, in the re-
active model, the initial state isReadywhich maps
to the functional modelReadystate which is de-
fined as the same as thereadystate into which the
Createoperation putsTHP.

Inductive Step: The inductive step has to be
shown for each operation applied to all possible
states to which the operation is applicable by its

pre-conditions. We consider a few example opera-
tions.

First, we consider the operationPressLeft. It
is necessary to find all transitions in the reactive
model in whichPressLeftoccurs as the provided
operation. These are all in Figure 7, giving the re-
finement of theOpenstate. In this diagram, there
are only two relevant transitions, giving rise to the
obligations:

SafetyPosition̂ PressLeft̂ BothReleased̀
LeftPressed0

SafetyPosition̂ PressLeft̂ : BothReleased̀
SafetyPosition0

RightPressed̂ PressLeft̀ ClosingAbove0

The precondition ofPressLeftcan be calculated
in the functional model as

THP` prePressLeft, B1 = released.

This means that an after-state ofPressLeftis spec-
ified only if B1 is released in the pre-state. There
are two states in which we know for sure that the
left button, B1 is not released, namely (1)Left-
Pressed, following from its own definition, and (2)
ClosingAbove, following from the second condi-
tion of TwoHandPressStateand the definition of
PressTriggered. Therefore, thePressLeftis inap-
plicable in two states only, namely:

LeftPressed̀ : prePressLeft
ClosingAbovè : prePressLeft

For the other primitive states, we have to prove
preservation, i.e.: for all statesS,

S^ PressLeft̀ S0

A similar analysis can be done with the other
press and release operations. Next, we turn to the
control eventAtTop. By examination of the state-
charts for the top-level behavior and the refine-
ment of theRunningstate in Figures 4 and 5 and
the definition of the transition groupUnexpected-
Signal, it is clear that the the transitions to be ver-
ified are:

Readŷ AtTop` SafetyPosition0

Openinĝ AtTop` SafetyPosition0

Runninĝ ClosingBeloŵ AtTop` Malfunction0

Inapplicability is given in the statesOpen and
Malfunction. The other control events can be ana-
lyzed in a similar fashion.

Finally, there is one internal eventPressTime-
Out. From the statechart for theOpen state,
it is clear that the following transitions must be
checked.

9



LeftPressed̂ PressTimeOut̀ SafetyPosition0

RightPressed̂ PressTimeOut̀ SafetyPosition0

Inapplicability is given in the remaining states. All
these properties amount to very simple checks of
the given definitions. Nevertheless, checking these
conditions is very helpful for debugging a specifi-
cation.

5. Conclusions

This paper has shown a small example of using
three different specification languages to specify
different aspects of a system under design. Each
specification language is used for its own strengths
to specify what it can, leaving it to the other lan-
guages to deal with what it cannot specify. Of
course, it is hoped that every aspect of the sys-
tem under design that is in need of specification
can be specified by at least one of the specification
languages used. Each specification is carried out
somewhat independently in its own best method;
although, it is necessary to keep in mind the other
specifications, if only to make sure that all speci-
fications are specifying the same system under de-
sign.

Once the specifications are completed it is nec-
essary to define a mapping that relates the two
specifications and shows both when an entity is
defined in more than one specification and when
an entity is defined in only one specification. In
the former case, it is necessary to prove that the
multiple definitions are consistent witheach other
under the mapping, i.e., that the different views of
that entity do not imply different behavior. In the
latter case, if all the proofs have been carried out,
we get the right to assume the meaning of the sin-
gle definition as it projects to all other specifica-
tions, i.e., to inherit the single definition as appli-
cable to all specifications.

Indeed, one can consider the models comple-
mentary only to the extent that there is a mapping
explaining how they complement each other and
from which the meanings of missing aspects in
one model can be deduced by mapping from their
meanings in the others.

In the example of this paper, the complemen-
tary models all have a similar conception so it
was quite straightforward to find a very simple,
identifier-to-identifier mapping between any two
of the models. The referees of this paper won-
dered what would happen if the models were not
of similar conception. As suggested by the earlier
experience with mappings, cited in Section 2, the
mapping can be any collection of functions on any

collection of state variables in one model to indi-
vidual variables in another. Of course, in this case,
it will not be so easy and systematic to find the
mappings. However, one thing is clear; complete
failure to find a mapping is a sign that the models
are not complementary and that more work needs
to be done.

Alternatively, one can insist that all people de-
signing one system work closly enough together
that the models do have similar enough concep-
tions that the mapping will be one-to-one.

The reader might also have objected at various
points in the presentation of the example, that one
can often easily define entities in one model in
such a way as to automatically satisfy the proof
obligations with respect to their definition in an-
other model. While we admit that this is possible,
we want to stress at this point, that our method-
ological guideline is to define each entity as natu-
rally and as independently as possible from differ-
ent points of view, perhaps even by different peo-
ple. In some cases, the consistency between views
may follow by construction, in others, consistency
must be ensured by a separate nontrivial reason-
ing.

References

[1] D. Berry and M. Weber. A pragmatic, rigorous
integration of structural and behavioral modeling
notations. Technical report, GMD-FIRST and
Computer Science Dept., Technion, 1997.

[2] G. Booch. Object-Oriented Analysis and Design
with Applications. Benjamin Cummings, second
edition, 1994.

[3] R. Büssow and M. Weber. A steam-boiler control
specification with Statecharts and Z. In J. Abrial,
H. Langmaack, and E. B¨orger, editors,Formal
Methods for Industrial Applications: Specifying
and Programming the Steam-Boiler Control, vol-
ume 1165 ofLNCS, pages 109–128. Springer,
1996.

[4] D. Craigen, S. Gerhart, and T. Ralston. An
international survey of industrial applications of
formal methods. Technical Report NISTGCR
93/626, National Institute of Standards and Tech-
nology, Gaithersburg, MD, 1993.

[5] G. Estrin. A methodology for design of digital
systems — supported by SARA at the age of one.
In Proc. of NCC, pages 313–336. AFIPS, 1978.

[6] Z. für Unfallverhütung und Arbeitsmedizin.
Pressen – Sicherheitsregeln f¨ur Zweihandschal-
tungen an kraftbetriebenen Pressen der Metall-
bearbeitung. Hauptverband der gewerblichen
Berufsgenossenschaften, Langwartweg 103, 5300
Bonn 1, zweite edition, 1978.

[7] D. Harel. Statecharts: A visual formalism for
complex systems.Science of Computer Program-
ming, 8(3):231–274, 1987.

10



[8] D. Harel and E. Gery. Executable object-
modeling with Statecharts. InProc. of ICSE 18,
1996.

[9] J. Hopcroft and J. Ullman. Introduction to Au-
tomata Theory, Languages, and Computation.
Addison Wesley, Reading, MA, 1979.

[10] C. McGowan. An inductive proof technique for
interpreter correctness. In R. Rustin, editor,For-
mal Semantics of Computer Languages, Engle-
wood Cliffs, NJ, 1972. Prentice-Hall.

[11] J. Rumbaugh et al.Object-Oriented Modeling and
Design. Prentice-Hall, 1991.

[12] I. Software. Safety-Critical Systems. IEEE, Jan-
uary 1994.

[13] M. Spivey. The Z Notation, A Reference Manual.
Prentice Hall, second edition, 1992.

[14] UML Partners Consortium. Version 1.0 of the
Unified Modeling Language. Technical report,
RATIONAL Software Corporation, 1997.

[15] M. Weber. Combining Statecharts and Z for the
design of safety-critical control systems. In M.-C.
Gaudel and J. Woodcock, editors,FME’96: In-
dustrial Benefits and Advances in Formal Meth-
ods, volume 1051 ofLNCS, pages 307–326.
Springer, 1996.

[16] M. Weber. Abstract object systems. Rote Reihe
97-12, TU Berlin, 1997.

[17] W. Wulf, R. London, and M. Shaw. An in-
troduction to the construction and verification of
Alphard programs. IEEE Trans. on SE, SE-
2(4):253–265, December 1976.

Meaning Code

Object O
Class/Type T
Procedure/Operation P
State S
Condition/Property C
Grouped Transition G
Internal Event E
Number N
Model M

Primitive p
Defined by Structure s
Defined by Formula f
Formula renaming primitive r
Undefined u

Figure 8. Legend of mapping be-
tween entities in the models

Architectural Reactive Functional
Identifier Model Model Model

THP O — Of
TwoHandPress T — Tf
TwoHandPressState — Ss Sf

Ready — Sp Sr
Malfunction — Sp Sr
Running — Ss —
Opening — Sp Sr
Closing — Ss —
ClosingAbove — Sp Sr
ClosingBelow — Sp Sr
Open — Ss Sr
SafetyPosition — Sp Sf
LeftPressed — Sp Sf
RightPressed — Sp Sf

;/Create — Pu Pf
PressLeft P Pu Pf
PressRight P Pu Pf
ReleaseLeft P Pu Pf
ReleaseRight P Pu Pf
AtTop P Pu Pf
AtBottom P Pu Pf
CrossPonR P Pu Pf
SignalError P Pu Pf

UnexpectedSignal — GF —
InterruptClosing — GF —
InitiateClosing — GF —

PressTimeOut — Eu Cf
BothReleased — Cu Cf
MaxDelay — Nu —

ButtonModel — — Mf
PressModel — — Mf

Motor T — —
Up P — —
Down P — —
Stop P — —

PP O — —
PhysicalPress T Tu —
NoOfValues N — —
Up P u —
Down P u —
Stop P u —
Read P — —

S O — —
Sampler T — —

Sensor T — —
NoOfValues N — —
Read P — —

B1 O — Of
B2 O — Of
Button T — Sf
NoOfValues N — —
Read P — —
Press P — —
Release P — —
pressed — — Sp
released — — Sp
DoubleRelease — — Sf
required — — Sp
notrequired — — Sp
doublereleaserequired — — Of
PressTriggered — — Cf
ButtonModel — — Mf

Figure 9. Mapping between entities in
the models

11


