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ABSTRACT 

In software design it is highly desirable to 
be able to deal with the structures of both the 
algorithm and the record ~_~ execution. A design 
methodology called SARA is being developed at UCLA. 
SARA's models are able to deal with the record of 
execution structure. This paper proposes the 
addition of a Module Interconnection Language to 
enable SARA to deal with the algorithm structure. 
An example illustrates how this combination can 
assist in the software design process. 

Keywords: software design, module interconnection, 
MIL, algorithm, record of execution, modeling, 
realization. 

Introduction 

SARA (System ARchitect's Apprentice) [I, 2, 3] 
is a computer-aided system which supports a 
structured multi-leval requirement driven 
methodology for the design of reliable (possibly 
concurrent) software or hardware digital systems. 
SARA is under continual development at UCLA. In 
this paper we consider only software design. 

It is well known, in software, that errors are 
introduced during the design and implementation 
processes as a result of: 

inadequate statement of the requirements of the 
system, 
improper decomposition of a system into 
subsystems, 
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- inadequate testing of the system during the 
design process, 

- inadequate care in the production of the 
implementation from the final designs. 

SARA attempts to address this problem of 
design errors by providing effective means for 
synthesizing and analyzing a system and, 
furthermore, by providing a smooth and continuous 
path from programming-in-the-large (the act of 
decomposing a large software system into subsystems 
of modules) [4] to programming-in-the-small 
(writing code in some algorithmic programming 
language) [4]. It provides a designer with 
interactive tools and checking procedures to 
enforce consistency between requirements, 
structure, function and behavior. In recent work 
[5, 6], methods are proposed for developing test 
environments during the system design process. 

The objective of this paper is to propose the 
incorporation of a Module Interconnection Language 
(MIL) into SARA. The addition of this capability 
reduces the gap between the model and realization 
of a system by providing for the derivation of code 
skeletons. Furthermore it provides SARA with a 
means for defining the algorithm (given by the MIL) 
and record of execution (given by SARA's existing 
models) structures which can assist the design and 
implementation processes by providing: 
a) a better means for expressing the decisions 

made, by using software design methodologies 
such as composite design [7] and information 
hiding [8, 9], 

b) a better description of the interfaces between 
modules, 

c) a better means for managing teams, since the 
interfaces are well defined, 

d) a better means for expressing code 
abstractions, 

e) a better means for documenting systems. 

In short, this capability should enhance the 
usefulness of SARA as a software design tool. 

The first section discusses the necessity of 
distinguishing between the algorithm and record of 
execution structures in the modeling and design 
processes. Next a MIL is proposed for expressing 
algorithm structure. Section 3 describes SARA's 
Structural Model (SLI) and SARA's Graph Model of 
Behavior (GMB); we show how these models express 
the structure and behavior of the record of 
execution. It is then suggested how a MIL might 
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profitably be incorporated into SARA. An example 
of a design using the MIL-extended SARA is carried 
out, in section 6, illustrating how code skeletons 
can be generated. This example also shows that the 
use of a MIL offers a degree of freedom which can 
lead to a clear exercise of design choices which 
might otherwise go unnoted. 

i. Algorithm j_~ Record ~_~ Execution 

Our attempts to use SARA for software design 
have met some difficulties. We found that we were 
unable to unambiguously express all degrees of 
freedom in selecting a module structure to impose 
on the code that has the required behavior. We 
found in particular that we could not express 
conveniently and in a graphical manner, design 
decisions such as: 

1.1) which processes are instantiations of which 
procedures; 

1.2) which data structures are instantiations of 
which data types; 

1.3) which procedures and data types are visible to 
each other. 

That these aspects of a program's structure can 
vary without the program's behavior or function 
also varying is a prime thesis underlying Parnas' 
Information Hiding Principle [8, 9] and Myers' 
Composite Design and Analysis [7]. 

Lessons learned from the history of 
programming language definition provided the clues 
as to how these degrees may be incorporated into 
SARA. These lessons point to the necessity of 
distinguishing between the structure of an 
al~orithm (i.e., code) on one hand and the 
structure of the record ~_~ execution (i.e., 
instantiations) on the other. 

For programming languages, this distinction 
was clarified with the introduction of the contour 
model [10] of block structured program execution 
and other similar models. In the contour model, 
each state (snapshot) of a computation consists of 
a reentrant time-invari~ algorithm containing the 
code for the program being executed and a 
time-varying record of execution, which contains 
the processes and data cells which are allocated, 
modified, accessed and deallocated during 
execution. 

In this scheme, a procedure is a named piece 
of code representing an algorithm. It contains 
parameter and local variable declarations and a 
sequence of instructions. A process (or activation) 
is an instantiation of a procedure which results 
from a call of the procedure. For each such 
instantiation of a procedure, a collection of data 
structures is allocated in the record of execution, 
one structure for each parameter and local variable 
declared in the procedure. A process uses one of 

these structures whenever its procedure says to 
assign to or access a parameter or local variable. 

In the same manner, a d~ ~¥pe definition 
(cluster [11], forms [12], etc) is a named piece of 
the algorithm comprising a template for the 
allocation of an element of the type plus a 
procedure for each operation of the type. A data 
obiect is an instantiation of a data type which 
results from the declaration or the allocation of a 
variable of that type." For each such instantiation 
of a data type, a data structure is allocated in 
the record of execution (according to the 
template). The instantiations of the operation 
procedures are created as these operations are 
called. 

Separation of a process from its procedure is 
necessary to permit recursion and parallel 
processing. If there were no separation, for each 
procedure, there would be but one process and thus 
but one copy of the cells for the variables 
declared in the procedure. Each recursive call 
(instantiation) and each parallel process 
(instantiation) of the same procedure would clobber 
each other as they all attempted to use the same 
cells at the same time. Similarly, separation of a 
data object from its data type definition is 
necessary to permit multiple structures of the same 
type. Were there no separation, assignment to one 
data structure would clobber all other structures 
of the same type. Thus, in general the algorithm 
must be separated from and distinguished from the 
record of execution. 

We want to have the freedom to 
a) decide on the structure of the procedures and 

data types in the algorithm, thus deciding item 
1.3 above, and 

b) decide which components of the record of 
execution are instantiations of which components 
of the algorithm, thus deciding 1.1 and 1.2 
above. 

This freedom of decision together with methods for 
expressing these decisions can be used to bridge 
the gap between modeling and code. 

Thus it seems clear that any software design 
system and methodology must be able to deal with: 

- algorithm structure, 
- record of execution structure, and 
- the correspondence between the elements of 
these structures. 

Other authors have noted the distinction 
between the algorithm and the record of execution. 
But it seems that explicit use of this distinction 
and the degree of freedom it offers have not been 
incorporated into software design methodologies. 
Table I shows, for each of several software design 
methodologies, the correspondence of its 
terminology to our notions of procedure and data 
type definition in the algorithm, and process and 
data object in the record of execution. 
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Table I. Methodologies and the correspondence between their 
terminology and our notions of algorithm and record of execution. 

Methodology 

or LanDuaDe 

SADT 13 

HiPO 14 

CDA 7 

PSL/PSA 15 

Jackson 16 

~IL 4 

~iL 17 

AlDorithm 
! 

Procedure *Data Type Defini t ion 
i 

? , ? 
g 

0 

Hierarchy , ? 
u 

Structure Diagram 
Functional Module ,Informational Module 

? 

Module 

Module 

Record of Execution 

Process 

? 

? 

Module 

Act iv i t ies  

Process 

Data Object 

Things 

Input-Output 

Problem Structure 

Input-Output and 
Data Structure 

Data Structure 

? 

? 

System Structure 

i Program Structure 

? 

SADT',L~ = Structured Analysis and Design Technique M~thodology 

HIPO = Hierarchy plus Input-Process-Output 

CDA = Composite Design and Analysis 

PSL/PSA = Problem Statement Language/Problem Statement Analyzer 

MIL = Module Interconnection Language 

2. What __ga ~.~ 

A Module Interconnection Language (MIL) - as 
proposed in the literature [17] - is a language for 
describing software definition module structure. 
Its main function is to establish the accessibility 
of resource names, i.e., identifiers, procedure 

• names, type names, etc., among modules, and to 
assist in binding resource names to the modules 
which provide and need those resources. Other 
systems and languages such as DREAM [18, 19] and 
GYPSY [20] include constructs for defining module 
interconnection. 

The MIL we are proposing consists of: MIL- 
modules, MIL-sockets and MIL-interconnections. A 
MIL-module represents a procedure or data type 
definition. Its name is made externally visible by 
means of a socket. A MIL-socket provides the 
interface between a module and the surrounding 
environment. Each MIL-socket names a procedure, a 
type, or an operation of a type. It tells whether 
the resource is offered or required. The 
attributes of a socket carry information about the 
named resource such as its parameter types, its 
return value type, if any, its specifications, etc. 
A~_~-interco~ect~on is a directed arc connecting 
sockets, representing the accessibility of the name 
and the direction of the access. 

For example, suppose a program PROG calls a 
subroutine SUB. The MIL model (graphical 
representation of a MIL definition) will be 
represented as in Figure 1.1, where PROG and SUB 

are distinct modules. Module SUB offers the 
resource SUB, as indicated by the socket name and 
the direction of the interconnection; module PROG 
requires resource SUB. The parameter types and the 
return value are specified in the socket 
attributes. The names of the connected sockets do 
not have to be the same. 

Suppose also that a procedure PROG makes use 
of the read operation of a data type FILE. The MIL 
representation is shown in Figure 1.2, where PROG 
requires operation READ from data type FILE. 

PROG 1 JB 
UB UB 

Figure 1.1. Example of a MIL model. 

PROG FILE 

Figure 1.2. Example of a MIL model. 
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How useful is a MIL in the design process? A 
MIL can enhance both top-down-refinement and 
bottom-up-abstraction design methods. Too-down 
refinement means partitioning a system into 
subsystems. A MIL definition of the interfaces 
facilitates the task of splitting a big system into 
smaller ones, with the intent that they be modeled 
or programmed by different people, since it is 
known for each module what other abstractions are 
available for use and what must be offered for use. 
Bottom-l~ comoositio~ consists in interconnecting a 
set of predefined building block (off-the-shelf) 
models to form a model of a system being designed. 
This task is also more effective when, through the 
MIL capability, the modules to be connected have 
defined interfaces. It becomes possible to check, 
for each module, whether all resources it uses are 
available and compatible. 

Furthermore, code skeletons come from MIL 
since their modules represent procedure or data 
type code structure, i.e., one code module per 
MIL-module. 

Thus, a MIL deals with code structure and 
identifier visibility. It is this information that 
we want to see specified in the SARA methodology. 
In the next sections we describe some of SARA's 
models and their relationship with the MIL we are 
proposing. 

~. SARA'~ MODELS 
l 

The SARA methodology supports both a top-down 
partitioning procedure (refinement) and a bottom-up 
composition procedure (abstraction) as illustrated 
in Figure 2. The SARA comnuter-~d~d system 
comprises a number of language processors and tools 
for assisting the designer using the SARA 
methodology. The language processors include 
interpreters which accept system descriptions in 
various languages and perform checks, displays, 
etc. Among these languages we distinguish: GMB, 
which itself contains languages for modeling 
behavior in three domains: flow of control, flow of 
data and interpretation, and SLI, which serves to 
describe hierarchically related structures to which 
the behavioral models can be mapped. These 
languages are discussed tersely below and further 
detail can be found in [21, 2]. There is a 
simulator [22, 23] providing an interactive 
simulation environment which permits experiments on 
the behavior models. 

~.i. ~Li Structural Model 

A structural model is mainly used to enforce 
modularity [24] by providing a better means to 
enforce encapsulation [9] and by permitting the 
isolation of parts of the system which then can be 
modeled and analyzed separately. 

Figure 2. UCLA's SARA Design Methodology. 
START 
OF OESI~ 

rINISX 
OF ~ S I ~ I  

SLI [25] is SARA's modeling language, designed 
for describing the structure of hierarchical 
modular systems. Used by itself, however, SARA's 
structural model has no behavior associated with 
it. It is used simply to define interconnected 
modules at various levels of abstraction and to 
allow the designer to specify a nested soace 
napes to be used with the ~ehavioral models. There 
are three kinds of structural elements: modules, 
sockets and interconnections. A module is used to 
encapsulate part of a behavioral model and abstract 
detailed behavior into sockets. A ~ooket represents 
the interface between a module and its environment; 
it is always attached to a module or an 
interconnection. An interconnection connects 
modules at their sockets; it represents a potential 
flow of data or control which is made explicit only 
in a behavioral model. Furthermore, each element 
of the structural model is responsible for carrying 
out at least one of the requirements which drive 
the design of a system. 

297 



Figure 3a shows a structural model consisting 
of a module UNIVERSE which contains two sub- 
modules: ENVIRONMENT and SYSTEM. ENVIRONMENT has 
3 sub-modules: SOURCEFILE, INITIATOR and 
OBJECTFILE. LX, LEX and GN are sockets 
representing the interface of the module 
ENVIRONMENT. Interconnections LI, L2 and L3 
connect the modules ENVIRONMENT and SYSTEM. 

ONIVERSE 

ENVIRONMI~ 

SOURCEFIL~ 

INITIATOR 

OBJECTFILE 

LX 
ru-[ 

SYSl~ 

Figure 3a. Example of an SLI model. 

A module's internal structure may consist of 
modules, sockets and int~rconnections. An 
interconnection can also be refined into modules, 
sockets and interconnections. A socket can only be 
refined into sockets. Further detail can be found 
in [25]. 

where the processors are responsible for the 
transformation of the data stored in datasets. 
There is a manv-~_q-one function, mapping nodes in 
the control graph to processors in the data graph, 
with the property that each controlled processor 
(in the DG) must have at least one control node (in 
the CG) associated with it; for this reason 
processors in the data graph are called 'controlled 
processors'. 

Figure 3b shows a GMB model: nodes are 
represented by circles; processors by hexagons; and 
datasets by rectangles. The control graph is 
expressed by nodes NI, N2 and N3 and the arcs S, 
At, A2 and X connecting them. The output logic for 
node NI is AI*A3 (AI and A3); the input logic for 
N3 is A2*A3; the input logic for N2 is A2, etc. 
The data graph is expressed by processor P2 
(associated to node N2) and datasets SOURCEFILE, 
OBJECTFILE and RETURN; the data arcs show the 
direction of the flow of data. The mapping between 
control nodes and data processors is shown in the 
picture by means of dotted lines. 

sf 

A~ 

x< 

AI 

A2 

RETURN 

Figure 3b. Example of a GMB model. 

SOORCEFILE 

I I 

[ I 
OBJECTFILE 

~.~. ~Behavioral Model 

The behavioral model GMB (Graph Model of 
Behavior) [26] consists of two graphs: a flow-of- 
control (CG) and a flow-of-data (DG) graphs, 
together with interpretations associated with the 
nodes of the datagraph. 

Flow~.~ control behavior can be expressed by 
control nodes, which span initiation and 
termination of associated processes, and by 
directed control arcs. Associated with each control 
node there is an input logic and an output logic. 
These logics, which are boolean expressions 
involving the arcs, express precedence and 
consequence conditions. Data flow is modeled in 
the data graph through processors and datasets, 

GMB primitives may also be refined according 
to a set of defined rules [21, 28]. 

The meaning of a GMB model or graph is given 
through an abstract machine called the token 
machine for the graph. A state of the token 
machine is a placement of tokens on some arcs of 
the control graph together with the list of active 
nodes, and from any state the transition of the 
machine yields one next state. Thus, from a given 
initial state, the token machine appears to move 
tokens through the graph according to the 
transition rule described below. 

A node is active if in some previous state 
transition it was initiated but in no subsequent 
transition it was terminated. A node may be 
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initiated in any state in which it is inactive and 

in which its input logic is satisfied. The input 
logic of a node is satisfied if, by assigning the 
value 'true' to each arc containing a token and the 
value 'false' to all other arcs, the input logic 
expression evaluates to 'true'. At any state 
either a node which may be initiated or a node 
which is active is selected nondeterministically to 
be initiated or to be terminated respectively. 
When a node is selected to be initiated, it absorbs 
tokens on its input arcs according to its input 
logic and becomes active. When a node is selected 
to be terminated, it is terminated and tokens are 
distributed on its output arcs according to its 
output logic. 

An initial state of the graph in Figure 3b has 
a token on arc S. In this initial state, no node 
is active and only node NI may be initiated. It is 
initiated and the token is absorbed leaving no 
tokens on any arc in the graph. When NI 
teriinates, according to its output logic AI*A3, 
two tokens are distributed: one to arc AI and one 
to arc A3. At this point, only node N2 can be 
initiated since the input expression for node N3 is 
not 'true'. Upon termination of node N2, there is 
one token on arc A3 and one token on arc A2; thus 
node N3 can be initiated since its input logic 
evaluates to 'true'. 

During any state transition of the token 
machine, if the control node N of the control graph 
is initiated, the data graph processor P associated 
with this node (if any) is considered to perform 
its algorithm. In Figure 3b, when node N2 is 
activated, processor P2 is considered to perform 
its algorithm, i.e., takes input from dataset 
SOURCEFILE, performs some transformation and 
outputs data to datasets RETURN and OBJECTFILE. We 
chose not to have any data processors associated 
with nodes NI and N3. 

PLIP (an extension to PLI) [27] is the 
language used for writing interpretations to be 
associated with the data graph; PLIP procedures 
provide the algorithms for the processors while 
declarations provide the type for the datasets. 
Whenever a data graph processor is considered to 
perform its algorithm, the token machine calls the 
PLIP procedure (if any) for this processor. 

It is worth noting that the topology of both 
graphs in a GMB is fixed and that they are used to 
model pseudo-static aspects of system behavior. 
Any dynamic allocation of processes or datasets 
that cannot be expressed through the GMB fixed 
topology must be hidden inside a single node, e.g., 
the PLIP interpretation for this node is a 
recursive procedure or it causes dynamic allocation 
of data cells. In the process of designing any 
system comprising dynamic allocation, expansion of 
nodes into subgraphs will ultimately lead to a 
graph containing nodes hiding dynamic allocation 
which are not themselves expandable into subgraphs. 
This is an intentional restriction of the GMB 
model; at present all dynamic allocation is modeled 
in the interpretations attached to the unexpandable 

nodes. Another possible approach is the use of a 
GMB with a dynamically changing topology, i.e., a 
dynamic GMB. This is a topic for further research. 

~.~. SLI-GMB relationship 

As mentioned before, the SLI structural model 
is mainly a space of names to be used with a 
behavioral model. An important aspect of SARA is 
the maPpin~ between the behavioral a~ ~truct~ral 
models: 
- GMB submodels (control and data), uninterpreted 

or interpreted, are mapped to SLI modules; 
- GMB arcs crossing module boundaries are mapped 

to sockets (in the module) and the corresponding 
interconnections. 

This mapping provides the SARA tools with means to 
detect cases of inconsistency and incompleteness in 
the design. 

In Figure 3c, Figure 3b was mapped into Figure 
3a. Node NI (in the INITIATOR) starts the SYSTEM, 
i.e., it sends a token to node N2 which activates 
processor P2. P2 reads the data from dataset 
SOURCEFILE (mapped to module SOURCEFILE), performs 
some transformation on it, outputs the data to 
OBJECTFILE (mapped to module OBJECTFILE), while 
returning a status flag into dataset RETURN (in the 
INITIATOR). When P2 terminates, N2 sends a token 
to N3 (mapped to module INITIATOR) which stops the 
computation. 

Which GMB subgraph is mapped to which SLI 
module is very much a design decision (not fixed in 

~ I ~ E  

SOURCEFILE 

INITIATOR 

• LEX 

SYSTEM 

r 

) 

Figure 3c. Example of an SLI-GMB model. 
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the methodology); the choice of a particular 
subgraph to be mapped to a particular module is 
tantamount to abstracting the behavior of the 
subgraph into a single subsystem. Of course, 
however the decision is made, the behavior of the 
subgraph must fulfill the requirements which have 
been imposed on the module. 

From now on we will use 'SLI~GMB model' to 
refer to the triple consisting of an SLI model, a 
GMB model and a mapping between them. 

Figure 4. I. A MIL model corresponding 
SLI-GMB model of figure 4.2. 

PROG SUB 

to the 

We now pose the question: Does an SLI model 
Represent a MIL model of a system? 

In the terminology of section I, each control 
node (or set of nodes) and associated data 
processor(s) models an instantiation of some 
procedure, and each dataset models an instantiation 
of some variable declaration. This follows from the 
very meaning of a GMB model. Values are considered 
to be stored in datasets, to be written or read 
from data arcs and to be processed by processors. 
It may, of course, be that two processors have the 
same interpretation, i.e., have the same PLIP 
procedure. It might also be that two cells have 
the same type, i.e., have the same attributes. In 
these cases the processors and datasets are 

instantiations of the same procedure and data type 
respectively. 

Thus, given the strong mapping between GMB and 
SLI and given that the GMB nodes represent 
instantiations, this implies that an SLI-GMB model 
represents a structure o_f ~nstantiations. In 
contour model terms, an SLI-GMB model represents 
the structure of a completely pre-allocated record 
of execution. 

As explained in section 2, a MIL represents 
the structure of the algorithm. Thus, an SLI-GMB 
model and a MIL model do not convey the same 
information about software systems. In section 6, 
the compiler example shows an SLI-GMB model which 
can easily have more than one MIL model. 

To illustrate the distinction between the 
SLI-GMB and MIL models, let us consider the case 
where a program PROG concurrently calls a 
subroutine SUB twice. Figure 4.1 shows the MIL 
model, which specifies that procedure PROG requires 
procedure SUB. Figure 4.2 shows the SLI-GMB model 
where instantiation PROG' calls instantiatiations 
SUB' and SUB" in parallel.* The parallelism is 
represented by nodes NI, NSI and NS2. The output 
logic of NI, AI*A2, indicates that upon termination 
of NI, one token is placed on arc AI and one token 
on arc A2. A token on arc AI permits node NSI 

* We follow the convention of naming each 
instantiation of a procedure by its name followed 
by some unique number of apostrophes. 

Figure 4.2. An SL I-GMB model 
instantiations of the same procedure. 

FROG' 

of parallel 

SUB ' ' 

(which models the procedure instantiation SUB') to 
be initiated; a token on arc A2 permits node NS2 
(which models the procedure instantiation SUB") to 
be initiated. This means that NSI and NS2 can be 
activated at the same time, i.e.,in parallel. The 
SLI modules SUB' and SUB" represent instantiations 
of the MIL module SUB, which may run in parallel. 
Note that we chose not to show the data graph for 
this example. 

The relationship between SLI modules and MIL 
modules can be one-to-one, many-to-one or even 
zero-to-one. It is important to note that, when 
the system being modeled happens to have 
instantiations one-to-one with code [2] then one 
could get a code skeleton from the SLI-GMB models 
but this process does not generalize. Thus, code 
skeletons must come from MIL. 

~. The IncorDoration~_~ MIL 

The single most important advantage of 
incorporating the information conveyed by a MIL 
into the SARA methodology is the help that the MIL 
and SARA can give to each other. While SARA 

provides a means for modeling and analyzing a 
system, the MIL will enhance its power by 
permitting the expression of decisions involving 
the structure of the algorithm and furthermore by 
providing a smoother path from modeling to code. 

The combination of the SLI-GMB model, the MIL 
model, and the mappings between them permit the 
generation of even better code skeletons than is 
possib}e with either alone or without the mappings. 
Briefly, the SLI-GMB model identifies the variables 
(which name data type instantiations) and the calls 
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(which name procedure instantiations) of the code; 
the MIL model identifies the type and procedure 
definitions; and the mapping says which variable is 
of what type and which call is of what procedure. 

Let us call the ability to specify the 
information conveyed by a MIL, a Module 
~nterconnection SoecificatiQn Capability (MISC). 
The question remains as to how this capability is 
to be incorporated into the SARA methodology. 

One approach* is the use of a MIL itself. 
This approach consists in defining a MIL model, in 
the way presented in section 2, and a mapping 
between the SLI-GMB model and the MIL model. That 
is, for an SLI-GMB model, the designer defines a 
MIL model and specifies the mapping between them. 
Each SLI module will be mapped to at most one MIL 
module which is the definition of the particular 
instantiation. At a given level of the design, 
each SLI socket and interconnection must be mapped 
to at most one MIL socket and interconnection which 
carries the visibility of the identifier whose 
invocation causes the control or data flow embodied 
in the SL1 interconnection. 

In the next section, we explore the 
incorporation of the MIL approach into the 
methodology. We go through the top level of a 
requirement driven design of a compiler. This 
entails stating the requirements and then 
developing an SLI-GMB model for the compiler. At 
the appropriate point, the design decisions which 
are expressed by the MISC are made; they are 
expressed in the MIL approach. Then, from the 
SLI-GMB model, the chosen MIL model and the 
mappings between the two models, a code skeleton is 
derived for the compiler. 

~. Examo~e 

To illustrate our discussion in the previous 
sections we use an example, a somewhat simplified 
design of a compiler. By using SARA's methodology, 
we go through the first steps (partition) of the 
system. Our objective is to show how we can express 
decisions involving the structures of the algorithm 
and of the record of execution and how code 
skeletons can be derived, i.e., passing from 
modeling to realization. For conciseness, several 
steps in the design process are omitted. 

As mentioned before SLI modules have no 
behavior. The GMB is a very powerful tool for 
analysis but as of now rules for mapping subgraphs 
into SLI modules are not fixed; this is very much a 
design decision. Following the latest software 
design techniques, where modules are procedures or 
data type definitions, we are using pragmatics for 
modeling software in SLI-GMB. Then SLI-GMB modules 

* At least one other approach is known, the 
SLI-GMB-SOCKET Model Approach, but discussion of 
this approach is outside the scope of this paper; 
see [29] for more details. 

are used to represent procedure instantiations or 
data type instantiations at whatever needed level 
of abstraction. 

The assumptions and requirements for our 
system are as follows: 

Environment Assumptions: 

AEI. The environment must provide a file containing 
an input PASCAL program. 

AE2. It must provide a file to contain the object 
program. 

AE3. It initializes the compiler-system. Upon 
completion, the success or failure of the 
translation resides in the environment. 

System Requirements 

RS I • 

RS2. 

RS3. 

When requested to do so, the system reads an 
input program from the environment and 
attempts to translate it into a semantically 
equivalent object program. 

If translation succeeds, it notifies the 
environment by returning the boolean value 
'true' and it outputs the (360 machine 
language) object program. 

If translation fails, it notifies the 
environment by returning the boolean value 
'false'. 

UNIVERSE 

ENVI RONb~NT CObg~ILER ' 

SOIJRCEFILE 

INITIATOR' 

]~ 

Figure 5. I. High level SLI-GMB model of COMPILER 
and its ENVIRONMENT. 
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The first step is to set up the environment we 
will be working with. According to the 
assumptions, there are three modules in the 
environment: SOURCE FILE, INITIATOR', and 
OBJECTFILE and we are designing the COMPILER' 
(Figure 5.1 shows the SLI-GMB model for it, which 
is the same picture as Figure 3c). Node NI in the 
INITIATOR' starts the COMPILER', i.e., it sends a 
token to N2 which activates processor P2. P2 
reads the program from dataset SOURCEFILE, compiles 
it, puts the output in dataset OBJECTFILE, and 
returns a boolean value to the INITIATOR' stating 
the result of the compilation. When P2 terminates, 
N2 sends a token to N3 which stops the computation. 

In the next step, we decide to go top-down and 
refine the COMPILER' system into a set of modules 
as shown in Figures 5.2a and 5.2b. We show the SLI 
partition, the GMB partition and the mapping in one 
step. The SL1-module COMPILER' was refined into 
sub-modules LEXER', SYNER', GENER', TOKENSEQ, 
TOKENTABLE, IDTABLE and POLISH. Observe that node 
N2 is refined into the GMB control graph composed 
of N21, N22, N23, N24, and N25 (Figure 5.2a). 

Processor P2 is refined into the GMB data graph 
composed of the controlled processors P21, P22, 
P23, P24, P25, the datasets TOKENSEQ, TOKENTABLE, 
IDTABLE, POLISH and the datasets RETURN for the 
returned value (Figure 5.2b). The association of 
the nodes in the control graph and the processors 
in the data graph is shown by the use of identical 
numbers, i.e., P21 is controlled by N21, etc. Also 
observe that socket INIT is refined into subsockets 
IN, OUT and RT. This is a characteristic of the 
multi-level properties of SLI and GMB models. 

The INITIATOR' sends a token to the LEXER' 
activating node N21 which triggers the activation 
of processor P21, responsible for the lexical 
analysis; P21 updates datasets TOKENSEQ and 
TOKENTABLE using the information in SOURCEFILE. If 
lexical analysis fails, node N21 sends a token to 
N25, activating processor P25 which terminates the 
compilation and returns the boolean value 'false' 
to the INITIATOR'. Otherwise the LEXER' sends a 
token to the SYNER' activating node N22 which 
triggers processor P22, responsible for the 
syntactical analysis; P22 updates the IDTABLE and 

NIVERSE 

ENVlRONVUmT 
s o u l , F i L E  I I ~ '  LEXER' TOKENSE(~ 

SYNER' 

• SYN 

LEX 

TOKENTABLE 

IDTABLE 

OBJECTFILE [ [ GENER' 

GEN 

SYN 

POLISH 

Figure 5.2a. SLI partition and control graph refinement of Figure 5.1. 
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POLISH datasets using the information in TOKENSEQ 
and TOKENTABLE. If syntactic analysis fails, N22 
sends a token to N24, P24 returns 'false', and 
control flows back to the INITIATOR' to terminate 
the compilation with the value 'false' returned. 
Otherwise SYNER' sends a token to node N23 in 
GENER'; this activation triggers processor P23; P23 
generates the object code using the information 
stored in IDTABLE, TOKENTABLE, and POLISH and 
outputs it to OBJECTFILE. Regardless of whether or 
not code generation succeeded, when P23 is 
finished, control flows back through N24 and N25, 
and a boolean value indicating success or failure 
is returned, through P24 and P25, to the INITIATOR' 
at which time the whole computation is ended. Note 
that we have gathered together as subsockets the 
sockets representing a procedure call or a 
procedure being called. 

All processors may or may not, at this point, 
have interpretations (written in PLIP), which 
explicate the data graph processor's functions, 
associated with them. For brevity, we choose not 
to write them. An example of multilevel design of 
software including interpretation can be found in 
[2].  

Continuing the design process, we may want to 
refine once more one or more SLI-GMB modules. 
However it is reasonable at this point to try 
generating a code skeleton from the information 
present in the SLI-GMB models. We show how this can 
be accomplished and in the next step we show how 
the MIL model, mapped to this SLI-GMB model, 
provides for a more complete structure of the code. 

A code skeleton generated from the SLI-GMB 
model can be as follows. We chose to represent all 
data as external variables or returned values of 
functions. 

UNIVERSE 

ENVIRONMENT COMP ILER ' 

LEXER' 

SYNER' 

SYN 

GEN TOKENTABLE 

IDTABLE 

OBSECTFILE I [ GENER' 

OBJECTFILE 

POLISH 

Figure 5.2b. SLI partition and data graph refinement of Figure 5.1. 
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global sourcefile: <sourcefile type>, 
objectfile: <obJectfile type>, 
tokenseq: <tokenseq type>, 
tokentable: <tokentable type>, 
idtable: <idtable type>, 
polish: <polish type>; 

compiler:lexer: procedure() bool; 
external sourcefile: <sourcefile type>, 

tokenseq: <tokenseq type>, 
tokentable: <tokentable type>, 
syner: procedure; 

. . . . . . . . , , .  

call syner; 
end lexer; 

syner: procedure()bool; 
external tokenseq: <tokenseq type>, 

tokentsble: <tokentable type>, 
idtable: <idtable type>, 
polish: <polish type>, 
gener: procedure; 

. . . . . . . . . o . ~  

call gener; 
end syner; 

gener: procedure()bool; 
external tokentable: <tokentable type>, 

idtable: <idtable type>, 
polish: <polish type>, 
objectfile: <objectfile type>; 

. o . . . . . . . .  

end gener; 

Using our pragmatics, explained in the 
beginning of this section we opted for considering 
all internal SLI modules as external procedures or 
external data (global). Thus LEXER', SYNER' and 
GENER' are instantiations of procedures. In the 
code skeleton, each procedure specification 
includes an empty parameter list, a return value 
type, and the list of non-local (external) 
variables and procedures that it uses. 

SOURCEFILE, TOKENSEQ, ..., etc are variables. 
In a previous publication [2], the types of 
variables and parameters were extracted from the 
dataset definitions in PLIP. Here we take a 
different approach since we want to consider these 
attributes as abstract types. Thus, we assume that 
each distinct variable has its own type and for the 
variable or parameter x we say that its type is 
<x type> since the type is not ~nown at this point. 

Continuing the design process, one may also 
want to identify which processes are instantiations 
of what procedures and which datasets are 
instantiations of what data types. This is exactly 
the MIL information. 

We determine that LEXER', SYNER' and GENER' 
are instantiations of the procedures LEXER, SYNER, 
and GENER respectively. In the interest of saving 
work and decreasing the number of code modules to 
write, we examine the variables trying to identify 

single abstract types for several variables. 
TOKENTABLE and IDTABLE both have the properties of 
a table, and we decide that they both are 
instantiations of a single.type constructor TABLE 
with sufficient parameterization and enough 
different operations to provide both required 
behaviors. Examination of TOKENSEQ and POLISH show 
that both have properties of a sequence. Thus we 
make them instantiations of a single type 
constructor SEQUENCE. In doing this we have 
identified also the necessity of a type TOKEN to 
serve as a type parameter to the type constructors 
introduced above. 

Expressing these decisions in the MIL 
approach, explained in section 2, we come up with a 
MIL model as given in Figure 5.3. All the 
resources available and required are specified by 
the socket names and the direction of the 
interconnections. INPUTFILE is the type for the 
variable SOURCEFILE; OUTPUTFILE is the type for the 
variable OBJECTFILE. TOKENTABLE and IDTABLE are 
both instantiations of the type TABLE; TOKENSEQ and 
POLISH are both instantiations of type SEQUENCE. 
The module TABLE in the MIL representation 
represents the code (type definition and 
operations) for type TABLE. As such, it is 
required by every module which will be making 
entries into or looking up entries in either table. 
Similarly, the module SEQUENCE represents the code 
for the type SEQUENCE and is required by every 
module which inserts into or removes from either 
sequence. 

The mapping for this example between the 
SLI-GMB models and the MIL model is: 
a) one-to-one when referring to the procedures; 
b) IDTABLE and TOKENTABLE in the SLI-GMB model 

are mapped to TABLE in the MIL model; 
c) POLISH and TOKENSEQ in the SLI-GMB model are 

mapped to SEQUENCE in the MIL model; 
d) SOURCEFILE and OBJECTFILE in the SLI-GMB model 

are mapped respectively to INPUTFILE and 
OUTPUTFILE in the MiL model. 

Note that there is no SLI module mapped to TOKEN in 
the MIL model. 

From the additional information provided in 
the MIL model, the previously given code skeleton 
can be filled in and optimized. The result follows 
below. Now all variables have a tvDe as specified 
by the mapping above; that is, variable TOKENTABLE 
is of type TABLE, etc. All types are also defined; 
this may be a good time to define the operations 
for each type. 

global sourcefile: inputfile, 
objectfile: outputfile, 
tokenseq: sequence(token), 
tokentable: table(token, string), 
idtable: table(token, 

struct(n1:int,disp:int, 
typename:strlng)), 

polish: sequence(token); 
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compiler:lexer: procedure()bool; 
external inputfile, sequence, 

table, token : type, 
syner: procedure, 
sourcefile: inputfile, 
tokenseq: sequence(token), 
tokentable: table(token,string); 

g o I i i , o * i , ,  

end lexer; 

syner: procedure()bool; 
external table, token, sequence: type, 

gener: procedure, 
tokenseq: sequence(token), 
tokentable: table(token,string), 
idtable: table(token, 

struct(n1:int, disp:int, 
typename:string)), 

polish: sequence(token); 
o i , l l o o , , o Q I  

end syner; 

UNIVERSE 

gener: procedure()bool; 
external table, token, sequence, 

outputfile: type, 
tokentable: table(token, string), 
idtable: table(token, 

struct(nl:int, disp:Int, 
typename:string)), 

polish: sequence(token), 
objectfile: outputfile; 

, . t . o e l o o l o e l .  

end gener; 

inputfiie: type 
• i ,if 

end inputfile; 
outputfile: type 

I I I o , a l  

end outputfile; 
table: type(domain:type, range:type) 

I l l , J o e  

end table; 
sequence: type(element:type) 

I . l l o o e  

end sequence; 
token: type 

* o o . ° . .  

end token; 

ENVIRONMENT 

INPUTFILE ~ , E X E R  

INPUT INPUT TOKEN 
FILE FILE 

SEQUENCE 
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TABLE 

TABLE 

COMPILER 
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SEQUENCE 

GENER 

GENER 
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Figure 5.3. A MIL model of COMPILER. 
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By means of the example we showed how SARA may 
be used in the design of software to point to and 
to permit expression of decisions involving the 
structures of the algorithm and of the record of 
execution with the ultimate goal of providing a 
smoother path from modeling to code. 

As mentioned before and illustrated by the 
example, the SLI-GMB model identifies the variables 
(which name data type instantiations) and the calls 
(which name procedure instantiations) of the code; 
the MIL model identifies the type and procedure 
definitions; and the mapping says which variable is 
of what type and which call is of what procedure. 

It is worth noting that once the SLI-GMB 
together with the MIL model and the mapping between 
them are defined (by the designer), automatic 
generation of code skeletons may be performed. 

~. Conclusions 

It is widely accepted that design and 
implementation methodologies are a necessi~y. 
However there exists a gap between modeling and 
implementation, a gap which must be narrowed and, 
if possible, removed completely. 

In this paper we attempted to attack this 
problem. We have discussed some of the reasons for 
incorporating a module interconnection 
specification capability (MISC) into the SARA 
methodology with the primary goal of providing a 
smooth and continuous path from programming-in- 
the-large to programming-in-the-small. We have 
demonstrated the importance of distinguishing 
between ~igorithm and record of execution structure 
in modeling and designing software. Modeling 
without this distinction is incomplete, and design 
without it leaves a number of design possibilities 
unconsidered and decided by default. We have shown 
how the existing SARA tools could benefit from the 
addition of a module interconnection language 
(MIL) to be able to express design decisions 
involving both the algorithm and the record of 
execution structures. Finally, we have indicated, 
with the aid of an example, how a MIL-extended SARA 
may be used in the design of software to point to 
and to permit expression of decisions involving the 
structures of the algorithm and the record of 
execution and how code skeletons can be generated 
from the models. 

We do not claim, however, that a MISC, by 
itself, will solve all problems. Many open 
questions remain: 

-- If an insufficiently structured model of 
behavior is used, we may not be able to find a path 
to code. One of the authors of this paper, is 
defining a Structured GMB, as part of her Ph.D. 
dissertation. It will include high level 
primitives such as procedure and cluster 
instantiations. Pragmatics for software design are 
also being developed such that a MISC, in 
conjunction with SARA's models will lead naturally 
to code. 

-- Another question is how to define the MISC 
and provide associated tools so that it can be 
naturally integrated into the SARA system, or how 
to modify the SARA system to take full advantage of 
a demonstrably strong MISC. We have described one 
approach in this paper. However this approach may 
turn out to excessively increase the modeling 
burden on the designer. For this reason we are 
also exploring a way to represent the MISC 
information in a Socket Model, to be used in 
conjunction with the SLI-GMB model. This socket 
model would not only contain the MIL information 
but it might also include information such as 
statistics, timing, performance, etc. 

-- There is also the problem of determining 
the consistency between an SLI-GMB model and a MIL 
model mapped to it. 

-- We showed that a MISC can help in the 
generation of code skeletons; but the problem of 
translating the interpretations (written for the 
processors) into code, still exists. If the 
interpretation language (for modeling) is 
compatible with the realization language, as 
described in an earlier paper [2], this is an 
easier task; if not, the gap is still very large. 
We tend to think that the only solution to this 
problem is to have specialized interpretation 
languages for distinct implementation languages. 

-- SARA's GMB model is very suitable for 
modeling concurrency. The example shown was a 
sequential one; other problems arise in a 
concurrent environment. What are the problems 
involved in mapping SLI-GMB models to MIL models 
and in translating the synchronization expressed in 
the graph into a programming language? 

These and other questions are being analyzed 
as part of our continuing research into the subject 
of this paper. 
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