[0 2000 Springer-Verlag London Limited

Requirements
Engineering

A Method for Extracting and Stating Software Requirements that a

User Interface Prototype Contains

A. Ravid® and D. M. Berry®®

Computer Science, Technion, Haifa, Israel; bComputer Science, University of Waterloo, Waterloo, Ontario, Canada

User interface and requirements prototyping is a require-
ments elicitation technique. A user interface and require-
ments prototype is built during the requirements engineer-
ing phase of a software system development. Along with
the user interface prototype are produced various docu-
ments such as the system requirement specification. When
a prototype and other documents exist, they may not
describe the same functionality, particularly because there
may be behavior of the prototype, artifacts of prototyping,
that may not be intended. The problem is that in later
development stages, when there is a prototype and other
documents, it is often difficult to reconcile the difference
between the prototype and the other documents. This paper
presents an approach for avoiding this difficulty. 1t demon-
strates the approach by showing its application to parts of
a real software development.

Keywords: Case study; Reguirements elicitation; Require-
ments extraction; Requirements prototyping; Requirements
tracing; User interface prototyping;

1. Introduction

User interface (Ul) and requirements prototyping (UIRP-
ing) is a popular requirements elicitation and validation
technique, used to explore the functionality, Ul, and other
characteristics of a software-intensive, computer-based
system that is to be built [1]. Partial implementations are
developed quickly to alow the implemented features to be
explored by the clients and users. A Ul and regquirements

Correspondence and offprint requests to: Daniel M. Berry, Computer
Science Department, University of Waterloo, Waterloo, Ontario N2L
3G1, Canada. Email: dberry@csg.uwaterloo.ca

prototype (UIRP) permit users to relate to something tangi-
ble and to see as concretely as possible the effects of
different choices for dealing with problematic require-
ments. Thus, the chosen requirements end up being vali-
dated by the clients and users on the basis of redlistic, con-
crete examples.

The products of UIRPing are several artifacts, including
the UIRP itself and various requirements documents
(RDs). The RDs typically include a software reguirements
specification (SRS), a user’s manual (UM), a requirements
rationale (RR), etc. After the requirements are considered
complete enough to begin implementation, the UIRP and
RDs are given to the implementors.

Typicaly, the requirements engineers (REs) that
developed the requirements move on to other projects.
Even if some of the REs stay on the project through imple-
mentation, new members may join the project, diluting the
expertise of the group. As a consequence, at any given
time, knowledgeable REs may be unavailable to imple-
mentors for questioning, and the implementors may have
to rely entirely on the artifacts in order to proceed with
implementation.

2. The Problem

In the implementation phase, implementors work from the
UIRP, SRS, UM, RR, etc. to implement the application.
Sometimes, the implementors have a question. Assuming
that the REs are not available for questioning, the imple-
mentors must search the UIRP, SRS, UM, RR, etc. for
answers to their questions. What happens if the UIRP and
the various RDs disagree? Which, if any, do the implemen-
tors believe?

Typicaly, the SRS, UM, and RR agree with each other
as a group more often than with the UIRP. The normal

2

requirements engineering (REing) process encourages con-
sistency checking between the written documents, the SRS,
UM, and RR. In any case, lack of consistency between the
SRS, UM, and RR is an old problem, studied elsewhere
[2], with its own methods for overcoming it. Therefore, we
consider the SRS to be the representative of the written
RDs from now on and consider the problem to be that of
divergence between the UIRP and the SRS. Thus, the
problem considered in this paper reduces to: “When the
UIRP and the SRS disagree, which do the implementors
believe?
Arguing for believing the UIRP are that

e the UIRP is more concrete than the SRS and is thus
easier to validate by the client and users (C& Us); and

e therefore, C&Us' acceptance of the UIRP is more credi-
ble than C& Us acceptance of the SRS.

Arguing against believing the UIRP are that

e not al of the behavior of the UIRP is intended,;

e some behavior of the UIRP is an artifact of rapid proto-
typing;

e some behavior of the UIRP is debris left over from
functionality discarded during previous examinations of
the UIRP; and

e behavior that is missing cannot be assumed as nhot
intended, because a UIRP is intended to cover not all
the behavior, but only the less well-understood
behavior.

Arguing for believing the SRS are that

e the SRSisintended to be complete and consistent; and
e the SRSis intended to cover al and only the behavior
of the application.

Arguing against believing the SRSis that

e it is harder for the C&Us to validate words describing
behavior than a UIRP showing the same behavior.

It is always a possibility that neither the UIRP nor the
SRS should be believed. It has happened often enough that
both are wrong, even if they are consistent with each other.
Thus, this possibility should aways be considered.

Therefore, it is definitely not clear what to believe when
the UIRP and the SRS differ. It is ultimately an issue of
“What of the UIRP' s behavior isintended?’

Assume in the following discussion that the UIRP and
the SRS differ on a particular behavior. If the behavior is
intended to be in the UIRP, then we should believe the
UIRP more than the SRS description of the behavior, sim-
ply because the UIRP is more believable than the SRS. If
the behavior is not intended to be in the UIRP, then we
should believe the SRS more than the UIRP description of
the behavior, unless we have seen reasons for the SRS to

A. Ravid and D. M. Berry

be considered flawed or not validatable. In any case, it is
necessary to know the intents and the history of the
development of the UIRP and SRS, that is, of the REing
process that led to the UIRP and the SRS.

It is clear that which to believe, the UIRP or the SRS,
cannot be answered after a disagreement has been found.
If there is no documentation of intent, no access to the
REs, when the UIRP and SRS disagree, there is no way to
decide for sure which, if any, to believe. Therefore, it
must be decided before beginning UIRPing, at the begin-
ning of REing, what behavior is intended to be in the
UIRP, to document that, and to set up tracing between the
UIRP parts, the sentences in the SRS, and the sentences in
a new document called the intent specification (1S). Thus,
we have come back to the need for documentation. There
iSno escaping it.

3. Past Work

A thorough search of the literature has shown very little
work addressing the problem of the meaning of a UIRP.
This lack was quite surprising due to the fact that UIRPing
is a well-known, widely adopted approach, which is dis-
cussed in numerous publications, e.g., the works of Lantz
[3], Bischofberger and Pomberger [4], Pomberger and
Blaschek [5], Connell and Shafer [6,7], and Gould and
Lewis [8]. A good source of early ideas on UIRPing is
Software Engineering News (S GSOFT), 1982;7:2. Bowers
and Pycock and Keil and Carmel discuss the pros and cons
of UIRPing, particularly in fostering customer—developer
communication and understanding. Please see [9, 10].

The problem of capturing the information a prototype
contains is almost completely disregarded in these works.
Two different partial solutions to the problem at hand were
found. In the first, Hill [11] offers a method by which
requirement statements can be attributed within models
that allow for post-compilation extraction and analysis. It
focuses mainly on the functional aspects of the prototype,
thereby providing only a partial answer to the problem
addressed by this paper. As will be explained later, a
UIRP contains kinds of requirements information other
than functionality that has to be extracted and stated. In the
second, Kosters et al. [12] propose a requirement analysis
method called FLUID, which explicitly captures the
requirements of direct-manipulation Uls. The UIRP is
regarded as only an executable model which helps visual-
ize the current stage of analysis. They disregard other
kinds of requirements information that a UIRP contains
and other kinds of knowledge that the UIRP represents.

It is assumed that the reader is familiar with at least one
approach to UIRPing from practice or the literature.

Method for Extracting and Stating Software Requirements
4. Solution Goals

In arriving at our solution to the problem of which of the
UIRP or SRS to believe when they disagree, we do not
want to invent YAREM (Yet Another REing Method).
There are more than enough of them out there. Moreover,
we want to be able to use whatever REing method, includ-
ing its UIRPing method, we are aready using. Most impor-
tantly, the problem addressed by this paper does not result
from the lack of modeling methods, but rather from the
fact that existing methods fail to identify the kinds of infor-
mation that a UIRP contains and thus do not provide a way
to capture and present that information.

Instead, the solution presented here consists of steps to
be taken in addition to existing UIRPing and requirements
modeling methods, to be applied before and during UIRP-
ing and reguirements modeling, to ensure that later,
developers are able to answer the questions of what the
UIRP specifies and what it does not. Given that the REing
and UIRPing method M is being used, the general solution
approach is to prepend an intent decision and documenta-
tion phase to M and add to all steps of M a tracing step.
The intent decision and documentation phase yields the IS
asits artifact. The tracing steps are to establish a trace of
individua intents in the 1S throughout the UIRP and the
SRS.

5. The Proposed Solution

We present the steps of the solution method independent of
any particular UIRPing and requirements modeling
methods. Following this general description, some details
of the case study UIRPing of the TSG system are
presented, both to lend some concreteness to the solution
approach and to help convince the reader of the
effectiveness of the approach. Space limitations preclude
giving all the details of the case study. The reader is
referred to the first author’s thesis for the missing details
[13].

One caveat isin order. We do not advise on what to pro-
totype and what not to prototype. What is prototyped and
what is not are the specifier’s decisions. This decision is
made based on his or her experience in specifying other
systems in the same or similar application domains; it is
based on what is already well understood and what is not.
We do advise on what to do once the decision is made so
that the developers and maintainers know what of the pro-
totype is intended and where to look, in the UIRP or in the
RDs, for answers about their questions. The advice con-
cerns documenting the choices and creating tracing links
among the documents that help search for answers to these
guestions.

5.1. Steps of the Approach

The basic idea of the proposed approach is to tailor the
existing UIRPing method by identifying, before UIRPing
begins, the kinds of requirements information that the
UIRP will contain and will not contain, and by choosing
modeling techniques that properly represent this informa-
tion. Tailoring a UIRP construction process is done in six
recurrent steps, recurrent in that as one is following the
steps in sequence, he or she can go back to any previous
step to redo it based on new information.

1. Define the system’s operational environment and its
interfaces to other systems.

2. Identify to which application domains the system
belongs.

3. Characterize the principal properties and the main
features of an application belonging to these domains.

4. ldentify which of these properties are applicable to the
system under devel opment.

5. Decide and document which of the identified properties
requirements will be prototyped.

6. Prototype the system’ sinterfaces and chosen properties.

5.2. Application Domains

The concept of application domains is an important one.
All programs in a domain share common data, attributes,
and operations. Examples of domains are simulation sys-
tems, information systems, data acquisition systems, and
Ul-intensive systems. An application can find itself in
several domains, depending on the functions it must pro-
vide. The point about a domain is that from past experi-
ence, much is known about the data, attributes, and opera-
tions that are needed by any application in the domain.
Often, there are even libraries of data definitions, pro-
cedures, functions, and even requirement specifications,
that can be used by simple inclusion to simplify specifying
and programming the application. For example, there are
many GUI building libraries available to be used to build
any Ul-intensive application.

5.3. Requirements Information

The kinds of requirements information that a UIRP may
contain can be classified into the following types:

1. the application’s functionality and behavior, that is, its
reactive nature, including constraints placed on this
behavior and operational logic;

2. the application’s data model, data dictionary, and data-
processing capabilities;

3. the application’s taxonomy along with a dictionary for
it;

4. a partial specification of the application’s interfaces to
other systems; and

5. general knowledge about the application and its intent,
including about

the current state, i.e., before the application existed;
the user’ s work environment;

the user’s work procedures;

the application domain in general;

the design concepts;

the design goals;

the congtraints;

the assumptions made;

limitations;

possible tradeoffs;

design options;

decisions regarding human engineering;

the operational concept;

why things were done one way and not the other;
how to use the application, i.e., a description which
connects al the use-cases to the operational scheme;
and

e development artifacts.

UIRPing of the system interfaces and chosen properties
is conducted in an iterative manner as recommended in
many publications about prototype-oriented software
development. Developers and users can go over thislist of
properties jointly in a systematic fashion, exploring them
by means of interviews, modeling, implementation,
demonstration, refinement, and validation. The require-
ments information can be grouped and organized accord-
ing to the kinds of information that the developers want to
discover, leading to the specification, in the IS, of the
information the UIRP will contain. The developers and
customers can address al related issues and, when they
come to an agreement, state the requirements formally.

5.4. Evaluation by Case Study

Ravid took an almost completed project in which he had
participated, and used it for an after-the-fact case study.
Very early in this project, he had noticed the problem
addressed by this paper. He formulated an approach that he
thought would solve the problem. He carried out the
approach on the almost completed project, redoing some
problematic stepsin the original development.

He got better results than the first time around, and he
fixed the application. Ravid is convinced that had they fol-
lowed the approach from the beginning, the problems
would not have been as severe. Of course, in such an af-

A. Ravid and D. M. Berry

ter-the-fact, introspective case study, we cannot be certain
that he did not do better the second time around because of
learning from the first-time mistakes. However, the results
are good enough to warrant further and independent case
studies from projects from the beginning. Since it is
infeasible to do a large project twice, with and without the
approach, not to mention that it would be impossible to
factor out other influences in such a small sample size,
these new independent case studies would also be intros-
pective.

Much of what follows was discovered the first time
around, but some of it, particularly the explicit decisions of
what to prototype, the explicit lexicon, and the explicit
statements of intents, were discovered and logged only the
second time around. This newly discovered information
makes the whole requirements exercise cleaner. Most
importantly, this information makes it possible for
developers to discern what is and what is not intended to
be in the prototype.

The description of the UIRPing process follows the
second time history and is written as if al that is described
were discovered in this second time around. Please under-
stand that the actual requirements were discovered the first
time around and are unchanged the second time around.
The sole difference is that this time, there is better docu-
mentation of the decisions leading to those requirements.

6. The Target Scene Generator Case Study

This section presents the chosen case study, a simulator for
generating infrared (IR) scenes, called the Target Scene
Generator (TSG) [14,15]. The TSG, a medium-scale Ul-
intensive system, was delivered in June 1998 with over
200,000 lines of code. Ravid, the first author, was the
software system engineer for the TSG. Ravid's work on
this system led to his addressing the problem being con-
sidered in this paper. This work is also the origin of some
of the concepts that are introduced in this paper.

6.1. Discovering the Problem

The development team (DT) and the customer and users
(C&Us) found it difficult to arrive at a satisfactory require-
ments specification, because of a number of, not uncom-
mon, factors:

1. The DT had never developed a similar system in the
past.

2. The system combines problems from various discip-
lines, requiring multidisciplinary solutions.

3. The C&Us had difficulties defining their needs and
requirements because the system was supposed to

Method for Extracting and Stating Software Requirements

completely change their work methods and supply them
with a new set of tools and aids that they had never used
before.

4. The traditional methods used by the DT for require-
ments elicitation were not suitable for this system and
did not address all needed aspects of the system.

5. The C&Us were not familiar with any reguirements
modeling techniques, including the ones the DT used,
i.e., data-flow diagrams, state machines, object models,
ERDs, etc.

6. Since a simulation system that can generate IR scenes
was to be developed, it was clear that the primary pur-
pose of the system was to enable an operator to define,
execute, and analyze IR scenarios.* The difficulties
were to define a scenario and to define the language
used to describe the scenarios.

7. It was clear very early to the DT that very soon after the
deployment of the first version of the system, the C& Us
will discover and present additional user requirements
tothe DT [16].

8. The sequential development approach the DT was try-
ing to follow did not seem suitable. After a series of
frustrating attempts to complete the requirements speci-
fication and to reach a steady-state reguirements base-
line, the DT realized that the development of an innova-
tive, complex system, such as the TSG, requires an evo-
lutionary approach. It was possible for neither the
C&Us nor the DT to instantly grasp all the details
necessary to understand and to properly specify the sys-
tem to be built.

Because of the many difficulties faced during the early
stages of the system specification, the team decided to
rapidly develop a throwaway UIRP [17]. This UIRP was
to improve the communication with the C&Us and to help
complete requirements specification within a reasonable
amount of time. Software engineers, human engineering
people, and users group representatives were involved in
the development of the prototype. This approach turned out
to be successful. Some major misunderstandings with the
C&Us and many contradicting requirements were
discovered and fixed. Asis recommended by many, includ-
ing Fred Brooks [18], the prototype was thrown away, and
the development of the production version was started
from scratch.

Creating the TSG UIRP exposed a problem, which has
shown up in other projects using UIRPing to identify
requirements. Given an informal problem description, it is
not obvious which of the many requirement issues should
be explored in a UIRP. Thus, a haphazard set of issues are
explored in the UIRP. After completing the UIRP, it is

* The plain word “scenario” here and in the rest of the article means IR
scenario. When a scenario, as an instance of a use-case is meant, “UC
scenario” is used.

5

necessary to integrate the UIRP with the other models of
the system that are expressed in the written RDs. Even as
specifiers do attempt this integration, unfortunately, a por-
tion of the implicit information embodied in the UIRP is
left implicit. It is not until the UIRP is used to answer
questions that this implicit information is discovered. By
the time the discovery is made, it may be difficult to
recover enough of the rationale in order to determine what
the implicit information should be. Instead, the UIRP and
the RDs disagree, and the developers are left trying to
figure out what the requirements should be. This problem
was discovered unexpectedly while the DT was preparing
the project to be reviewed for 1SO 9000.3 compliance by
the Israeli Standards Institute. Ravid presented the project,
the UIRP, and the software development documents pro-
duced up to the day the review was conducted. The UIRP
provoked additional questions about the system. Obvi-
oudly, the UIRP was used to answer these questions. After
Ravid finished answering these questions, one of the
reviewers asked “Where is al this information written?’
Part of the information appeared in the SRS, part was
expressed indirectly by other statements in the SRS, part
was written in the other documents, and part was not writ-
ten anywhere even though it was known, understood, and
agreed upon by all the people involved in the project by
virtue of their having worked together to produce the
UIRP. This undocumented information included indispens-
able knowledge about the system, knowledge which
seemed to be essential for new programmers joining the
group and for maintenance personnel who will have to
support the system in the near and far future.

6.2. TSG as a Case Study

Although systems like the TSG are not that common, the
TSG possesses many properties of more common systems.
Therefore, it is a good source for instances of the problem
at hand. Much can be learned from the experience gained
during its development. The project is too big to be
covered completely by this paper. Therefore, only portions
of it are described.

In the following subsections, a short description of the
TSG system is given, and the usage of the approach
described in Section 5 is illustrated by applying it to por-
tions of the project.

6.3. The Target Scene Generator System

The TSG system is a physical effect simulator that gen-
erates high-fidelity, multi-object IR images. An IR image
generated by the system is composed of several objects
that represent targets, decoys, and a background. The

6

system alows independent control of the appearance of
and the location of these objects at any position within a
large field of view. IR images are generated by continu-
ously changing the radiometric and dynamic characteristics
of the simulated objects in a controlled fashion. The pri-
mary purpose of the system isto serve as aresearch aid for
testing and evaluating the performance of electro-optical
missile seekers.
The main type of components of the TSG system are:

e optica elements, both dynamic and static;

e varioustypes of IR radiation sources,

e several types of electro-mechanical, servo-controlled
units;

e servo-control systems;

e a computer system consisting of several computers,
including servo controllers, radiation source controllers;
special-purpose embedded systems, and standard PC-
based workstations; and

e software on the various computers.

A system-level analysis and design process preceded the
software development process. Some of the products of
this process are the conceptual computer system structures
depicted in Fig. 1; a set of system-level requirements, some
of which deal with software; and some system-level design
principles and fundamental decisions that significantly
influenced the software requirements and formed the basis
for the software requirements analysis and specification.
The most important among these principles are:

e The entire TSG system operation is controlled by com-
puters.

e The system supports manual as well as automated
operation of al the controllable elements.

e Ul software controls replace hardware controls such as
knobs and meters and emulate their operation.

e All the controllable elements support local control as
well as remote control.

e Local control is used for start-up and maintenance pur-
poses only; everyday operation is done using remote
control.

e The system is operated from a single computer, called
the host computer, with the aid of a keyboard, a mouse,
and a modern graphics-based human-computer interface
(HCI) system, such as Windows[O or Motif(] .

e Standard off-the-shelf technologies, hardware and
software, are used as much as possible.

In order to explain some of the key terms mentioned above
without getting into technical details, the analogy of a
video cassette recorder (VCR) can be used. Loca control
corresponds to the VCR's front panel. The front pand of a
VCR enables the user to perform basic VCR operations.
Remote control corresponds to the VCR’s remote control.
Remote control enables the user to perform most of the

A. Ravid and D. M. Berry

operations supported by local control and much more. In
manual operation, each operation is done by the user’'s
activating the remote control keys. In automated operation,
the user can define a sequence of operations that the VCR
will perform on its own, for instance, a time-triggered
sequence of recordings. The users program a sequence of
dates, times, channels, and durations. The VCR is turned
on automatically at the specified times, performs the
recording from the selected source, and then turns itself off
when done. The TSG system can be compared to a record-
ing studio, with severa VCRs and lots of other related
equipment, all of which are operated by a technician from
a single computer-based post, as opposed to having a pile
of remote controls as do most of us.

From this description, it should be clear that most of the
TSG system’'s HCI is concentrated in the host computer.
The host computer is supposed to serve the system opera-
tor and to support the operation of the entire system from a
single post by means of a keyboard and a mouse. Conse-
quently, the host computer is a Ul-intensive system and is,
therefore, apotentia subject for UIRPing, asindeed it was.
There was nothing unique in the process of UIRPing itself.
It was conducted in the manner recommended in many
publications about prototype-oriented software develop-
ment, and eventually the prototype was thrown away.

6.4. Applying the Solution Approach to the TSG

This section describes the use of the solution approach out-
lined in Section 5.1 to carry out the redesign of the require-
ments of the TSG. Recall that the approach consists of six
steps. The details of these steps are described in the fol-
lowing subsections.

Please note throughout these subsections:

o how the specification of the scenario-definition portions
of the prototype can be made systematic;

e how requirements are presented by the prototype;

e how requirements are extracted from the prototype; and

e how the prototype relates to other requirements models.

Finally, note how the new information in these subsections
allows developers to determine what is intended to be in
the prototype and what is not.

6.4.1.Step 1

The first step of the approach is to define the TSG host
computer’s operational environment, which isillustrated in
Fig. 1. The context diagram of Fig. 2 shows the scenario-
related TSG host interfaces. The interfaces from the users
to the control system and to other software tools are the
primary interfaces that make it possible for the user to

Method for Extracting and Stating Software Requirements

define, execute, and analyze scenarios. UIRPing is
intended to help define these interfaces. In fact, the inter-
face to the software tools for generating scenarios and the
interface to special-purpose data-analysis tools did not
exist in the original customer documentation. They were
discovered, specified, and agreed upon with the aid of
UIRPing. The data elements that are at either end of each
arrow representing a data-flow in Fig. 2 were discovered
solely with the aid of the prototype.

From the scenario-related requirements, we identified
one kind of user, the researcher who uses the TSG system
to test and evaluate the performance of the unit under test
(UUT). From what we learned from developing the UIRP,
we decided that the TSG should enable this kind of user to
perform the following tasks:

e control the system hardware setup;

e define scenarios,

e import scenario definitions prepared with the aid of
other simulation software;

e maintain a library of reusable scenario definitions and

scenario component definitions;

check scenario definition validity;

execute scenarios;

acquire UUT signals and control system feedback;

analyze scenario definition and acquired data;

manually control all the controllable elements;

export data acquired by the system to other data

analysistools; and

e perform basic trouble-shooting operations in case of a
hardware malfunction.

Each of these tasks is represented by one or more UC
scenarios [19, 20]. Their combination constitutes a prelim-
inary list of the capabilities available to the TSG system'’s
users, and is thus, the abstract, top-most view of the TSG’s
requirements.

6.4.2. Step 2

The second step is to identify the application domains with
which the TSG host shares attributes. The following
domains were identified:

simulation systems;

information systems;

data acquisition systems;

motion and instrument control systems;
real-time simulation system; and
Ul-intensive systems.

6.4.3. Steps 3and 4

Step 3 is to characterize the properties of the application
domains, and Step 4 is to identify which of these properties
are applicable to the system under design. After character-
izing the properties of the domains, the attributes shown in
the large boxes down the middle of Fig. 4 were found to be
applicable to the TSG system.

6.4.4.Step 5

Step 5 is to choose from among the identified properties
those that will be prototyped. The list of attributes
developed in Step 4 leads to the TSG host UIRP develop-
ment process model depicted in the whole of Fig. 4. The
symbol “v" marks the attributes that were chosen to be
prototyped. Note that the REing does not end with these
prototyped attributes. It is necessary to devise requirements
for all attributes. However, it is best to €licit the require-
ments for the attributes not prototyped after the UIRP has
been written, when UIRPing has been played out, and
when the UIRP can be used to help decide what the other
requirements should be. The process model illustrated in
Fig. 4 does not add to the information already revealed by
the list of properties attributed to the TSG system. Rather,
it simply details the REing process for the whole TSG sys-
tem. This detailing is what is meant by the notion, intro-
duced in Section 5.1, of tailoring the UIRPing process to
the application.

Each of the listed properties is related to a complete set
of questions that has to be asked. The questions represent
genera issues that should be discussed and that will even-
tually lead to the specific system requirements, for
instance:

e “What isascenario?

e “What are the primary scenario components?’

e “How should the behavior of a scenario component be
defined?’

e “Which data should be monitored and recorded in order
to monitor scenario execution?’

and many others. The answers to these questions constitute
alist of specific system requirements to be specified.

The point is that these questions can be grouped and
organized according to the kinds of information that the
developers want to discover. This information, which is
also the kind of information the UIRP and its documenta-
tion will contain, includes:

e Intent: Why are these requirements needed? What are
the main concepts on which the requirements will be
based?

e Functionality: What functionality does the user expect

the system to provide? How does the user expect the
system to react? What does the system have to do in
order to make the user requests happen?

e Application data: What data have to be provided by the
user in order to fully define a scenario? How does the
system validate the data and what does the system do
with these definitions?

e Taxonomy: Which terms does the user employ in order
to interact with the system? Which language is used to
describe user—system interaction? Which terms are used
to describe scenarios?

e System interfaces: How does the user expect to interact
with the system? What is required from the system
interface in order to make happen what the user
requested? What kinds of displays does the user expect
the system to provide?

Developers and users can systematically and exhaustively
go over this list of properties. They feed their joint discus-
sions with information obtained by modeling, implementa-
tion, demonstration, refinement, and validation. They can
address al related issues. When they come to an agree-
ment, then they can state the requirements formally.

The list of user tasks and the corresponding UC
scenarios form a unique view of the required functionality,
aview of the TSG system in use. They hind the properties
attributed to the system to an operational scheme that
explains for what the system is good, why these capabili-
ties are needed, and how these tasks will be performed
with the aid of the system. The structured list of require-
ments resembles a partial table of contents of the system’s
SRS, and the basis and the origin to which regquirements
will be traced. The list organizes requirements according to
topics. It offers the same view of the system requirements
as the view offered by a user’s manual. This view is intui-
tive to users who are trying to understand the system. The
resulting process model enables developers to carry out
prototyping explicitly as part of a fully traced requirements
elicitation process in which it is decided and documented
ahead of time what aspects, usually in the Ul, are being
modeled in the UIRP. Requirements information about
issues that are not included in this list has to be sought
elsewhere. The tracing links allow easy access to the docu-
mentation of any decision so that in the future, when one is
following the trace links to track down an answer to a
requirements issue, he or she sees the explicit decision and
knows whether to consult the prototype or another docu-
ment in the requirements specification suite.

A. Ravid and D. M. Berry

6.4.5.Step 6

Step 6 is to prototype the system'’s interfaces and chosen
properties. Doing so involves carrying out UIRPing under
control of the process defined in Step 5, while tracing each
requirement through the UIRP and the RDs. UIRPing has
its own steps.

The first step of UIRPing was to decide where to start.
The main idea was to pick a central issue and evolve from
it. It was expected that the discovery of less central issues
would follow. The main goa of the host computer’'s Ul
was to enable the TSG system’'s user to define, execute,
and analyze IR scenarios. After al, the project’s RFP and,
therefore, each response by the DT to the RFP included the
following requirement: “The system will enable an opera-
tor to define scenarios, execute them and anayze the
results of the executed scenarios’.* Consequently,
scenario definition seemed like a good starting point for
UIRPing. The purpose of UIRPing was to understand these
vague requirements in sufficient detail to specify them
straightforwardly and completely. The UIRPing started by
defining the use cases. These use cases had to say at least;

what is a scenario definition;

what does the user define;

what elements a scenario is composed of;

whether the definition for each element is time depen-
dent;

what isthe element data type;

which values are legal and which are not legadl;

how to check the validity of the definition;

what processing has to be done in order to trandate this
definition to commands understood by the servo-control
system.

The use cases had to describe the Ul by which the
scenarios would be defined, saying which options will be
available and which operations will be alowed in each
step, and defining the dialog boxes, menus, toolbars, and
feedback displays, etc.

At this point, due to space limitations, the description of
the case study must focus on only part of the rather large
specifications that were eventually developed. We focus on
the parts dealing with IR scenario definition and validation.
The next subsections give the relevant

UC scenario descriptions;
HCI,

lexicon entries;
functional models; and
intent.

* This sentence is typical of sentences that can be found in many
customers' requirements documents. It asks for alot but says very little.

Method for Extracting and Stating Software Requirements

6.4.6. The IR Scenario Definition Use-Case Scenario
Descriptions

Due to space limitations, this section shows the detailed
definitions of only two UC scenarios, namely those con-
cerned with IR scenario definition. It shows only the skele-
tons of the definitions of other sub-UC scenarios referred
to by the detailed definitions. The description is given in
the form presented by Leite [21]. The bold-faced words
represent terms from the lexicon, and Italicized words
represent UC scenario and sub-UC scenario names.

TITLE: Define a scenario

OBJECTIVE: To define to the system a scenario to be exe-
cuted

CONTEXT: The system must be running in off-line mode.
ACTORS: User

RESOURCES: The TSG host software, aworkstation
EPISODES:

The user chooses to define a scenario.
The system enters the scenario-definition state.
The user can either

e Load a preexisting definition from the library and
edit it, or

e Create a new scenario definition and edit it, or

e Edit the scenario already loaded (if one exists).

The scenario definition is displayed.

The user may edit the scenario’s general properties, i.e.
name, description, and duration. He may aso add or
remove simulated objects such as a main target and
decoys to or from the scenario, and edit each of the
defined simulated object properties.

After completing, the user can ask the system to accept
the definition and end the scenario definition activity.

In response, the system checks the validity of the
defined scenario.

If the definition is valid, the system accepts it and exits
the scenario-definition state. Otherwise, the system
refuses to accept the scenario definition. It displays a
list of al the scenario validity checks that failed in an
error message window and returns to the scenario-defi-
nition state. The user can fix the definition and ask the
system once more to accept the scenario definition.

At any time during this operation, the user can ask to
save the definition in the library for future use.

In any time during this operation, the user can ask to
cancel the operation and exit the scenario-definition
state. In response, the system revokes all the changes
made by the user, restores the definition that existed
prior to the time the operation was initiated, and exits
the scenario-definition state.

TITLE: Load a preexisting definition fromthe library
OBJECTIVE: To load a definition of a scenario or a

simulated object from the library for reuse.

CONTEXT: The system must be running in the edit-scenari-
o state.

ACTORS: User

RESOURCES: The TSG host software, aworkstation
EPISODES:

The user chooses to load a definition from the library.

The system issues a warning to the user if the current
definition (if one exists) was not saved, and asks the
user if he wants to save it. The user can choose to
ignore the warning, save the definition in the library, or
cancel the operation.

If the user did not cancel the operation, the system
enters the load-definition state.

The system displays alist of al the definitions that exist
in the library and asks the user to choose one. The
definition are ordered by name. The definition’s identi-
fying name is given by the user when he decides to save
the definition in the library.

The user can browse the list and get a preview of the
definition.

After the user made his choice, the system loads the
chosen definition overwriting the existing definition (if
one exists) and displaysit.

At any time during this operation, the user can ask to
cancel the operation, exit the load-definition state, and
return to the edit state.

TITLE: Create a new definition
OBJECTIVE: To create a new empty definition of a
scenario or asimulated object.

TITLE: Edit simulated object properties
OBJECTIVE: To define radiometric properties and
dynamic properties of asimulated object.

TITLE: Save a definitionin the library
OBJECTIVE: To save a definition of a scenario or a simu-
lated object in the library for future use.

6.4.7. The Scenario Definition Human—-Computer Interface

Figures 3, 5, and 6 illustrate simplified versions of some of
the scenario-defining forms. The arrows that connect the
forms represent the user’'s actions and the transitions
between the forms. A picture is worth a thousand words.
Thus, the presentation of the UIRP's display output
simplifies and shortens the description of the UC scenarios.
A portion of the functionality isimplied by the Ul. The use
of Ul conventions and standard Ul designs obviate the
need to textually describe some of the intended behavior.

10

The UIRP demonstrates the UC scenarios, explains them,
complements them, and eventually becomes an indispens-
able part of them. Because the UIRP is so strongly related
to the UC scenario-based requirement model, the lexicon,
additional functional models, the data model, and al the
other models can be produced based on the information
extracted from the UlI.

6.4.8. The Scenario Definition Lexicon

Leite [22,21] states that the objective of populating a lan-
guage-extended lexicon (LEL) isto promote understanding
the problem language without requiring full understanding
of the problem. The goa of UIRPing is to understand the
problem. Thus, the application lexicon is discovered simul-
taneously with other requirements information, and at the
same time it is reflected in the other requirements models
and the UIRP. To demonstrate this duality, a subset of the
scenario-related lexicon entries is given in the form
presented by Leite [21]. Details for terms not needed for
the detailed use-case definitions are omitted.

Scenario

e Notion
— asequence of IR images projected on the focal plane
of the UUT.
— represents areal-life IR scene viewed by a seeker.
— asocaled an IR scenario.

e Behavioral Response:

— A scenario is composed of one or more simulated
objects and a background.

— The system maintains alibrary of scenario definitions.

— The actual scenario duration is determined by the
user.

— The system executes only valid scenarios, namely
scenarios which have passed the scenario validity
checks.

Scenario duration

e Notion
— the scenario length measured in seconds.
— the time elapsed since scenario starts till scenario
ends.
— the total time that IR images will be generated and
projected.

e Behavioral Response:
— A scenario duration should be greater than zero and
less than 120 seconds.
— The scenario definition must be valid throughout the
scenario duration.
— UUT signa and control system feedback are acquired
at arate of 200Hz throughout the scenario duration.

A. Ravid and D. M. Berry

Simulated object

e Notion
— simulated entities representing real-life IR images
such as targets and decoys.
— also called scenario components.

e Behavioral Response:
— A scenario is composed of one or more simulated
objects and a background.
— A simulated object is defined by stating the way its
dynamic and radiometric properties vary over time.
— The system maintains libraries of al kinds of simu-
lated objects definitions.

Main target ...

Decoy ...

Dynamic properties...
Radiometric properties ...
Motion mode....

Scenario definition validity check

e Notion
— an overall test that checks that the complete scenario
definition is legal, meaning, that it can be executed by
the system.
— checks that the combination of simulated objects is
legal and that each of the defined simulated objects
validity check has passed.

e Behavioral Response:

— A scenario definition validity check is performed
automatically when a user asks to execute a scenario
Or upon a user’s request.

— If ascenario definition validity check fails, it produces
alist of al the checksthat failed.

— The system executes only scenarios that pass success-
fully this check.

Simulated object definition validity check ...

It is recommended to maximize the use of words from
the lexicon when describing scenarios. In the beginning,
the combination of UC scenarios and the UIRP seems to be
describing the requirements very clearly and understand-
ably. However, only after reading the lexicon entries
description does it become apparent how much information
was not included and cannot be deduced from either the
text of the UC scenarios or the UIRP. The lexicon
enhances the clarity and readability of use-cases. It minim-
izes ambiguities that might be caused by the use of natural
language to describe functionality, by basing the scenario
descriptions on a minimal set of well-defined, unambigu-
ous terms. It helps ensure that the same term is used each
time a particular concept is mentioned.

Method for Extracting and Stating Software Requirements

The combination of the UC scenarios, the UIRP, and the
lexicon forms the primary top-most abstract view of the
TSG system’s requirements, the intended user’s view. The
combination helps understand the purposes of the TSG
system and facilitates understanding other requirements
models. The next level of detail requires producing func-
tional models and a data model. These models are the sub-
ject of the next subsection.

6.4.9. The Scenario Definition Models

The functional models are almost trivia for the scenario
definition example. Most of the functional model is
implied by the use of modal dialogs and standard event
generators such as push buttons. Thus, there is no need to
create such a mode for this portion of the system. For the
rest of the system, the functional models include data
models and data-flow diagrams, which are not shown here
due to space limitations. Their link to the Ul is straightfor-
ward. In order to complete the specification of the data-
related requirements, the following have to be specified:

e the processing performed by each of the bubbles that
appears in the data-flow diagrams, either by means of
structured English or by means of pseudocode;

o the complete definition of each of the data entities that
appear in the entity-relation diagram and in the data dic-
tionary;

e thel/O masksthat filter out illegal user inputs;

e the agorithms for trandating the scenario definition to
commands to the control system;

e the agorithms for trandating the feedback acquired
from the control system to the actual scenario; and

o the agorithms needed in order to perform the extensive
scenario validity checks that are required by the users.

6.4.10. Information about Other System Interfaces that is
Implied by the Ul

The TSG system interfaces are listed in Fig. 4 as system-
specific properties. The Ul partialy hides these interfaces
from the system users. The requirements information about
them is discovered through the Ul displays in the UIRP,
through the flow of information from and to the system,
and through the description of the system functionality.
The system interfaces are part of the functiona entity
being specified, and they make the functional specifica
tions happen.

The interface to software tools for generating scenarios
is an example of an interface that is expressed by the Ul.
The interface to the control system is an example of an
interface that is not expressed directly by the Ul but can be

11

specified with the aid of the UIRP. The TSG host translates
an IR scenario definition to commands for a servo system.
Since the servo control is done by another computer, there
is a real-time interface between the two computers. The
servo system is not aware of the fact that when it executes
a scenario, it is executing only a sequence of coordinated
motion commands. During and after scenario execution,
the user can ask the TSG system to display feedback infor-
mation about how well the scenario was actually executed.
The scenario-related Ul and operational logic helped
define thisinterface.

6.4.11. The Intent Behind the Scenario Definition Models

A description of the intent is needed in order to comple-
ment the requirements models.

e |t was decided that the TSG system would support a
work flow that resembles the work flow of a compiler-
based development environment. The user’s work cycle
will look like:

edit <>;

check (compile) <>;

run and nonitor execution <>;
edit <>;

The users demanded that the system would not allow
executing a scenario unless it passes a complete validity
check in order to avoid uncertainties that might be
caused by the unexpected results of an illegal scenario
execution. The only uncertainties that were allowed
were the ones related to the unit being tested. This con-
straint required us to define an extensive set of validity
checks that can be run on a scenario before executing it
and a mechanism for producing meaningful error mes-
sages in case the checks fail.

e The users asked for a visual scenario definition
language rather than a textual language. They did not
want to be obliged to learn the syntax of a textual
language and have to remember it for the 10 to 15 years
that the TSG system was supposed to serve them.

e The primary role of the library of scenarios and
scenario components was to enable the user to assemble
scenarios from a reusable set of definitions. It was
planned that the users will initialy invest a lot of work
in creating a set of reusable component definitions. In
the future, the task of defining an IR scenario will
become much simpler and quicker, because al the users
will have to do is to create a new scenario or load an
existing one, add or remove predefined components to
the scenario, check the new combination, and execute it.
Consequently, the TSG system has to support storing
and retrieving of scenario components and complete

12

scenarios to and from the library, and to possess library
management capabilities. That is, the system is required
to possess some attributes of an information system.

e We made a distinction between two data sets, the
expected scenario and the actual scenario. The expected
scenario is the scenario the user defines. The actual
scenario is that performed by the TSG system, and it is
dightly different from the expected scenario because the
control system is not optimal. Therefore, the TSG sys-
tem must track errors. The expected data set is required
in order to analyze the planned scenario, and the actual
data set is required in order to know how well the sys-
tem performed the scenario. The performance of the
UUT is evaluated relative to the actual scenario. Users
have to know for sure that when they observe a certain
response from the UUT, it is due to the scenario defined
and not due to an artifact caused by the control system.
Therefore, there is a requirement to continuously moni-
tor and record scenario execution in real time, arequire-
ment to provide data analysis tools that support the
comparison and analysis of acquired signals from
several sources, and a requirement to provide on-line
data monitoring capabilities. That is, the TSG system is
required to possess some attributes of a data-acquisition
system.

All of thisintent information iswritten up and stored. Each
item is linked to the relevant artifacts in the other docu-
ments.

It is clear, from these few examples, that the dimension
of intent contributes to the clarity and understandability of
the software requirements. It offers the “why” information
that is very important for someone who is trying to under-
stand the TSG system’s requirements. Without this infor-
mation, the requirements specification is incomplete. It is
impossible to extract this kind of information from the
UIRP or other requirements models in the absence of
knowledge of how the UIRP was developed.

6.4.12. Summary

In the end, the requirements specification for the TSG had
been redone. Now however, besides the SRS and the
UIRP, which had been produced before, there were other
documents that did not exist before. These new documents
include the UC scenarios, alexicon, functional models, and
most importantly, an intent specification that states what
behavior is in the UIRP and what is not. Moreover, there
were links between the items in these documents to allow
developers to trace any requirement throughout these
documents. The origin of the links is the structured list of
requirements that is described in Section 6.4.4. Now the
developers are able to answer any question that might arise

A. Ravid and D. M. Berry

about intent and to deal with inconsistencies between the
UIRP and SRS with a hope of deciding as intended by the
specifiers.

The documents were produced using MS Word. They
were stored under the source-control features offered by
MS Source Safe and were backed up by the routine backup
procedures of the organization. The latest version of the
documents were available also in hardcopy format from
the project’s Software Development File. The tracing links
were implemented using a traceability matrix in the vari-
ous documents and in the project’s context-sensitive help
files.

The portion of the case study documents presented in
this paper deals with only that part of the TSG concerned
with IR scenario definition. The IR scenario definition
example is a typica one. It represents a pattern that
repeated itself for nearly all of the TSG system properties
that were prototyped. It demonstrates the usability of the
method proposed by this paper and the quality of the
requirements specification it produces. Having such a spe-
cification satisfies the needs of al the customers of the
requirements specification process, especially those of the
system users and software maintenance personnel. This
portion should be enough for the reader to see how the
approach works, to judge whether it is worth applying in
other situations, and to carry out the approach on other
problems. The first author's thesis [13] gives additiona
portions of the case study documents for the benefit of
those who need more information.

Some comments are necessary:

1. Some of the information appears more than once or is
expressed in more than one way. Although this duplica-
tion appears redundant, it is necessary because it reflects
multiple perspectives, and because none of the indivi-
dual models represents the system requirements com-
pletely.

2. For some parts of a system being specified, one or more
of the models are minor, while others are major. Which
is which depends on the modeled aspect. In this exam-
ple, the functional models are amost trivial. Most of the
function is implied by the use of modal dialogs and
standard event generators such as push buttons.

6.5. Lessons Learned from the Host Prototype
Construction

Before discussing the lessons learned from building the
TSG host computer prototype, it should be said that UIRP-
ing worked for us. The primary benefits of the UIRP were
the improved communication with the customers, the com-
pletion of the requirements elicitation process within a rea-
sonable amount of time, and the validation of the basic

Method for Extracting and Stating Software Requirements

conceptual requirements and the concepts on which the
design was based. In the course of prototyping, we
discovered some major misunderstandings with the custo-
mer and many contradicting requirements. Actually, most
of the first prototype was thrown away because it was
totally wrong. We started the development of the produc-
tion version from scratch based on a second prototype.

Having said this, we now consider the primary lessons
learned from the UIRP-oriented development of the host
computer:

e Thelack of communication with the users at the begin-
ning of requirements elicitation exposed two serious
disadvantages of our manual work methods.

1. Unless customers sufficiently understand the require-
ments modeling technique, and the developers can
see that they do, it is almost impossible for the
developers to be convinced that the customers really
mean what they say when they say “This is what we
want.” More often than not, they really mean, “It
seems that you did a professional job. However, we
do not understand most of what you wrote. On the
other hand, it does mention most of the things we
asked for.” Even when there was someone who
could understand and validate the models we
presented, he generally expressed only his own opin-
ion. We were interested in hearing the opinions of
other user representatives as well.

2. It is pointless to create complete and consistent
models for the wrong requirements. A model, even if
complete, consistent, and very formal, can easily
represent wrong requirements. During the first stages
of requirements elicitation, it turned out to be more
efficient to use high-level, architecture-level methods
in order to understand the overall picture and to find
the primary details of this picture. The use of more
precise methods can be postponed until later stages,
after the overall picture is clearer. These methods
can be used in order to find and define the finer
details. Thus, a top-down hierarchy of requirements
modeling techniques is recommended.

e The classification of the application according to
domains with which it shares properties proved to be
useful. It helped to simplify the complexity of the
overall software requirements by classifying and group-
ing requirements. It allowed us to focus on the TSG
system’s unique properties. The more standard proper-
ties were much simpler to €licit since we could literally
copy requirements, and the users were already familiar
with similar properties. It led to requirements reuse,
which, in turn, led to software reuse, because we could
purchase standard software components that address
standard domain requirements. It also assisted in

13

making prototype construction systematic. We could
conduct a systematic process according to topics, i.e.
scenario definition, data acquisition, scenario execution
control, on-line and off-line analysis, etc.

It was stated earlier that a prototype, as a tangible
model, is known to cause inflation of functional require-
ments. This effect is so commonplace that it is con-
sidered one of the drawbacks of requirements prototyp-
ing [23]. It would seem that the reuse of standard
development environments and requirements from ap-
plication-related domains would worsen this effect. It is
thought that using this approach would lead developers
to voluntarily implement unnecessary function for
which they will never be paid, especialy if the project
budget is already determined. We learned that this is
partially true. Users do seem to always ask for more, no
matter how the requirements are being gathered. Proto-
typing does tend to exacerbate this effect. However,
most of these new requirements are requirements that,
in a conventional development approach, would have
been discovered much later, after the users start to exer-
cise the system. The problem of which requirements to
accept and which not, or which requirements are within
the scope of the development effort and which require-
ments are not, is a manageria contractual issue that has
to be resolved in any case. Moreover, late discovery of
requirements can undermine the system’s user friendli-
ness and adequacy to users’ needs. Creating a non-u-
ser-friendly, non-useful system can kill a project just as
easily as being overdue and over budget. A requirement
discovered later costs more to implement than the same
requirement discovered earlier.

The application’s taxonomy is very important. It helps
to reveal inconsistencies and contradicting require-
ments. It contributes to the application’s user friendli-
ness. Terms, whether well or poorly chosen, live far
longer than expected. Terms can be found in the Ul, the
requirements models, the requirements statements, the
help system, the user’'s manual, and the code, in the
form of class names, variable names, function names,
etc. Poor choices are very hard to change, because a
change creates a huge ripple effect and requires so
many other changes. What seems to be vague or nonin-
tuitive now will always remain that way and will under-
mine the readability of the requirements and design and
the system’s ease of use. We had several examples of
poor choices of similar terms that expressed totally
different concepts. For example, “flare sequencer” and
“sequential flare” sound alike, and “flipping mirror”,
“switching mirror”, and “transition mirror” sound alike.
Y et, each of the six terms represents a different concept.
We always mixed the sound alikes, never remembered
which is which, never remembered the exact meaning,

14

and often talked about one when we meant another.
These inconsistencies and duplicates originated from
the requirements statements and the prototype. They
existed because we did not pay proper attention to lexi-
con issues. The lexicon contributed to reducing this
problem. It enabled the users to use the terms, view
their usage, and comment about their inadequacy when
they exercised the UIRP and when they discussed the
requirements. The design of the Ul itself, which was
based on the principle of uniformity, helped reduce
duplicates, but it did not prevent us from uniformly
using wrong or inadequate terms.

e The UIRP cannot serve as the only requirements model.
Other models are needed, in particular, to describe
intents and functions. Otherwise, extracting require-
ments from the prototype becomes a reverse engineer-
ing activity, even if the prototype were complete.

e We observed another possible side effect of the pro-
posed method. Existing methods produce reguirements
documents that are unreadable even to some of the peo-
pleinvolved in the requirements specification process. It
appears that the documented explicit decisions of what
is intended in the UIRP and the tracing links between
the intents and the various documents help make all the
documents more readable. Certainly the consistent use
of the customer’s language with the help of the lexicon
contributed to increased readability. Finally, it is possi-
ble that the use of less forma methods, such as UC
scenarios, helped.

7. Conclusions

There is a problem in evaluating the benefits of research
work in the field of software engineering. We rardly, if
ever, get the opportunity to develop a project larger than a
toy in more than one way and to compare the implementa-
tions. Certainly it will not happen in a $6,000,000 project.
Even if we do get such an opportunity, the various imple-
mentations are hard to compare for severa reasons. The
opportunity typically arises only when the first implemen-
tation fails and then, if we do better in the second trid, it
might be thought that the second way is more successful.
In this case, the first version of the system becomes a very
expensive throw-away prototype of the deliverable system.
However, conclusions cannot be drawn comparing the
methods since it cannot be certain that the second-time
success is not due to learning in the first-time failure. What
can be done is to exercise a proposed approach over arela
tively long period of time on several projects, gather infor-
mation that can assist in evaluating the benefits of the
approach, and compare this information to information
gathered from past projects and projects that followed a

A. Ravid and D. M. Berry

different approach.

Still the question remains as to how valuable the new
intent information is. Since the case study was done after
the fact, we have no data on how helpful the new informa
tion was to the requirements specification process and to
the subsequent system development. However, there are
severa concrete indications of the high value of the new
information.

1. After the first development, when the project went into
what is commonly called the maintenance phase, most
of the origina development team was replaced by new
programmers. We believe that it was easier for the new
programmers to get a good understanding of the system
than is normally the case. They got up to speed more
speedily than normal. Moreover, the new
programmer’s increased understanding paid off when
they had to identify wrong requirements. Their under-
standing of the “why” made it easier to tell when the
“what” was wrong or not good enough.

2. After thefirst delivery, Ravid was involved in preparing
a course for the users of the new system. The course
material consisted mostly of intent and specification
information. It took Ravid only one day total time to
prepare a two-day course, because al of the needed
information was there. Had he not had the intent infor-
mation generated during the case study, it would have
taken considerably longer to prepare the course.

3. Ravid was recently approached by people from the
company that built the TSG. They were trying to
redesign parts of the control system and were having
difficulties specifying what they needed to do. Ravid
referred them to the intent documents, and they used
thisinformation to get onto the right track. They had not
been able to understand the specification that existed
before the case study and that had been used in the ori-
gina development. They found the specification too
hard and too non-standard, and their questions were all
“why” questions. They had even proposed some inade-
guate solutions, whose inadequacy became clear once
they understood the intents.

The bottom line is that the additional documents produced
in the case study made the requirements specifications
more readable and more understandable.

This paper presents the problem encountered in the
course of development of a recently delivered project, and
the research that was conducted afterwards in order to find
an approach that will address some of these problems.
Therefore, the required information for a full evaluation is
not available. Thus, we are left with a lessons-learned,
introspective evaluation of a one-time case study.

The TSG host computer UIRPing example is presented
in order to illustrate the reasoning and the systematic

Method for Extracting and Stating Software Requirements

process, and an example is given. One example is sufficient
to demonstrate the use of the approach proposed by this
paper, since the pattern illustrated by the example repeated
itself for the rest of the Ul-related software requirements.

This paper does not intend to create the impression that
once developers follow the proposed approach, al their
elicitation and specification problems are solved. Like
most of the work in software engineering, this work is
about techniques that assist in dealing with software
development problems. The rea problem of finding what
has to be done is till left to be solved anew by developers
for each project. We hope that the lessons learned, the
examples, and the demonstrated usage given in Section 6
show

e that this approach is useful;
that it yields valuable results from which other prototy-
ping-oriented projects can benefit;

e that it addresses the problems described in Section 2;
and

e that it helpsto decrease these problems.

The illustrated modeling method captures all the important
properties of the system and provides sufficient informa-
tion about reguirements that adhere to the concept of intent
specification [24]. Presenting requirements in additional
models would be unnecessary, because as Leveson [24]
states, attempts to include everything in a specification are
not only impractical, but are wasted effort, and are unlikely
to fit the budgets and schedules of industria projects.

Acknowledgments. We thank Dr. Ephi Pinski from the Missile Division
Electro Optical department at Rafael, who made it possible to publish the
work done for the TSG project. We thank also the referees who have read
earlier versions of this paper and provided many comments that showed
us how to improve this paper.

Berry was supported in parts by a University of Waterloo Startup
Grant and by NSERC grant NSERC-RGPIN227055-00.

References

1. Working papers from the ACM SIGSOFT rapid prototyping
workshop, Software Eng Notes (Special issue on rapid prototyping)
1982;7(5)

2. Easterbrook, S and Nuseibeh, B. Managing inconsistencies in an
evolving specification. In Proceedings of the second IEEE interna-
tiona symposium on requirements engineering, York, UK, March
1995, pp 48-55

3. Lantz, KE. The prototyping methodology. Prentice-Hall, Engle-
wood Cliffs, NJ, 1986

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

15

Bischofberger, W and Pomberger, G. Prototyping oriented software
development: concepts and tools. Springer, Berlin, 1992

Pomberger, G and Blaschek, G. Object orientation and prototyping
in software engineering. Prentice-Hall, Englewood-Cliffs, NJ, 1996
Connell, JL and Shafer, LB. Structured rapid prototyping.
Y ourdon/Prentice-Hall, Englewood Cliffs, NJ, 1989

Connell, JL and Shafer, LB. Object-oriented rapid prototyping.
Y ourdon/Prentice-Hall, Englewood Cliffs, NJ, 1995

Gould, JD and Lewis, C. Designing for usability: key principles and
what designersthink. Commun ACM 1985;28(3):300-311

Bowers, J and Pycock, J. Talking through design: requirements and
resistance in cooperative prototyping. In Proceedings of the 1994
computer-human interaction conference (CHI’94), ACM SIGCHI,
New York, NY, 1994, pp 299-305

Keil, M and Camel, E. Customer-developer links in software
development. Commun ACM 1995;38(5):33-44

Hill, M. Parasitic languages for requirements. In Proceedings of the
second international conference on requirements engineering, |EEE
Computer Society, Colorado Springs, CO, 1996, pp 6975

Kosters, G, Six, HW, and Voss, J. Combined analysis of user inter-
face and domain requirements. In Proceedings of the second interna-
tional conference on requirements engineering, IEEE Computer
Society, Colorado Springs, CO, 1996, pp 199-207

Ravid, A. A method for extracting and stating software requirements
that a user interface prototype contains. M.Sc. Thesis, Faculty of
Computer Science, Technion, Haifa, Israel, March 1999, Available
at ftp://www.cs.technion.ac.il/pub/misc/dberry/alon.ravid/Thesis.doc
Pinski, E and Sturlesi, D. Generation of dynamic IR scene for seek-
erstesting. In Proceedings of SPIE (international society for optical
engineering) infrared technology and applications XXIlI, Orlando,
FL, April 1997, pp 20-25

Sturlesi, D and Pinski, E. Target scene Generator (TSG) for infrared
seeker evaluation. In Proceedings of SPIE (international society for
optical engineering) technologies for synthetic environments:
hardware-in-the-loop testing Il, Orlando, FL, April 1997, pp
111-119

Lehman, MM. Programs, life cycles, and laws of software evolution.
Proceedings of the | EEE 1980;68(9):1060-1076

Andriole, SJ. Fast cheap requirements. prototype or elsel. IEEE
Software 1994;14(2):85-87

Brooks, FP J.. The mythicad man-month: essays on software
engineering (2nd edn). Addison-Wesley, Reading, MA, 1995
Jacobson, |. Object-oriented software engineering. Addison-Wesley,
Reading, MA, 1992

Douglass, BP. Real-time UML: developing efficient objects for
embedded systems. Addison-Wesley, Reading, MA, 1998

Leite, JCSP, Leonardi, MC, and Rossi, G. Deriving object-oriented
specifications from external scenarios. Technical Report, Depar-
tamento de Informéica, Pontificia Universidade Catdlica do Rio de
Janeiro, Brasil, 1998

Leite, JCSP. Application language: a meta level requirements stra-
tegy. Technica Report, Departamento de Informéica, Pontificia
Universidade Catdli cado Rio de Janeiro, Brasil, August 1990
Gordon, VS and Bieman, JM. Rapid prototyping: lessons learned.
|EEE Software 1995;15(1):85-95

Leveson, NG. Intent specification: an approach to building human-
centered specification. In Proceedings of the third international
conference on requirements engineering, IEEE Computer Society,
Colorado Springs, CO, 1998

16 A. Ravid and D. M. Berry

Control System
HOSt Comp Ute/' Radiation

Sources Controllers

S

= Commands >>

o Electro Mechanical

Units Controllers
<< Feedback -
Servo Motion
Controllers
. Scene
Signals Projection

Unit Under Test

Fig. 1. The Principal Structure of the TSG Computer System

Special —
purpose Software
data-analysis tools ff’r
generating
scenarios
s Acquired
Unit Under data
Test Scenario
definition
User
Feedback interface
Control
system Commands
Definiti - Legend
clinitions Data acquired

during —— Data store

Scenarios and scenario
Scenario execution [External Interface
cena
components <> Dataflow
library

Fig. 2. The TSG Host Context-Diagram

% Edit [Hew. [= Load. niave " Check) Execmte g St ﬂgnalyze

ToIR Other IR
scenario .
definiti scenario-related
efinition tasks.

form

Fig. 3. The Infrared Scenario Related Tasks Toolbar

Method for Extracting and Stating Software Requirements

User
Needs

A 4

Specification of

Vv scenario definition
Vv scenario execution
vV scenario analysis

* scenario generation
Vv scenario monitoring
L]

closed-loop simulation

Real-time systems
Specification of

* closed-loop operation
e synchronization
* time-base generation

Information systems
Data Modeling

Specification of

1/0 mask specification
dialogs and forms

data processing algorithms
consistency rules

reports

library management
validity checks

<<

Ll

Requirements
Analysis
[& specification]

Ul Intensive systems

Specification of

menus

dialogs and forms
main displays
operational modes
reactive functionality

LX<

Motion control systems
Specification of

v manual control
e automated control
Vv execution monitoring

Data acquisition systems
Specification of

* sampling rates

1/O capacity

data scaling

storage requirements
data analysis tools
synchronization

data export

C <L

<

tem ific properties
Specification of
Vv hardware setup control
* system interfaces

Evaluation of]
—>|Prototype

with Client

Functional
Prototype

Fig. 4. The TSG Host User Interface Prototype Development Process

Throwaway UIP
Requirements
Specification
Documents
Complementary
documents

17

A. Ravid and D. M. Berry

18

W0 urey uoniuyaq oLeuads paseyu) g ‘b4

sonzedod
syjuouoduwod
OLIBUDS Y[
Qulep/Apy

sonzedod
[erouad
OLIBUDS Y[
Qulep/Apy

syjuouoduwod
OLIBUOS Y[
Qulep/py

OLIBUOS Y[
MIN/MPH

uoniuyad 128lqo parenuis “g ‘b1

sagueyd
UONIULIOP AYOADT
/ uontuyap 1dodoy

()pnuizy - | doaag

oI 19A0
sarrea jey) sonzadord
Juouodwod ouapAIPY

sagueyd
UONIULIOP AYOADT
/ uontuyap 1dodoy

saadoiy joalqn pajenung

