
An Adaptive Parsing Technique for ProRules Grammar

Sri Fatimah Tjong1, Nasreddine Hallam1, and Michael Hartley2

1
 School of Engineering and Computer Science

University of Nottingham Malaysia Campus

Jalan Broga 43500 Semenyih, Selangor Darul Ehsan

Tel: +603-89248350, Fax: +603-89248001, E-mail: {kcx4sfj, Nasreddine.Hallam}@nottingham.edu.my

2School of Mathematics

University of Nottingham Malaysia Campus

Jalan Broga 43500 Semenyih, Selangor Darul Ehsan

Tel: +603-89248137, Fax: +603-89248001, E-mail: {Michael.Hartley}@nottingham.edu.my

Abstract

This paper discusses the proposed technique for analysis

and production of English grammar rules by using the

structure and meaning of human language. We come up with

ProRules grammar that is based on grammar adaptation

and compilation. ProRules serves as a basis scheme in

processing the natural language requirements specifications.

This paper will further outline the ideal algorithms for

lexical scanning and parsing of the natural language

requirements specifications. Since ProRules is designed to

eliminate the occurrence of left recursion, an adaptive

recursive descent parsing strategy is chosen to build the

Parser. Therefore, to show the applicability and adaptability

of our algorithms, we come out with Scanner and Parser

prototypes system. We also apply some heuristic strategies in

our parsing strategy to deal with lower level of natural

language ambiguity.

Keywords:

ProRules, Requirements Engineering (RE), natural language
requirements specifications (NLRSs), Scanner, Parser

Introduction

As far back as 1970s and as current as present dates [2, 7, 15],

grammar compilation to speed up the parsing of natural
language such as Augmented Transition Network (ATN)
grammars has always been a challenging research topic.
Parsing sentences of natural language such as English has

also become significant work in NLP domain such as the
work of Charniak's Statistical Parsing [8] and Klein and
Manning' Unlexicalised Parsing [4]. These natural language
parsers extract the syntactic structure of the natural language

and return mostly one analysis per sentence.

Most of the parsers developed to date use Probabilistic
Context-Free Grammars (PCFG) as their backbone
formalism. We define ProRules as the newly designed

grammar that is designated to assist the development of
adaptive recursive-descent parsing prototype system.

ProRules grammar is originated from Context-Free
Grammar that generates a context-free language. Then, we
adopt the programming-language compiler technology to
compile Production-Rules (ProRules) grammars of NLRSs
that will be used in RE domain. In a given well-formed
language, a Compiler is normally used to translate a
high-level (programming) language to a lower-level
(programming) object language.

The question then arises the background reason of
choosing this approach amongst others. Furthermore, recall
that this compiler approach is rarely adopted in parsing
NLRSs. One possible reason is because of the level of
difficulty in parsing the language correctly based solely on
its grammar transition rules. Another reason might be the
programming complexity that one has to mastermind.
Compiler approach is not something new for it has been an
active topic of research and development since the mid
1950s and considered as a relatively mature computing

technology. We believe that its underlying principles,
multiple memory banks, and clustered architecture make it
better than other approaches.

The paper is organised as follow. Section 2 discusses the

background and brief overview of the NLRSs compilation
phases. Section 3 briefs the parsing methodology adopted in
this research. Section 4 describes discussion on the design
and implementation characteristics of Scanner and

Recursive-Descent Parser and finally Section 5 concludes
the work.

Background

Context-Free Grammar (CFG), known as the Type-2
grammar in Chomsky hierarchy, generates a context-free

language [13]. CFG is powerful in describing the syntax of
programming language and we apply this concept in
describing the syntax of NLRSs. We believe that CFG is
powerful enough to describe most NLRSs structure and

restricted enough to allow adaptive parsing. The CFG
adopted in this research is represented by

It is obvious that in order to parse NLRSs, a grammar is
needed. Therefore, we design a new type of grammar coined
ProRules, It originates from CFG and consists of a set of
formal rules for structures allowed particularly in NLRSs.

However, it is not only designed and compiled mainly for
finding constituent labels of linguistic significance, but also
to help in ‘programming the parser’. ProRules is to be
considered as a relatively broad-coverage grammar of the

English language and is meant to express NLRSs in a
simpler way. More importantly, it has the ability to manage
the effects of grammar expansion by selectively filtering
subsets of source grammar rules through specific

compilation procedure.

An example of ProRules grammar shown below means
the Predicate rule may consist of Verb or alternatively
VerbPhrase followed by Complement and optional
occurrence of Adverbial.

Conceptually, ProRules is developed from English
Grammar found in [11] and presented in the form of BNF
(Backus-Naur Form) and EBNF (Extended Backus-Naur
Form). BNF is a notation used to represent the context-free
grammars in a much more intuitive way whereas ENBF is a
combination of Regular Expression (RE notations are like ‘|’,
‘*’, ‘(‘, ‘)’, etc.) and BNF [6]. EBNF is powerful as it can
improve the readability and conciseness of BNF in
expressing the recursive rules so that the grammar is more
understandable.

Using ProRules grammar, the NLRSs compilation process

proposed in this paper involves the following phases:

• Lexical and Syntactic Analysis- the source language is
transformed into a stream of tokens and each token

represents a single atomic unit of the language. The
subphases of Syntactic Analysis:

- Scanner tokenises the source language based on their
criteria such as noun, verb, identifier, operators, etc.

- Parser parses the source language (represented by a
stream of token) to determine the order of token and the
language hierarchical structures.

• Semantic Analysis- the conformity of the meanings of the
source language is checked to their corresponding
contextual constraints

• Language Generation- the generation and optimisation of
the target language.

Note that the main concentration in this research is to
implement the NLRSs compilation of the Lexical and
Syntactic Analysis phases and further up with Semantic

Analysis phases.

Parsing Methodology

Top-down and Bottom-up parsing algorithms are probably
most preferable amongst the wide variety of parsing
algorithms available. However, parsing using Probabilistic
Context Free Grammar (PCFG) either lexicalised or
unlexicalised [4, 8] have as well, gained certain popularity in
NLP domain.

Parsing a given NLRSs with respect to ProRules is the
process of determining whether NLRSs belongs to the
language specified by ProRules and, if so, finding all the
structures that the ProRules pairs with the sentence. To parse
ProRules, an adaptive recursive-descent parsing technique
based on the compiler-approach has been implemented by
using the Java programming language.

Observations on the parsing algorithms motivate the
choice of Recursive-Descent parsing [6] algorithm.
Recursive-Descent parsing is believed to employ a strategy
that is helpful in matching various grammar production rules.
If a match is not met, then the parser will back up to the
position it was when it attempted to match the failing rule
[17]. In order to work with the recursive-descent parsing
concept, we design the ProRules grammar to be mutually
recursive and prevent the possibility of left recursion. An
adaptive recursive-descent parser for an English Grammar
EG consists of a group of methods parseX(), where X is a
non-terminal symbol N. An instance of this adaptive parser

applied on a simple NLRS is depicted in Figure 1.

Figure 1. Recursive-descent parsing of a natural

language requirement

Discussion

An experimental scanning and parsing prototype systems

 EG = {N, T, S, R}
where:
EG: a tuple of the context-free grammar
N: a finite set of non-terminals

• Phrasal categories: DS, SS, NP, VP, etc.

• POS: N, VB, SPRP, etc.
T: a finite set of terminals
S: a start symbol, S ε N

R: a finite set of production rules

 Predicate ::= (Verb|VerbPhrase) Complement [Adverbial *]

parseDeclarativeSentence()

parseSimpleSubject()

parsePredicate()

The system shall validate payment status .

parseNounPhrase()

parseVerbPhrase() parseComplement()

parseSimpleObject()

parseObject()

parseNounPhrase() parseNoun()

parseDeterminer()

parseSubject()

parseSentence()

parseModalAVerb() parseVerb()

based on the ideas presented here have been implemented in
Java. They are made possible by involving both WordNet®
[9] and some of the Penn Treebank tagsets [12].

Tags

This section contains a list of alphabetical part of speech
(POS) tags and the parts of speech corresponding to them.
When the scanner read the token and verified by the parser,
the parser will label the token with its corresponding tag.

Figure 2. List of part-of-speech tags

In a case where an unidentified or mistyped token are
inputted and scanned, the parser will label it as an
IDENTIFIER tag, which can be seen from the list.

Scanner

The principal purpose of having a scanner system is to
recognise lexical item in the given text. Analogous to
parsing process, scanning works at a finer level of detail.
Unlike the parser that groups all the tokens into large phrases
or sentences, a scanner scans the individual characters and
discards separators (such as blank space), which are then to
be grouped into lexicons.

The main processes of a scanner are tokenisation and
dictionary look-up. Tokenisation signifies the recognition of
each token from a given language and Dictionary look-up
fetches the tokenised string, checks whether it exists and
returns its POS information.

To capture each token, we discuss some of the algorithms
that are used in developing the Scanner as follows:

• Private scan method (Algorithm 1.) is used to scan and

discard any Separator tokens and return the token that
follows them.

• Lists of words taken from WordNet and grouped from
Penn Treebank lexicon such as Noun, Verb, Adjective,
Adverb, Determiner, etc. are saved in the Hash-Tables

designated for each POS category (as shown in figure 3.
and 4.).

Figure 3. Verb HashTable

 1. INTLITERAL 0,1,..,9
2. CHARLITERAL a,..,z and A,..Z
3. IDENTIFIER (this tag will be returned

in case of mistyped input)

4. OPERATOR +, -, ..
5. MV Modal Auxiliary Verbs
6. PV Primary Auxiliary Verbs
7. SPRP Subjective Personal Pronoun
8. OPRP Objective Personal Pronoun
9. PPRP Possessive Personal Pronoun
10. PRP$ Possessive Pronoun
11. RFPRP Reflexive Pronoun
12. DPRP Demonstrative Pronoun
13. IPRP Indefinite Pronoun
14. ITPRP Interrogative Pronoun
15. RLPRP Relative Pronoun
16. RCPRP Reciprocal Pronoun
17. RB Adverb
18. JJ Adjective

19. CC Coordinating Conjunction
20. SC Subordinating Conjunction
21. DT Determiners
22. WHQ Wh-Questions
23. IN Preposition
24. NN Noun
25. VB Verb Infinitive
26. VBS Verb Singular
27. VBP Verb Past Tense
28. VBPP Verb Past Participle

29. VBG Verb Present Participle
30. TO to
31. EXCLAMATION !
32. STAR *
33. DOT .
34. SEMICOLON ;
35. COMMA ,
36. LPAREN (
37. RPAREN)
38. LBRACE {

39. RBRACE }
40. SEPARATOR |
41. VARIABLE _
42. QUOTATION ‘
43. QUESTION_MARK ?
44. ALOC @
45. HASH #
46. DOLLAR $
47. PERCENTAGE %
48. AND &
49. COLON :
50. DOUBLE_QUOTATION “
51. BACKSLASH \
52. FORWARD_SLASH /
53. REF_LBRACE [
54. REF_RBRACE]

55. EOT End of Text
56. ERROR

 {tokenKind and start_position are Integer type
where start_position := 0,
currentScanningToken is a Boolean type and
separators are white spaces, new lines, etc.}
currentScanningToken := false;
while separators do begin
 scanSeparator
currentScanningToken := true;
start_position := current line of source file
tokenKind := scanToken
finish_position := current column of source file
end

{scanSeparator and scanToken are
respectively methods}

Algorithm 1. scan() method

Verb Key

abandon 12

abase 18

…. …

 abandon
abase
abash
…

Streams of words obtained from ‘Verb’ word-sets

(WordNet®) are saved in the ‘Verb’ HashTable

Figure 4. Noun HashTable

• Each of the ProRules grammar is converted into its
scanning method as illustrated in Algorithm 2.

The usefulness of a scanner for syntactic parsing is a

question little addressed in the literature. Scanner is
somewhat similar to a tagger in term of its task in suggesting
possible lexical category to a given token. In case of
superfluous or ambiguity analyses turn out, the parser will

eventually decide their appropriate tags. We observe that by
having a scanner, it helps to prepare the input token and
return the suggested lexical category to the parser whenever

a parser is to read the next input token. Finally the parser will
then check ProRules grammar whether this lexicon category
conform to the grammar.

An Adaptive Recursive-Descent Parser

The general idea of parsing with ProRules grammar is to
start generating possible tree structures until a rule generates
a lexical category. With ProRules, the parser is forced to
travel only the nodes that are defined in the grammar. This is

then checked with the next word in the sentence. If it is of the
appropriate lexical category, the parse continues. However,
if it is not of the appropriate lexical category, the parser will
explore another node in the search space.

Before parsing, it will be convenient to view the source or
given text as a stream of lexicons or symbols such as
operators, literal, punctuation, etc. since the source text
actually consists of individual of characters, and a lexicon
consists of several characters. Thus, it is a significant help to
have a scanner to group the characters into lexicons and to
discard other text such as blank space. Practically, the
process of parsing has been supported by a Scanner.

 Nodes in parse trees are labeled with the name of the
ProRules licensing the local tree rooted at that node. Being
able to view the parse trees and displaying a tree from the
perspective of the production rules associated with the nodes
help to facilitate the parsing process and show whether right
or wrong rules have been explored. Algorithm 3 shows how
ProRules grammar is used to construct the parser.

The rules inside ProRules grammar are built into methods
which later cooperate to parse the given input NLRSs. With
scanner’s help in returning the possible lexical category to

parser, it would then know which rule (or method) to travel.
Algorithm 4 illustrates how parseDeCSent method calls
parseSubject and parsePredicate, one after another, to parse
the subject and predicate respectively.

Noun Key

abacus 123
abdomen 158

…. …

Command parseDecSent() throws SyntaxError {
 Command dcAST = null;
 SourcePosition dcPos = new SourcePosition();

 start(dcPos);
 Attribute sbj = parseSubject();
 Attribute pdc = parsePredicate();
 finish(dcPos);

 return dcAST;
 }

Algorithm 4. Method of parseDecSent

 begin
 parseVerb
 if parseVerb doesn’t return a matched
 result then
 parseVerbPhrase
 parseComplement
 for any adverbials occurred after
 parseComplement do
 parseAdverbial

end

{parseVerb, parseVerbPhrase,
parseComplement and parseAdverbial are
respectively parsing methods}

Algorithm 3. parsePredicate() method

 abacus
abdomen
academy
…
bag
…

Streams of words obtained from ‘Noun’ word-sets
(WordNet®) are saved in the ‘Noun’ HashTable

 {currentChar is a Char type, sb is a StringBuffer
type and str is a S tring type}
sw itch currentChar begin
 for all case ‘a’ – case ‘z’ or
 case ‘A’ – case ‘Z’ do
 sb := append(currentChar)
 takeIt

 while currentChar isLetter or currentChar
 isDigit do
 sb := append(currentChar)
 takeIt

 end
 str := toString(sb)
 if tableVerb containsKey(str) is true then
 return verbToken
 else if tableNoun containsKey(str) is true then
 return nounToken
 else if tableAdjective containsKey(str) is true

 then
 return adjectiveToken
 else if tableAdverb containsKey(str) is true

 then
 return adverbToken

 end
end

{tableVerb, tableNoun, tableAdjective and
tableAdverb are HashTable types, takeIt is a
method type}

A lgorithm 2. scanToken() method

Results

For evaluation, we apply some heuristic strategies to deal
with certain types of ambiguity and then use the parser to
parse 50 samples of NLRSs. The heuristic strategies referred
are disambiguation rules written by the authors to analyse
the corpora with a reasonably high precision. Recall the
domain scope in which the Recursive-Descent Parser is
intended to parse is RE even though ProRules covers most of
the English Grammar.

This present method makes it possible to prune the
morphological and syntactic ambiguities in running simple
NLRSs. If the NLRSs retain the correct morphological and

syntactic reading within the RE domain's scope, the overall
parsing success rate may vary from 80% - 100 %.

One worth noting critic on the recursive descent parsing
technique is its failure to handle left recursion. We are aware
of this limitation and utilise programming tactics to handle it
such that the parser will parse the input given adaptively.
Each (non-terminal) rule of ProRules was programmed as a
method and each method would only be called according to
the given rule. To avoid the recursion, whenever any rule
(especially the left most rule) isn't able to return the
appropriate lexicon category, it will exit the current
rule/method and makes call to the next adjacent rule.

Conclusion

Progress is being made in NLRSs parsing but there is still a

long way towards Natural Language Understanding (NLU).
We discussed and showed that compiler-approach can be
used to build an Adaptive Recursive-Descent Parser which
has worked and comparatively good. Here, the adaptive

recursive-descent parsing is an inherently non-deterministic
process. In constructing a derivation, ProRules is applied to
the sentential form and the parsing process terminate when it
finally produces a derivation of the input string (the lexicon

tagging). In an unlikely event when an incorrect derivation
has been made, an algorithm implemented inside the parser
enables the ability to backtrack and generate alternative

derivation

derivation.

To support the parsing process, we developed a scanner
that is mainly used to tokenise each inputted token and then
check whether the token's existence in the dictionary
(whether it is a morphologically correct lexicon).
Improvements might be achieved by adding more
disambiguation rules and involving the semantic rules.
Hence, future work will concentrate on the continuation and
enhancement of the semantic analysis of the parser in
processing the language.

Acknowledgements

This work receives contributions of advices and discussions
from Mohammad Saleh, Sarah Aw and Xu Xiang Dong.

References

[1] Aho, A. V., Sethi, R., and Ullman, J.D., (1986).
Compilers Principles, Techniques, and Tools, © Bell
Telephone Laboratories, Incorporated

[2] Stehno, B., and Retti, R., (2003). Modelling the logical

structure of books and journals using augmented transition

network grammars, The Emerald Research Register

[3] Klein, D., and Manning, C. D. (2001). Parsing with
Treebank Grammars: Empirical Bounds, Theoretical Models,
and the Structure of the Penn Treebank pp. 330-337 ACL
39/EACL 10

[4] Klein, D., and Manning, C. D. (2003). Accurate
Unlexicalized Parsing pages 423-430, ACL 41

[5] Klein, D., Manning, C. D., Levy, R., Grenager, T., and
Andrew, G. (2004) Stanford Parser, Stanford Natural
Language Processing Group, Stanford University

[6] Watt, D. A., and Brown, D. F. (2000) Programming
Language Processors in Java, © Pearson Education Limited

 E n g l is h S e n te n c e

D e c l a r a t iv e S e n te n c e

S im p le S e n te n c e

C o m p o u n d S u b je c t S im p le S u b je c t

C o m p o u n d S e n te n c e

I n te r r o g a t iv e S e n t e n c e

P r e d ic a te

N o u n P h ra s e

S u b je c t

Im p e r a t i v e S e n t e n c e

N o u n P ro n o u n

S in c e th e n o d e i s n o t
in a n ap p ro p r ia te
le x ic a l c a te g o r y , t h e

p a r s e r b a c k t r a c k s a n d
e x p lo r e s o th e r n o d e .

D e te rm in e r N o u n

 T h e s y s te m

Figure 5. The Flow of Recursive-Descent Parsing with all the possible tree structures

[7] Duchier, D., Roux, J. L., and Parmentier, Y. (2004) The
Metagrammar Compiler: An NLP Application with a
Multiparadigm Architecture, LORIA

[8] Charniak, E. (1997) Statistical parsing with a
context-free grammar and word statistics, In Proceedings of
the 14th National Conference on Artificial Intelligence, pp.
598-603

[9] Miller, G. A., Fellbaum, C., Tengi, R., Wolff, S.,
Wakefield, P., Langone, H., and Haskell, B. 2006. WordNet®

2.0 Cognitive Science Laboratory Princeton University.
Citing Internet sources URL http://wordnet.princeton.edu/

[10] Eisner., J. and Satta, G. (1999) Efficient parsing for
bilexical context-free grammars and head automaton
grammars, Association for Computational Linguisitics 37,
pp. 457-464

[11] Seely, J. (2001) Oxford Everyday Grammar, Oxford
University Press Inc., New York

[12] Marcus, M. P., Santorini, B., and Marcinkiewicz, M.
(1993) Building a large annotated corpus of English: the
Penn Treebank, Computational Linguistics, vol.19

[13] Chomsky, N. (1959). On certain formal properties of
grammar, Information and Control 1, pages 91-112

[14] Rus, T. (2001). A Unified Language Processing
Methodology , Elsevier Science

[15] Woods, W. A., (1970). Transition Network Grammars
for Natural Language Analysis, Computational Linguistics

[16] Ambriola, V. and Gervasi, V. (1997). Processing
Natural Language Requirements, Proceedings of the 1997
International Conference on Automated Software

Engineering

[17] Diggins, C. 26 October 2005. YARD (Yet Another
Recursive Descent Parser). Citing Internet sources URL
http://www.ootl.org/yard/

