
The Use of a Module Interconnection Language
in the SARA System Design Methodology*

Maria Heloisa Penedo &
Daniel M. Berry &&

Computer Science Department
University of California at Los Angeles

ABSTRACT

In software design it is highly desirable to
be able to deal with the structures of both the
algorithm and the record ~_~ execution. A design
methodology called SARA is being developed at UCLA.
SARA's models are able to deal with the record of
execution structure. This paper proposes the
addition of a Module Interconnection Language to
enable SARA to deal with the algorithm structure.
An example illustrates how this combination can
assist in the software design process.

Keywords: software design, module interconnection,
MIL, algorithm, record of execution, modeling,
realization.

Introduction

SARA (System ARchitect's Apprentice) [I, 2, 3]
is a computer-aided system which supports a
structured multi-leval requirement driven
methodology for the design of reliable (possibly
concurrent) software or hardware digital systems.
SARA is under continual development at UCLA. In
this paper we consider only software design.

It is well known, in software, that errors are
introduced during the design and implementation
processes as a result of:

inadequate statement of the requirements of the
system,
improper decomposition of a system into
subsystems,

* This work was supported in part by the U.S.
Department of Energy, Contract No. EY-76-S-03-0034,
PA 214.

& Supported in part by the Conselho Nacional de
Desenvolvimento Cientifico e Tecnologico, CNPQ,
Brasil.

&& Supported in part by the Lady Davis Foundation,
Israel. For 1978-79, Visiting at Faculties of
Mathematics, Hebrew University, Jerusalem,: Israel
and Weizmann Institute, Behovot, Israel.

- inadequate testing of the system during the
design process,

- inadequate care in the production of the
implementation from the final designs.

SARA attempts to address this problem of
design errors by providing effective means for
synthesizing and analyzing a system and,
furthermore, by providing a smooth and continuous
path from programming-in-the-large (the act of
decomposing a large software system into subsystems
of modules) [4] to programming-in-the-small
(writing code in some algorithmic programming
language) [4]. It provides a designer with
interactive tools and checking procedures to
enforce consistency between requirements,
structure, function and behavior. In recent work
[5, 6], methods are proposed for developing test
environments during the system design process.

The objective of this paper is to propose the
incorporation of a Module Interconnection Language
(MIL) into SARA. The addition of this capability
reduces the gap between the model and realization
of a system by providing for the derivation of code
skeletons. Furthermore it provides SARA with a
means for defining the algorithm (given by the MIL)
and record of execution (given by SARA's existing
models) structures which can assist the design and
implementation processes by providing:
a) a better means for expressing the decisions

made, by using software design methodologies
such as composite design [7] and information
hiding [8, 9],

b) a better description of the interfaces between
modules,

c) a better means for managing teams, since the
interfaces are well defined,

d) a better means for expressing code
abstractions,

e) a better means for documenting systems.

In short, this capability should enhance the
usefulness of SARA as a software design tool.

The first section discusses the necessity of
distinguishing between the algorithm and record of
execution structures in the modeling and design
processes. Next a MIL is proposed for expressing
algorithm structure. Section 3 describes SARA's
Structural Model (SLI) and SARA's Graph Model of
Behavior (GMB); we show how these models express
the structure and behavior of the record of
execution. It is then suggested how a MIL might

CHI479-5/79/0000-0294500.75 O 1979 IEEE

294
Reprinted from PROCEEDINGS OF 4th SOFTWARE
ENGINEERING, September, 1979

profitably be incorporated into SARA. An example
of a design using the MIL-extended SARA is carried
out, in section 6, illustrating how code skeletons
can be generated. This example also shows that the
use of a MIL offers a degree of freedom which can
lead to a clear exercise of design choices which
might otherwise go unnoted.

i. Algorithm j_~ Record ~_~ Execution

Our attempts to use SARA for software design
have met some difficulties. We found that we were
unable to unambiguously express all degrees of
freedom in selecting a module structure to impose
on the code that has the required behavior. We
found in particular that we could not express
conveniently and in a graphical manner, design
decisions such as:

1.1) which processes are instantiations of which
procedures;

1.2) which data structures are instantiations of
which data types;

1.3) which procedures and data types are visible to
each other.

That these aspects of a program's structure can
vary without the program's behavior or function
also varying is a prime thesis underlying Parnas'
Information Hiding Principle [8, 9] and Myers'
Composite Design and Analysis [7].

Lessons learned from the history of
programming language definition provided the clues
as to how these degrees may be incorporated into
SARA. These lessons point to the necessity of
distinguishing between the structure of an
al~orithm (i.e., code) on one hand and the
structure of the record ~_~ execution (i.e.,
instantiations) on the other.

For programming languages, this distinction
was clarified with the introduction of the contour
model [10] of block structured program execution
and other similar models. In the contour model,
each state (snapshot) of a computation consists of
a reentrant time-invari~ algorithm containing the
code for the program being executed and a
time-varying record of execution, which contains
the processes and data cells which are allocated,
modified, accessed and deallocated during
execution.

In this scheme, a procedure is a named piece
of code representing an algorithm. It contains
parameter and local variable declarations and a
sequence of instructions. A process (or activation)
is an instantiation of a procedure which results
from a call of the procedure. For each such
instantiation of a procedure, a collection of data
structures is allocated in the record of execution,
one structure for each parameter and local variable
declared in the procedure. A process uses one of

these structures whenever its procedure says to
assign to or access a parameter or local variable.

In the same manner, a d~ ~¥pe definition
(cluster [11], forms [12], etc) is a named piece of
the algorithm comprising a template for the
allocation of an element of the type plus a
procedure for each operation of the type. A data
obiect is an instantiation of a data type which
results from the declaration or the allocation of a
variable of that type." For each such instantiation
of a data type, a data structure is allocated in
the record of execution (according to the
template). The instantiations of the operation
procedures are created as these operations are
called.

Separation of a process from its procedure is
necessary to permit recursion and parallel
processing. If there were no separation, for each
procedure, there would be but one process and thus
but one copy of the cells for the variables
declared in the procedure. Each recursive call
(instantiation) and each parallel process
(instantiation) of the same procedure would clobber
each other as they all attempted to use the same
cells at the same time. Similarly, separation of a
data object from its data type definition is
necessary to permit multiple structures of the same
type. Were there no separation, assignment to one
data structure would clobber all other structures
of the same type. Thus, in general the algorithm
must be separated from and distinguished from the
record of execution.

We want to have the freedom to
a) decide on the structure of the procedures and

data types in the algorithm, thus deciding item
1.3 above, and

b) decide which components of the record of
execution are instantiations of which components
of the algorithm, thus deciding 1.1 and 1.2
above.

This freedom of decision together with methods for
expressing these decisions can be used to bridge
the gap between modeling and code.

Thus it seems clear that any software design
system and methodology must be able to deal with:

- algorithm structure,
- record of execution structure, and
- the correspondence between the elements of
these structures.

Other authors have noted the distinction
between the algorithm and the record of execution.
But it seems that explicit use of this distinction
and the degree of freedom it offers have not been
incorporated into software design methodologies.
Table I shows, for each of several software design
methodologies, the correspondence of its
terminology to our notions of procedure and data
type definition in the algorithm, and process and
data object in the record of execution.

295

Table I. Methodologies and the correspondence between their
terminology and our notions of algorithm and record of execution.

Methodology

or LanDuaDe

SADT 13

HiPO 14

CDA 7

PSL/PSA 15

Jackson 16

~IL 4

~iL 17

AlDorithm
!

Procedure *Data Type Defini t ion
i

? , ?
g

0

Hierarchy , ?
u

Structure Diagram
Functional Module ,Informational Module

?

Module

Module

Record of Execution

Process

?

?

Module

Act iv i t ies

Process

Data Object

Things

Input-Output

Problem Structure

Input-Output and
Data Structure

Data Structure

?

?

System Structure

i Program Structure

?

SADT',L~ = Structured Analysis and Design Technique M~thodology

HIPO = Hierarchy plus Input-Process-Output

CDA = Composite Design and Analysis

PSL/PSA = Problem Statement Language/Problem Statement Analyzer

MIL = Module Interconnection Language

2. What __ga ~.~

A Module Interconnection Language (MIL) - as
proposed in the literature [17] - is a language for
describing software definition module structure.
Its main function is to establish the accessibility
of resource names, i.e., identifiers, procedure

• names, type names, etc., among modules, and to
assist in binding resource names to the modules
which provide and need those resources. Other
systems and languages such as DREAM [18, 19] and
GYPSY [20] include constructs for defining module
interconnection.

The MIL we are proposing consists of: MIL-
modules, MIL-sockets and MIL-interconnections. A
MIL-module represents a procedure or data type
definition. Its name is made externally visible by
means of a socket. A MIL-socket provides the
interface between a module and the surrounding
environment. Each MIL-socket names a procedure, a
type, or an operation of a type. It tells whether
the resource is offered or required. The
attributes of a socket carry information about the
named resource such as its parameter types, its
return value type, if any, its specifications, etc.
A~_~-interco~ect~on is a directed arc connecting
sockets, representing the accessibility of the name
and the direction of the access.

For example, suppose a program PROG calls a
subroutine SUB. The MIL model (graphical
representation of a MIL definition) will be
represented as in Figure 1.1, where PROG and SUB

are distinct modules. Module SUB offers the
resource SUB, as indicated by the socket name and
the direction of the interconnection; module PROG
requires resource SUB. The parameter types and the
return value are specified in the socket
attributes. The names of the connected sockets do
not have to be the same.

Suppose also that a procedure PROG makes use
of the read operation of a data type FILE. The MIL
representation is shown in Figure 1.2, where PROG
requires operation READ from data type FILE.

PROG 1 JB
UB UB

Figure 1.1. Example of a MIL model.

PROG FILE

Figure 1.2. Example of a MIL model.

296

How useful is a MIL in the design process? A
MIL can enhance both top-down-refinement and
bottom-up-abstraction design methods. Too-down
refinement means partitioning a system into
subsystems. A MIL definition of the interfaces
facilitates the task of splitting a big system into
smaller ones, with the intent that they be modeled
or programmed by different people, since it is
known for each module what other abstractions are
available for use and what must be offered for use.
Bottom-l~ comoositio~ consists in interconnecting a
set of predefined building block (off-the-shelf)
models to form a model of a system being designed.
This task is also more effective when, through the
MIL capability, the modules to be connected have
defined interfaces. It becomes possible to check,
for each module, whether all resources it uses are
available and compatible.

Furthermore, code skeletons come from MIL
since their modules represent procedure or data
type code structure, i.e., one code module per
MIL-module.

Thus, a MIL deals with code structure and
identifier visibility. It is this information that
we want to see specified in the SARA methodology.
In the next sections we describe some of SARA's
models and their relationship with the MIL we are
proposing.

~. SARA'~ MODELS
l

The SARA methodology supports both a top-down
partitioning procedure (refinement) and a bottom-up
composition procedure (abstraction) as illustrated
in Figure 2. The SARA comnuter-~d~d system
comprises a number of language processors and tools
for assisting the designer using the SARA
methodology. The language processors include
interpreters which accept system descriptions in
various languages and perform checks, displays,
etc. Among these languages we distinguish: GMB,
which itself contains languages for modeling
behavior in three domains: flow of control, flow of
data and interpretation, and SLI, which serves to
describe hierarchically related structures to which
the behavioral models can be mapped. These
languages are discussed tersely below and further
detail can be found in [21, 2]. There is a
simulator [22, 23] providing an interactive
simulation environment which permits experiments on
the behavior models.

~.i. ~Li Structural Model

A structural model is mainly used to enforce
modularity [24] by providing a better means to
enforce encapsulation [9] and by permitting the
isolation of parts of the system which then can be
modeled and analyzed separately.

Figure 2. UCLA's SARA Design Methodology.
START
OF OESI~

rINISX
OF ~ S I ~ I

SLI [25] is SARA's modeling language, designed
for describing the structure of hierarchical
modular systems. Used by itself, however, SARA's
structural model has no behavior associated with
it. It is used simply to define interconnected
modules at various levels of abstraction and to
allow the designer to specify a nested soace
napes to be used with the ~ehavioral models. There
are three kinds of structural elements: modules,
sockets and interconnections. A module is used to
encapsulate part of a behavioral model and abstract
detailed behavior into sockets. A ~ooket represents
the interface between a module and its environment;
it is always attached to a module or an
interconnection. An interconnection connects
modules at their sockets; it represents a potential
flow of data or control which is made explicit only
in a behavioral model. Furthermore, each element
of the structural model is responsible for carrying
out at least one of the requirements which drive
the design of a system.

297

Figure 3a shows a structural model consisting
of a module UNIVERSE which contains two sub-
modules: ENVIRONMENT and SYSTEM. ENVIRONMENT has
3 sub-modules: SOURCEFILE, INITIATOR and
OBJECTFILE. LX, LEX and GN are sockets
representing the interface of the module
ENVIRONMENT. Interconnections LI, L2 and L3
connect the modules ENVIRONMENT and SYSTEM.

ONIVERSE

ENVIRONMI~

SOURCEFIL~

INITIATOR

OBJECTFILE

LX
ru-[

SYSl~

Figure 3a. Example of an SLI model.

A module's internal structure may consist of
modules, sockets and int~rconnections. An
interconnection can also be refined into modules,
sockets and interconnections. A socket can only be
refined into sockets. Further detail can be found
in [25].

where the processors are responsible for the
transformation of the data stored in datasets.
There is a manv-~_q-one function, mapping nodes in
the control graph to processors in the data graph,
with the property that each controlled processor
(in the DG) must have at least one control node (in
the CG) associated with it; for this reason
processors in the data graph are called 'controlled
processors'.

Figure 3b shows a GMB model: nodes are
represented by circles; processors by hexagons; and
datasets by rectangles. The control graph is
expressed by nodes NI, N2 and N3 and the arcs S,
At, A2 and X connecting them. The output logic for
node NI is AI*A3 (AI and A3); the input logic for
N3 is A2*A3; the input logic for N2 is A2, etc.
The data graph is expressed by processor P2
(associated to node N2) and datasets SOURCEFILE,
OBJECTFILE and RETURN; the data arcs show the
direction of the flow of data. The mapping between
control nodes and data processors is shown in the
picture by means of dotted lines.

sf

A~

x<

AI

A2

RETURN

Figure 3b. Example of a GMB model.

SOORCEFILE

I I

[I
OBJECTFILE

~.~. ~Behavioral Model

The behavioral model GMB (Graph Model of
Behavior) [26] consists of two graphs: a flow-of-
control (CG) and a flow-of-data (DG) graphs,
together with interpretations associated with the
nodes of the datagraph.

Flow~.~ control behavior can be expressed by
control nodes, which span initiation and
termination of associated processes, and by
directed control arcs. Associated with each control
node there is an input logic and an output logic.
These logics, which are boolean expressions
involving the arcs, express precedence and
consequence conditions. Data flow is modeled in
the data graph through processors and datasets,

GMB primitives may also be refined according
to a set of defined rules [21, 28].

The meaning of a GMB model or graph is given
through an abstract machine called the token
machine for the graph. A state of the token
machine is a placement of tokens on some arcs of
the control graph together with the list of active
nodes, and from any state the transition of the
machine yields one next state. Thus, from a given
initial state, the token machine appears to move
tokens through the graph according to the
transition rule described below.

A node is active if in some previous state
transition it was initiated but in no subsequent
transition it was terminated. A node may be

298

initiated in any state in which it is inactive and

in which its input logic is satisfied. The input
logic of a node is satisfied if, by assigning the
value 'true' to each arc containing a token and the
value 'false' to all other arcs, the input logic
expression evaluates to 'true'. At any state
either a node which may be initiated or a node
which is active is selected nondeterministically to
be initiated or to be terminated respectively.
When a node is selected to be initiated, it absorbs
tokens on its input arcs according to its input
logic and becomes active. When a node is selected
to be terminated, it is terminated and tokens are
distributed on its output arcs according to its
output logic.

An initial state of the graph in Figure 3b has
a token on arc S. In this initial state, no node
is active and only node NI may be initiated. It is
initiated and the token is absorbed leaving no
tokens on any arc in the graph. When NI
teriinates, according to its output logic AI*A3,
two tokens are distributed: one to arc AI and one
to arc A3. At this point, only node N2 can be
initiated since the input expression for node N3 is
not 'true'. Upon termination of node N2, there is
one token on arc A3 and one token on arc A2; thus
node N3 can be initiated since its input logic
evaluates to 'true'.

During any state transition of the token
machine, if the control node N of the control graph
is initiated, the data graph processor P associated
with this node (if any) is considered to perform
its algorithm. In Figure 3b, when node N2 is
activated, processor P2 is considered to perform
its algorithm, i.e., takes input from dataset
SOURCEFILE, performs some transformation and
outputs data to datasets RETURN and OBJECTFILE. We
chose not to have any data processors associated
with nodes NI and N3.

PLIP (an extension to PLI) [27] is the
language used for writing interpretations to be
associated with the data graph; PLIP procedures
provide the algorithms for the processors while
declarations provide the type for the datasets.
Whenever a data graph processor is considered to
perform its algorithm, the token machine calls the
PLIP procedure (if any) for this processor.

It is worth noting that the topology of both
graphs in a GMB is fixed and that they are used to
model pseudo-static aspects of system behavior.
Any dynamic allocation of processes or datasets
that cannot be expressed through the GMB fixed
topology must be hidden inside a single node, e.g.,
the PLIP interpretation for this node is a
recursive procedure or it causes dynamic allocation
of data cells. In the process of designing any
system comprising dynamic allocation, expansion of
nodes into subgraphs will ultimately lead to a
graph containing nodes hiding dynamic allocation
which are not themselves expandable into subgraphs.
This is an intentional restriction of the GMB
model; at present all dynamic allocation is modeled
in the interpretations attached to the unexpandable

nodes. Another possible approach is the use of a
GMB with a dynamically changing topology, i.e., a
dynamic GMB. This is a topic for further research.

~.~. SLI-GMB relationship

As mentioned before, the SLI structural model
is mainly a space of names to be used with a
behavioral model. An important aspect of SARA is
the maPpin~ between the behavioral a~ ~truct~ral
models:
- GMB submodels (control and data), uninterpreted

or interpreted, are mapped to SLI modules;
- GMB arcs crossing module boundaries are mapped

to sockets (in the module) and the corresponding
interconnections.

This mapping provides the SARA tools with means to
detect cases of inconsistency and incompleteness in
the design.

In Figure 3c, Figure 3b was mapped into Figure
3a. Node NI (in the INITIATOR) starts the SYSTEM,
i.e., it sends a token to node N2 which activates
processor P2. P2 reads the data from dataset
SOURCEFILE (mapped to module SOURCEFILE), performs
some transformation on it, outputs the data to
OBJECTFILE (mapped to module OBJECTFILE), while
returning a status flag into dataset RETURN (in the
INITIATOR). When P2 terminates, N2 sends a token
to N3 (mapped to module INITIATOR) which stops the
computation.

Which GMB subgraph is mapped to which SLI
module is very much a design decision (not fixed in

~ I ~ E

SOURCEFILE

INITIATOR

• LEX

SYSTEM

r

)

Figure 3c. Example of an SLI-GMB model.

299

the methodology); the choice of a particular
subgraph to be mapped to a particular module is
tantamount to abstracting the behavior of the
subgraph into a single subsystem. Of course,
however the decision is made, the behavior of the
subgraph must fulfill the requirements which have
been imposed on the module.

From now on we will use 'SLI~GMB model' to
refer to the triple consisting of an SLI model, a
GMB model and a mapping between them.

Figure 4. I. A MIL model corresponding
SLI-GMB model of figure 4.2.

PROG SUB

to the

We now pose the question: Does an SLI model
Represent a MIL model of a system?

In the terminology of section I, each control
node (or set of nodes) and associated data
processor(s) models an instantiation of some
procedure, and each dataset models an instantiation
of some variable declaration. This follows from the
very meaning of a GMB model. Values are considered
to be stored in datasets, to be written or read
from data arcs and to be processed by processors.
It may, of course, be that two processors have the
same interpretation, i.e., have the same PLIP
procedure. It might also be that two cells have
the same type, i.e., have the same attributes. In
these cases the processors and datasets are

instantiations of the same procedure and data type
respectively.

Thus, given the strong mapping between GMB and
SLI and given that the GMB nodes represent
instantiations, this implies that an SLI-GMB model
represents a structure o_f ~nstantiations. In
contour model terms, an SLI-GMB model represents
the structure of a completely pre-allocated record
of execution.

As explained in section 2, a MIL represents
the structure of the algorithm. Thus, an SLI-GMB
model and a MIL model do not convey the same
information about software systems. In section 6,
the compiler example shows an SLI-GMB model which
can easily have more than one MIL model.

To illustrate the distinction between the
SLI-GMB and MIL models, let us consider the case
where a program PROG concurrently calls a
subroutine SUB twice. Figure 4.1 shows the MIL
model, which specifies that procedure PROG requires
procedure SUB. Figure 4.2 shows the SLI-GMB model
where instantiation PROG' calls instantiatiations
SUB' and SUB" in parallel.* The parallelism is
represented by nodes NI, NSI and NS2. The output
logic of NI, AI*A2, indicates that upon termination
of NI, one token is placed on arc AI and one token
on arc A2. A token on arc AI permits node NSI

* We follow the convention of naming each
instantiation of a procedure by its name followed
by some unique number of apostrophes.

Figure 4.2. An SL I-GMB model
instantiations of the same procedure.

FROG'

of parallel

SUB ' '

(which models the procedure instantiation SUB') to
be initiated; a token on arc A2 permits node NS2
(which models the procedure instantiation SUB") to
be initiated. This means that NSI and NS2 can be
activated at the same time, i.e.,in parallel. The
SLI modules SUB' and SUB" represent instantiations
of the MIL module SUB, which may run in parallel.
Note that we chose not to show the data graph for
this example.

The relationship between SLI modules and MIL
modules can be one-to-one, many-to-one or even
zero-to-one. It is important to note that, when
the system being modeled happens to have
instantiations one-to-one with code [2] then one
could get a code skeleton from the SLI-GMB models
but this process does not generalize. Thus, code
skeletons must come from MIL.

~. The IncorDoration~_~ MIL

The single most important advantage of
incorporating the information conveyed by a MIL
into the SARA methodology is the help that the MIL
and SARA can give to each other. While SARA

provides a means for modeling and analyzing a
system, the MIL will enhance its power by
permitting the expression of decisions involving
the structure of the algorithm and furthermore by
providing a smoother path from modeling to code.

The combination of the SLI-GMB model, the MIL
model, and the mappings between them permit the
generation of even better code skeletons than is
possib}e with either alone or without the mappings.
Briefly, the SLI-GMB model identifies the variables
(which name data type instantiations) and the calls

300

(which name procedure instantiations) of the code;
the MIL model identifies the type and procedure
definitions; and the mapping says which variable is
of what type and which call is of what procedure.

Let us call the ability to specify the
information conveyed by a MIL, a Module
~nterconnection SoecificatiQn Capability (MISC).
The question remains as to how this capability is
to be incorporated into the SARA methodology.

One approach* is the use of a MIL itself.
This approach consists in defining a MIL model, in
the way presented in section 2, and a mapping
between the SLI-GMB model and the MIL model. That
is, for an SLI-GMB model, the designer defines a
MIL model and specifies the mapping between them.
Each SLI module will be mapped to at most one MIL
module which is the definition of the particular
instantiation. At a given level of the design,
each SLI socket and interconnection must be mapped
to at most one MIL socket and interconnection which
carries the visibility of the identifier whose
invocation causes the control or data flow embodied
in the SL1 interconnection.

In the next section, we explore the
incorporation of the MIL approach into the
methodology. We go through the top level of a
requirement driven design of a compiler. This
entails stating the requirements and then
developing an SLI-GMB model for the compiler. At
the appropriate point, the design decisions which
are expressed by the MISC are made; they are
expressed in the MIL approach. Then, from the
SLI-GMB model, the chosen MIL model and the
mappings between the two models, a code skeleton is
derived for the compiler.

~. Examo~e

To illustrate our discussion in the previous
sections we use an example, a somewhat simplified
design of a compiler. By using SARA's methodology,
we go through the first steps (partition) of the
system. Our objective is to show how we can express
decisions involving the structures of the algorithm
and of the record of execution and how code
skeletons can be derived, i.e., passing from
modeling to realization. For conciseness, several
steps in the design process are omitted.

As mentioned before SLI modules have no
behavior. The GMB is a very powerful tool for
analysis but as of now rules for mapping subgraphs
into SLI modules are not fixed; this is very much a
design decision. Following the latest software
design techniques, where modules are procedures or
data type definitions, we are using pragmatics for
modeling software in SLI-GMB. Then SLI-GMB modules

* At least one other approach is known, the
SLI-GMB-SOCKET Model Approach, but discussion of
this approach is outside the scope of this paper;
see [29] for more details.

are used to represent procedure instantiations or
data type instantiations at whatever needed level
of abstraction.

The assumptions and requirements for our
system are as follows:

Environment Assumptions:

AEI. The environment must provide a file containing
an input PASCAL program.

AE2. It must provide a file to contain the object
program.

AE3. It initializes the compiler-system. Upon
completion, the success or failure of the
translation resides in the environment.

System Requirements

RS I •

RS2.

RS3.

When requested to do so, the system reads an
input program from the environment and
attempts to translate it into a semantically
equivalent object program.

If translation succeeds, it notifies the
environment by returning the boolean value
'true' and it outputs the (360 machine
language) object program.

If translation fails, it notifies the
environment by returning the boolean value
'false'.

UNIVERSE

ENVI RONb~NT CObg~ILER '

SOIJRCEFILE

INITIATOR'

]~

Figure 5. I. High level SLI-GMB model of COMPILER
and its ENVIRONMENT.

30t

The first step is to set up the environment we
will be working with. According to the
assumptions, there are three modules in the
environment: SOURCE FILE, INITIATOR', and
OBJECTFILE and we are designing the COMPILER'
(Figure 5.1 shows the SLI-GMB model for it, which
is the same picture as Figure 3c). Node NI in the
INITIATOR' starts the COMPILER', i.e., it sends a
token to N2 which activates processor P2. P2
reads the program from dataset SOURCEFILE, compiles
it, puts the output in dataset OBJECTFILE, and
returns a boolean value to the INITIATOR' stating
the result of the compilation. When P2 terminates,
N2 sends a token to N3 which stops the computation.

In the next step, we decide to go top-down and
refine the COMPILER' system into a set of modules
as shown in Figures 5.2a and 5.2b. We show the SLI
partition, the GMB partition and the mapping in one
step. The SL1-module COMPILER' was refined into
sub-modules LEXER', SYNER', GENER', TOKENSEQ,
TOKENTABLE, IDTABLE and POLISH. Observe that node
N2 is refined into the GMB control graph composed
of N21, N22, N23, N24, and N25 (Figure 5.2a).

Processor P2 is refined into the GMB data graph
composed of the controlled processors P21, P22,
P23, P24, P25, the datasets TOKENSEQ, TOKENTABLE,
IDTABLE, POLISH and the datasets RETURN for the
returned value (Figure 5.2b). The association of
the nodes in the control graph and the processors
in the data graph is shown by the use of identical
numbers, i.e., P21 is controlled by N21, etc. Also
observe that socket INIT is refined into subsockets
IN, OUT and RT. This is a characteristic of the
multi-level properties of SLI and GMB models.

The INITIATOR' sends a token to the LEXER'
activating node N21 which triggers the activation
of processor P21, responsible for the lexical
analysis; P21 updates datasets TOKENSEQ and
TOKENTABLE using the information in SOURCEFILE. If
lexical analysis fails, node N21 sends a token to
N25, activating processor P25 which terminates the
compilation and returns the boolean value 'false'
to the INITIATOR'. Otherwise the LEXER' sends a
token to the SYNER' activating node N22 which
triggers processor P22, responsible for the
syntactical analysis; P22 updates the IDTABLE and

NIVERSE

ENVlRONVUmT
s o u l , F i L E I I ~ ' LEXER' TOKENSE(~

SYNER'

• SYN

LEX

TOKENTABLE

IDTABLE

OBJECTFILE [[GENER'

GEN

SYN

POLISH

Figure 5.2a. SLI partition and control graph refinement of Figure 5.1.

302

POLISH datasets using the information in TOKENSEQ
and TOKENTABLE. If syntactic analysis fails, N22
sends a token to N24, P24 returns 'false', and
control flows back to the INITIATOR' to terminate
the compilation with the value 'false' returned.
Otherwise SYNER' sends a token to node N23 in
GENER'; this activation triggers processor P23; P23
generates the object code using the information
stored in IDTABLE, TOKENTABLE, and POLISH and
outputs it to OBJECTFILE. Regardless of whether or
not code generation succeeded, when P23 is
finished, control flows back through N24 and N25,
and a boolean value indicating success or failure
is returned, through P24 and P25, to the INITIATOR'
at which time the whole computation is ended. Note
that we have gathered together as subsockets the
sockets representing a procedure call or a
procedure being called.

All processors may or may not, at this point,
have interpretations (written in PLIP), which
explicate the data graph processor's functions,
associated with them. For brevity, we choose not
to write them. An example of multilevel design of
software including interpretation can be found in
[2].

Continuing the design process, we may want to
refine once more one or more SLI-GMB modules.
However it is reasonable at this point to try
generating a code skeleton from the information
present in the SLI-GMB models. We show how this can
be accomplished and in the next step we show how
the MIL model, mapped to this SLI-GMB model,
provides for a more complete structure of the code.

A code skeleton generated from the SLI-GMB
model can be as follows. We chose to represent all
data as external variables or returned values of
functions.

UNIVERSE

ENVIRONMENT COMP ILER '

LEXER'

SYNER'

SYN

GEN TOKENTABLE

IDTABLE

OBSECTFILE I [GENER'

OBJECTFILE

POLISH

Figure 5.2b. SLI partition and data graph refinement of Figure 5.1.

303

global sourcefile: <sourcefile type>,
objectfile: <obJectfile type>,
tokenseq: <tokenseq type>,
tokentable: <tokentable type>,
idtable: <idtable type>,
polish: <polish type>;

compiler:lexer: procedure() bool;
external sourcefile: <sourcefile type>,

tokenseq: <tokenseq type>,
tokentable: <tokentable type>,
syner: procedure;

. , , .

call syner;
end lexer;

syner: procedure()bool;
external tokenseq: <tokenseq type>,

tokentsble: <tokentable type>,
idtable: <idtable type>,
polish: <polish type>,
gener: procedure;

. o . ~

call gener;
end syner;

gener: procedure()bool;
external tokentable: <tokentable type>,

idtable: <idtable type>,
polish: <polish type>,
objectfile: <objectfile type>;

. o

end gener;

Using our pragmatics, explained in the
beginning of this section we opted for considering
all internal SLI modules as external procedures or
external data (global). Thus LEXER', SYNER' and
GENER' are instantiations of procedures. In the
code skeleton, each procedure specification
includes an empty parameter list, a return value
type, and the list of non-local (external)
variables and procedures that it uses.

SOURCEFILE, TOKENSEQ, ..., etc are variables.
In a previous publication [2], the types of
variables and parameters were extracted from the
dataset definitions in PLIP. Here we take a
different approach since we want to consider these
attributes as abstract types. Thus, we assume that
each distinct variable has its own type and for the
variable or parameter x we say that its type is
<x type> since the type is not ~nown at this point.

Continuing the design process, one may also
want to identify which processes are instantiations
of what procedures and which datasets are
instantiations of what data types. This is exactly
the MIL information.

We determine that LEXER', SYNER' and GENER'
are instantiations of the procedures LEXER, SYNER,
and GENER respectively. In the interest of saving
work and decreasing the number of code modules to
write, we examine the variables trying to identify

single abstract types for several variables.
TOKENTABLE and IDTABLE both have the properties of
a table, and we decide that they both are
instantiations of a single.type constructor TABLE
with sufficient parameterization and enough
different operations to provide both required
behaviors. Examination of TOKENSEQ and POLISH show
that both have properties of a sequence. Thus we
make them instantiations of a single type
constructor SEQUENCE. In doing this we have
identified also the necessity of a type TOKEN to
serve as a type parameter to the type constructors
introduced above.

Expressing these decisions in the MIL
approach, explained in section 2, we come up with a
MIL model as given in Figure 5.3. All the
resources available and required are specified by
the socket names and the direction of the
interconnections. INPUTFILE is the type for the
variable SOURCEFILE; OUTPUTFILE is the type for the
variable OBJECTFILE. TOKENTABLE and IDTABLE are
both instantiations of the type TABLE; TOKENSEQ and
POLISH are both instantiations of type SEQUENCE.
The module TABLE in the MIL representation
represents the code (type definition and
operations) for type TABLE. As such, it is
required by every module which will be making
entries into or looking up entries in either table.
Similarly, the module SEQUENCE represents the code
for the type SEQUENCE and is required by every
module which inserts into or removes from either
sequence.

The mapping for this example between the
SLI-GMB models and the MIL model is:
a) one-to-one when referring to the procedures;
b) IDTABLE and TOKENTABLE in the SLI-GMB model

are mapped to TABLE in the MIL model;
c) POLISH and TOKENSEQ in the SLI-GMB model are

mapped to SEQUENCE in the MIL model;
d) SOURCEFILE and OBJECTFILE in the SLI-GMB model

are mapped respectively to INPUTFILE and
OUTPUTFILE in the MiL model.

Note that there is no SLI module mapped to TOKEN in
the MIL model.

From the additional information provided in
the MIL model, the previously given code skeleton
can be filled in and optimized. The result follows
below. Now all variables have a tvDe as specified
by the mapping above; that is, variable TOKENTABLE
is of type TABLE, etc. All types are also defined;
this may be a good time to define the operations
for each type.

global sourcefile: inputfile,
objectfile: outputfile,
tokenseq: sequence(token),
tokentable: table(token, string),
idtable: table(token,

struct(n1:int,disp:int,
typename:strlng)),

polish: sequence(token);

304

compiler:lexer: procedure()bool;
external inputfile, sequence,

table, token : type,
syner: procedure,
sourcefile: inputfile,
tokenseq: sequence(token),
tokentable: table(token,string);

g o I i i , o * i , ,

end lexer;

syner: procedure()bool;
external table, token, sequence: type,

gener: procedure,
tokenseq: sequence(token),
tokentable: table(token,string),
idtable: table(token,

struct(n1:int, disp:int,
typename:string)),

polish: sequence(token);
o i , l l o o , , o Q I

end syner;

UNIVERSE

gener: procedure()bool;
external table, token, sequence,

outputfile: type,
tokentable: table(token, string),
idtable: table(token,

struct(nl:int, disp:Int,
typename:string)),

polish: sequence(token),
objectfile: outputfile;

, . t . o e l o o l o e l .

end gener;

inputfiie: type
• i ,if

end inputfile;
outputfile: type

I I I o , a l

end outputfile;
table: type(domain:type, range:type)

I l l , J o e

end table;
sequence: type(element:type)

I . l l o o e

end sequence;
token: type

* o o . ° . .

end token;

ENVIRONMENT

INPUTFILE ~ , E X E R

INPUT INPUT TOKEN
FILE FILE

SEQUENCE
LEXER

TABLE

TABLE

COMPILER

OUTPUTFILE

OUTPUT
FILE oqk

SYNER rLi SYNER

TOKEN

SEQUENCE

GENER

GENER

~UTPUT
] ~ F I L E

GENER

TOKEN

SEQUENCE

TOKEN

TOKEN

SEQ~NCE

Figure 5.3. A MIL model of COMPILER.

305

By means of the example we showed how SARA may
be used in the design of software to point to and
to permit expression of decisions involving the
structures of the algorithm and of the record of
execution with the ultimate goal of providing a
smoother path from modeling to code.

As mentioned before and illustrated by the
example, the SLI-GMB model identifies the variables
(which name data type instantiations) and the calls
(which name procedure instantiations) of the code;
the MIL model identifies the type and procedure
definitions; and the mapping says which variable is
of what type and which call is of what procedure.

It is worth noting that once the SLI-GMB
together with the MIL model and the mapping between
them are defined (by the designer), automatic
generation of code skeletons may be performed.

~. Conclusions

It is widely accepted that design and
implementation methodologies are a necessi~y.
However there exists a gap between modeling and
implementation, a gap which must be narrowed and,
if possible, removed completely.

In this paper we attempted to attack this
problem. We have discussed some of the reasons for
incorporating a module interconnection
specification capability (MISC) into the SARA
methodology with the primary goal of providing a
smooth and continuous path from programming-in-
the-large to programming-in-the-small. We have
demonstrated the importance of distinguishing
between ~igorithm and record of execution structure
in modeling and designing software. Modeling
without this distinction is incomplete, and design
without it leaves a number of design possibilities
unconsidered and decided by default. We have shown
how the existing SARA tools could benefit from the
addition of a module interconnection language
(MIL) to be able to express design decisions
involving both the algorithm and the record of
execution structures. Finally, we have indicated,
with the aid of an example, how a MIL-extended SARA
may be used in the design of software to point to
and to permit expression of decisions involving the
structures of the algorithm and the record of
execution and how code skeletons can be generated
from the models.

We do not claim, however, that a MISC, by
itself, will solve all problems. Many open
questions remain:

-- If an insufficiently structured model of
behavior is used, we may not be able to find a path
to code. One of the authors of this paper, is
defining a Structured GMB, as part of her Ph.D.
dissertation. It will include high level
primitives such as procedure and cluster
instantiations. Pragmatics for software design are
also being developed such that a MISC, in
conjunction with SARA's models will lead naturally
to code.

-- Another question is how to define the MISC
and provide associated tools so that it can be
naturally integrated into the SARA system, or how
to modify the SARA system to take full advantage of
a demonstrably strong MISC. We have described one
approach in this paper. However this approach may
turn out to excessively increase the modeling
burden on the designer. For this reason we are
also exploring a way to represent the MISC
information in a Socket Model, to be used in
conjunction with the SLI-GMB model. This socket
model would not only contain the MIL information
but it might also include information such as
statistics, timing, performance, etc.

-- There is also the problem of determining
the consistency between an SLI-GMB model and a MIL
model mapped to it.

-- We showed that a MISC can help in the
generation of code skeletons; but the problem of
translating the interpretations (written for the
processors) into code, still exists. If the
interpretation language (for modeling) is
compatible with the realization language, as
described in an earlier paper [2], this is an
easier task; if not, the gap is still very large.
We tend to think that the only solution to this
problem is to have specialized interpretation
languages for distinct implementation languages.

-- SARA's GMB model is very suitable for
modeling concurrency. The example shown was a
sequential one; other problems arise in a
concurrent environment. What are the problems
involved in mapping SLI-GMB models to MIL models
and in translating the synchronization expressed in
the graph into a programming language?

These and other questions are being analyzed
as part of our continuing research into the subject
of this paper.

BIBLIOGRAPHY

I Estrin, Gerald, "A Methodology for Design of
Digital Systems - supported by SARA at the Age
of One", AFIP$ Conference Proceedings, Vol. 47
(1978).

2 Campos, I.M. and G. Estrin, "Concurrent
Software System Design Supported by SARA at
the Age of One", Proceedings ~ the 3rd
International Conference ~_~ Software
Engineering, pp. 230,242 (1978).

3 Campos, I.M. and G. Estrin, "SARA aided design
of Software for concurrent systems", AFIP~
ConferenQ~ Proceedings, Vol. 47 (1978).

4 DeRemer, F. and H.H. Kron, "Programming-in-
the-Large versus Programming-in-the-Small",

Transactions J~l Software Engineering,
Vol~ 2, No. 2, pp. 80-86 (June 1976).

5 Drobman, J., "Building Block Methodology for
Composition of Microprocessor-Based Digital
Systems", Ph.D. Dissertation, Computer Science
Department, UCLA (June 1979).

306

6 Razouk, R.R., M. Vernon, and G. Estrin,
"Evaluation Methods in SARA-the Graph Model
Simulator", to appear in Proceedings ~ ShE
Conference ~_~i_t~.q~, Measurement ~qd
Modeling ~ Computer Systems, Boulder,
Colorado (August 1979).

7 Myers, Glenford J., ComPosite/Structured
Design, Van Nostrand Reinhold Company, NY
(1978).

8 Parnas, D.L., "A Technique for Software Module
Specification with Examples", CACM 15:5, pp.
330-336 (May, 1972).

9 Parnas, D.L., "On the Criteria to be Used for
Decomposing Systems into Modules", CACM 15:12,
pp. 1053-1058 (December, 1972).

10 Johnston, J. B., "The Contour Model of Block
Structured Processes", Proceedings ~ ACM
Conference~_~Data Structures .~ ~ogramming
Languages, SIGPLAN Notices, 6:2 (February,
1971).

11 Liskov, B., A. Snyder, R. Atkinson and C.
Schaffert, "Abstraction Mechanisms in CLU",
CACM 20:8, pp. 564-576 (August, 1977).

12 Wulf, W.A., R. L. London and M. Shaw, "An
introduction to the Construction and
Verification of Alphard Programs", ~.~F~TSE :
SE-2:4 (December, 1975).

13 Dickover, M.E., C.L. McGowan, and D.T. Ross,
"Software Design using SADT", Proceedings p_~
~he 1977 Annual Conference ~_~ ACM, Seattle,
Washington, pp. 125-133 (October, 1977).

14 Katzan, H. Jr., System Design ~nd
Documentation: ~[~ Introduction ~ the HIPO
Method, Van Nostrand Reinhold Co., NY (1976).

15 Teichroew, D., and E.A. Hershey, III,
"PSL/PSA: A Computer-Aided Technique for
Structured Doc~entation and Analysis on
Information Processing Systems", IEEE
Transactions~_~Software Engineering, Vol.3,
No.l, pp. 41-48 (January 1977).

16 Jackson, M.A., Princioles~.~ Program Design,
Academic Press, London (1975).

17 Thomas, J.W., "Module Interconnection in
Programming Systems Supporting Abstraction",
Ph.D. Dissertation, Division of Applied
Mathematics, Brown University, Providence,
R.I. (April, 1976).

18 Riddle, W.E. et al, "An Introduction to the
DREAM Software Design System", Software
Engineering Notes, Vol.2, No. 4, pp. 11-23
(July 1977).

19 Riddle, W.E. et al, "Behavior Modeling during
Software Design", IEEE Transactions ~_~
SoftwAre Engineering, SE-4, No. 4 (July 1978).

20 Report on the Language GYPSY - Version 2.0,
ICSCA-CPM-10, Institute for Computing Science
and Computer Application, University of Texas,
Austin, Texas (May 1978).

21 Campos, Ivan M., "Multilevel Modeling for
Synthesis of Reliable Concurrent Software
Systems", Ph.D. Dissertation, Computer Science
Department, University of California, Los
Angeles (1977).

22 Razouk, R.R. and G. Estrin, "The Graph Model
of Behavior Simulator", Proceedings ~f ~he
Symposium ~_~ Desi~q Automation ~d
Microorocessors, pp.67-76 (February, 1977).

23 Razouk, R.R., "GMB Simulator System Reference
Manual", Computer Science Department, UCLA
(January, 1977).

24 Dennis, J.B., "Modularity", Advanced Course ~_~
Software Engineering, Springer-Verlag, Vol.
81, Chapter 3A, pp. 128-182.

25 Penedo, M.H., "SLI System Reference Manual",
Computer Science Department, University of
California, Los Angeles, CA (February 1979).

26 Gardner, R., W. Overman and W. Ruggiero, "GMB
System Reference Manual", Computer Science
Department, UCLA (July 1977).

27 Overman, William, "PLIP Reference Manual",
Computer Science Department, UCLA (July,
1977).

28 Ruggiero, W., "A Distributed Data and Control
Driven Machine - Programming and
Architecture", Ph.D. Dissertation, Computer
Science Department, University of California,
Los Angeles (1978).

29 Penedo, M. H and D.M. Berry, "The Use of a
Module Interconnection Specification
Capability in the SARA System Design
Methodology", Computer Science Dept, UCLA
(July, 1978).

307

