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Abstract 

In order to help solve the problems of requirements el- 
icitation, this paper motivates and describes a new ap- 
proach, based on traditional signal processing methods, 
for  finding abstractions in natural language text. The 
design of AbstFinder, an implementation of the ap- 
proach, and the evaluation of its effectiveness on an 
industrial-strength example are described. 

1 Introduction 

It appears that the least understood step of systems 
development is the requirements gathering and specifica- 
tion stage, and that within this stage, gathering is less un- 
derstood than specification. 

Many system design or programming methods start 
from an assumed clear statement of requirements and 
show how to arrive at a design of a program meeting 
those requirements. However, none of these methods 
really explain how these requirements are obtained in the 
first place. 

Large, complex software, for which it is difficult or 
even impossible to obtain clear requirements, is usually 
developed for a client organization in which there are 
many people who have some view or say as to what the 
desired system should do. These views range from being 
totally unrelated to each other to being totally inconsistent 
with each other. It is no wonder that the distillation of 
these views into a consistent, complete, and unambiguous 
statement of the requirements, albeit in natural language, 
is a major part of the problem of developing software 
which meets the client’s needs. Therefore, it is essential 
to have methods and tools that help in distilling these 
many views into coherent requirements. 

Extant production quality tools, methods, and systems 
for requirements engineering focus on the analysis stage 
and by and large ignore the problem of eliciting require- 
ments from the client. 

More recently the software engineering community 
has been paying attention to the problem of eliciting the 
raw information from the clients [6,4,8]. 

There are a number of environments envisioned or be- 
ing built, e.g., REGEE [ 5 ]  and AMORE [15] for gather- 

ing, analyzing, and writing requirements. Many of these 
provide a way to organize a domain model into a collec- 
tion of abstraction nodes into which all information about 
these abstractions is stored. One tool that these environ- 
ments need is to help identify the abstractions that form 
the domain model. 

2 Abstraction identification 

An early stage in requirements engineering is abstrac- 
tion identification. Heretofore, abstraction identification 
has been done manually by an RA. The RA scans all the 
transcripts, trying to note important subjects and objects 
of sentences, i.e., nouns. The problem is that humans get 
tired, get bored, fall asleep, and overlook relevant ideas. 
So it is proposed that REGEE contain tools that do the 
clerical part of the search without getting tired, falling 
asleep and overlooking anything. The human RA still has 
to do all of the thinking with the output of the tools, but he 
or she will be confident that no piece of information has 
been overlooked in the process of gathering input to the 
human process of abstraction identification. 

Note that we are excluding expert-system approaches. 
We do not believe that enough is understood about re- 
quirements identification to codify the process. 

That is, no matter what, the RA must read all the input 
at least once. The larger this input, the more that must be 
digested in the RA’s process of abstraction identification. 
There is the danger of information overload in gathering 
this input. To avoid information overload, it is useful to 
somehow reduce the size of the input that must be dig- 
ested. The danger in reducing the size of the input and re- 
lying only on the reduced input is that something impor- 
tant might be overlooked. Therefore, confidence is needed 
that nothing important is overlooked. 

It is useful to have a definition of abstraction so that it 
is understood what must be identified. An abstraction is a 
concept left after ignoring irrelevant details. This 
definition is hard to pin down because the terms “con- 
cept” and “irrelevant” defy precise definition. However, 
most competent software engineers and RAs recognize an 
abstraction when they see one. Therefore, we are reduced 
to finding implementable syntactic definitions with the 

84 
0-8186-5480-5/94 $03.00 0 1994 IEEE 



hope that they match the semantic reality 

2.1 Assumptions 

Underlying all the approaches attempted in the past 
and finally taken here are some assumptions that ulti- 
mately have to be validated. Their validation will come 
retroactively as a result of the success of the resulting 
tools. The assumptions are that 

1 .  at least some manifestation of all abstractions is ex- 
pressible within the confines of a single sentence and 

2. each individual abstraction is discussed in more than 
one sentence. 

If these assumptions hold, then a repetition-based ap- 
proach, such as proposed below, should work. The main 
idea behind such an approach is that the importance of a 
term in the text is proportional to its frequency of occur- 
rence within the text. It has been empirically verified that 
a writer repeats important words in the text as he or she 
tries to explain or verify them [9]. 

The assumptions seem to overlook a high-level ab- 
straction that consists of a concept spread out over several 
sentences that individually do not expose the concept. Ei- 
ther these do not occur or if they do occur, it is assumed 
that the human RA will notice them as an aggregate of 
several identified concepts. For this identification to be 
possible, it must be that each individual subconcept is 
mentioned more than once so that all of them show up 
and can be recognized. Our experience has shown that 
these high level abstractions are not a problem to identify. 

2.2 Existing abstraction identification tools 

An early idea for abstraction identification, reported in 
[2] was to use a parser in order to find the nouns. The 
result was that the few errors it made were distracting and 
it was more comfortable to find the nouns manually. Ulti- 
mately, the idea of using a parser in order to find the 
nouns for abstraction identification was abandoned, be- 
cause it did ilot inspire confidence that it found every- 
thing. More importantly, the parser would overlook an 
important noun because it appears to the parser as a verb. 
For example, in the phrase “book a flight”, “book” is a 
verb and not a noun as thought to be by many parsers. 
Even a better, but still ultimately imperfect, parser does 
not solve this confidence problem. Finally, the abstrac- 
tions are often noun phrases and not just words. In the 
same example phrase, the key concept is “flight booking” 
and not just “flight”, the only real noun found in the 
phrase. 

A second idea [I]  was to use findphrases, a repeated 
phrase finder, a repetition-based approach. Counting iso- 
lated words in the text is not sufficient, because a lot of in- 
formation is lost. In particular, information on the rela- 
tionships in which words are involved is lost. Therefore, it 
is necessary to consider the phrases in which the words 
appear. 

findphrases was found to be effective in aiding the 
human RA to identify abstractions in all stages of the 
life-cycle. However, one particular weakness was noticed. 
A repeated phrase finder fails to count as a repetition of 
“book a flight” the phrase “book the flight” since it looks 
for fixed patterns. Were each of these phrases to appear 
only once, the concept of “booking a flight” would not 
show up at all in the list of repeated phrases, even though 
the concept shows up twice. In many cases, concepts do 
not appear as adjacent words but rather a set of words 
separated but not more than a few words. Most of these 
concepts appear as closely separated pairs of words stand- 
ing for an agent-object relation. 

A third idea [lo] was to use lexical ajinities (LAs) as 
the atomic unit for identifying major abstractions within a 
text. An LA stands for the correlation of the common ap- 
pearance of two items in sentences of the language [3]. 
For the purposes of the LA finder, the definition was res- 
tricted, by observing LAs within a finite document rather 
than on the whole language. For instance, in the present 
paper, “abstraction” and “identification” are bound by a 
lexical affinity. 

The LA finder was found to be as a bit more effective 
in finding abstractions than the repeated phrase finder, but 
not much more. At present, the LA finder does not find 
LAs consisting of more than two words of common gram- 
matical structure, verb-noun, adjective-noun, etc. 

findphrases and the LA finder have each weaknesses 
that the other does not have. findphrases finds long 
phrases but identifies only fixed pattems, whereas the LA 
finder identifies nonadjacent words in possibly differing 
order but is limited to precisely pairs of words. Neither of 
them identifies synonyms. 

One key point that emerged in the consideration of the 
past work is that it is critical for the tool to have 
guaranteed coverage, even if it is less intelligent. The lack 
of intelligence is no real drawback since the human RA 
has to analyze the output of the tool anyway. He or she 
will provide the missing intelligence. Indeed, there are 
some advantage to forcing the human to think carefully. 
However, to be sure that the thinking is supplied with full 
information, full coverage by the tool is critical. Particu- 
larly disastrous is a so-called intelligent tool that makes 
mistakes and leaves things out in its attempt to be intelli- 
gent. 
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2.3 New approach 

This section describes a new approach that eliminates 
many but not all of the weaknesses of the older tools. 
While the new approach solves most of the weaknesses of 
the older tools, there are a few remaining. 

2.3.1 Motivation and informal description: It is 
desired to determine for any pair of sentences, the set of 
chunks that they have in common independently of the 
order of these chunks in the sentences. The chunks in 
general will be words. However, many times, it is desired 
that these chunks be words sans suffixes and prefixes in 
order to capture the commonality in the form of the gram- 
matical root of two occurrences of the same word in 
different parts of speech. Therefore, it is necessary to al- 
low these chunks to not begin and end at word boun- 
daries. That is, in the two sentences 

The flights are booked 
He is booking a flight 

we wish to find the two chunks “flight” and “book”, nei- 
ther of which is a full word in both sentences. (The fact 
that they are in different orders in the two sentences is 
dealt with below.) The upshot of this desire is that the 
sentences are considered streams of characters with no 
particular status accorded to the usual word-ending char- 
acters such as blanks and punctuation. 

One side effect of ignoring word boundaries is that 
noise can creep into the matching chunks. For example, 
among 

book flight 
book funny 

the matching chunk is “book f”. Fortunately, the human 
RA can ignore the “f” as meaningless. During prototyp- 
ing, it was determined that attempting to algorithmically 
excise the noise caused significant material to be lost, e.g., 
in formulae, variables are significant single-character 
chunks. Also, we are counting on the intelligence of the 
human user of the program to recognize meaningful 
words from the chunks. Sometimes this may be difficult. 
Among 

impossible to see 
a possibility seems 

the common chunks are “possib” and “see”. The two 
main problems are illustrated here. Will a human be able 
to connect “possib” to the correct root “possible”? Will 
the human be misled to believing that “to see” is a com- 
mon concept. To assist the human in finding abstractions 
and avoiding being misled, it will be necessary to print 
with an abstraction at least a pointer to the sentences in- 

volved. 
A run in common in two sentences S and Tis  a string 

of consecutive characters that appears in both such that 
the character before the run in each differ and the charac- 
ter after the run in each differ. For a run to be significant, 
it is required that its length be greater than WordThres- 
hold, a value that has to be set experimentally as 
described below. From the sentences (not really, but the 
example has to be kept short!) 

file to ignore 
the ignored files 

the runs are “file” and “ignore”. Abst(S,T) is the set of 
all runs in common in S and T. 

To find runs, a cyclic shifting algorithm is used. First, 
each sentence is padded by an extra blank to prevent the 
beginning of a sentence concatenated to its end from 
forming a spurious word. Then the shorter sentence is 
padded with more blanks to the length of the padded 
longer one. Finally, the padded longer sentence is con- 
catenated to itself and the padded shorter sentence is com- 
pared for runs with the doubled sentence after positioning 
its beginning at each successive character of the first half 
of the doubled sentence. Figure 1 shows the steps of the 
run search for the example sentences. Note that it is not 
really necessary to pad the second occurrence of the 
longer sentence. 

file to ignore= 
file to ignore= 
file to ignore= 

Figure 1: Finding runs in two sentences 

This algorithm will be recognized as the traditional 
signal processing algorithm to find commonality in two 
signal streams [14]. In the new approach, a sentence is 
regarded as a stream of characters rather than a string of 
words. Perhaps the power of this approach comes from 
its treatment of a sentence as a stream of arbitrary charac- 
ters with the subsignals appearing anywhere rather than 
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being constrained to fall on word boundaries. 

2.3.2 Avoiding weaknesses of previous approaches: 
The new approach provides an effective way of identify- 
ing abstractions in natural language transcripts of client 
interviews, which allows 

1. unlimited phrase length, within the confines of a sen- 

2. phrases with unlimited gaps between the words within 

3. arbitrary permutations of a phrase to be recognized as 
the same phrase, 

4. automatic matching of subwords that share a common 
root, when the variation to other parts of speech is reg- 
ular, e.g., as for “purchased” and “purchase”. 

The new approach solves the weaknesses of 
findphrases and the LA finder algorithms, of being un- 
able to deal with phrases with arbitrary numbers of words, 
with arbitrary gaps between words of the phrases, and 
with arbitrary permutations of the words in the phrases. 

One weakness of all previous methods remains, 
namely that of identifying as a single concept phrases that 
have nothing textual in common. There are two manifes- 
tations of this, irregularity in changes to other parts of 
speech, e.g., the past tense of “buy” is “bought”, and 
synonyms. People use different words, called synonyms, 
for the same thing, and a particular word might appear 
less used than its concept actually is. Synonyms are used 
particularly when the requirements are written by more 
than one person. Both of these problems can be regarded 
as that of replacing one word by another. Therefore, the 
program, AbstFinder, containing the basic algorithm, has 
been provided a facility for synonym replacement, ac- 
cording to a dictionary that can be enhanced by the user. 

tence, 

a sentence, 

2.3.3 Possible weaknesses of new approach: One prob- 
lem of the new approach is to set the WordThreshold 
parameter. If it is not set high enough, then parts of 
words-called noise in signal processing temiinology- 
might hide the the real abstractions to be identified. With 
too much noise, the human RA will not zee the trees in 
the forest and will not find the abstractions. If the 
WordThreshold is set too high, then abstractions that are 
identified by a word shorter than the WordThreshold will 
be missed. The risk is that to get only meaningful 
phrases, the threshold may be set too high and not all 
abstractions will be found. So, it will be necessary to ex- 
periment with threshold values, and the values may prove 
to be different for each problem and possibly even 
different for different portions of a problem. Fortunately, 
based on our experience using AbstFinder, after a few 

uses of the systems, the RA learns to estimate a good set- 
ting for WordThreshold after one run and to reccgnize 
sections of the input that would be badly handled by any 
particular setting. In any case, coverage is not lost be- 
cause the same job can be run with different settings of 
WordThreshold. 

A second noise problem can be caused by words or 
phrases which are meaningful but do not contribute to the 
abstraction identification process. For each application 
area, there appears to be characteristic sets of (1) common 
words and (2) application-dependent keywords, which ap- 
pear often enough to skew the list of abstractions, making 
it harder for the RA to find real abstractions. 

1. The common words, e.g., “a”, “on”, “the”, “in”, etc. 
obviously do not identify any abstraction. One should 
fill an ignored-phrases-file with common words, in 
order to mark them for not taking part in the similarity 
calculation. The ignored-phrases-$le can also accu- 
mulate application-independent words that can be used 
for any project. 

2. The application-dependent keywords are actually im- 
portant and repeat a lot in the text. For example, in the 
text of the RFP case study (See Section 4.2), entitled 
“Unmanned Aerial Vehicle (UAV)”, the words “un- 
manned”, “aerial”, “vehicle”, and “UAV” appear in al- 
most every sentence. One should fill an ignored- 
application-phrases-jle with these frequent application 
keywords, which identify larger abstractions than are 
useful. 

Filling these ignored phrases files requires experimen- 
tation and is basically a learning process. This process is 
described in Section 3. 

2.3.4 AbstFinder program: The AbstFinder program 
incorporates the algorithm described in the previous sec- 
tion. A pseudo code rendition of the program is shown in 
Figure 2 at the end of the paper. AbstFinder’s algorithm 
uses the information yielded by Abst(S, T )  for all distinct 
combinations of two sentences S and T. A sentence is not 
compared with itself, but no attempt is made to avoid 
comparing a sentence to another sentence that happens to 
be a duplicate. Recall that the set of runs returned by an 
invocation of Abst on one pair of sentences, is called the 
set of abstractions for that pair of sentences. The main 
data structure of the program is corr-phrases, an array 
with at most one element per sentence. Each entry in 
corr- phrases is the set of abstractions obtained by com- 
paring one sentence to all of the other sentences; any sen- 
tence for which no phrases are found does not have an en- 
try in corr- phrases. 

The output of AbstFinder comes in two parts. The 
first part is a table summarizing the identified abstrac- 



tions, and the second part gives a full description of each 
of the abstractions. Appendix 1 shows the first part of a 
run of AbstFinder that features in a later discussion. 
There is one row in the table per identified abstraction. 
The first field, labeled Y)”, gives a serial number for the 
abstraction. The field labeled “Abst#” gives the abstrac- 
tion number assigned by AbstFinder as it found its first 
phrase (the NA of the algorithm). The “phrase#’ field 
gives the number of distinct phrases that were united into 
the abstraction by AbstFinder. The “lines#” field gives 
the number of distinct lines or sentences that contain these 
phrases. Finally, the “correlated-phrases” field shows the 
phrases themselves with vertical bars in between them 
and after the last one. Each blank starting from the second 
column after the beginning of the field is significant and is 
part of its run. This field is truncated by its flowing 
beyond the physical width of the paper. Even if the 
phrases are truncated, the full list may be found in the 
corresponding entry in part 2. 

An abstraction identified by one phrase is more dis- 
tilled than one that is identified by more phrases. So, the 
first criterion for ordering the abstractions in the output is 
in order of increasing numbers of correlated phrases. 
Then, when two abstractions have the same number of 
correlated phrases, the second criterion for ordering is in 
order of decreasing numbers of sentences from which the 
phrases came. The more sentences contained in an 
abstraction the more significant it probably is. 

The AbstFinder program can be thought of as a kind 
of clustering [ 121 with the length of a run as the criterion. 
However, the abstraction classes are not predetermined 
and do not form a partition. 

2.3.5 Performance analysis of program: As mentioned 
in Section 2.3.3. the WordThreshold parameter must be 
set very carefully. In order to be able to identify single 
word matches, WordThreshold has to be set to 3, if we as- 
sume that the minimum length of a meaningful word is 3 
characters. However, while testing the tool, It was de- 
cided to keep all input spaces between words, and to take 
them into consideration while calculating similarity. 
Therefore, a threshold of 3 characters was found to be too 
low, as it yields meaningless runs of the form ‘‘x y” from 
around interword gaps. So, the threshold was raised to 5 
characters, and the result was that AbstFinder appeared 
to capture only meaningful phrases. 

Another important concern is the performance of 
AbstFinder. The time complexity of AbstFinder is 
o ( c x N * ) ,  where N is the number of sentences in the do- 
cument, and c depends on the length of the sentences, 
which can be regarded as bound by natural limits. There 
are faster algorithms based on the use of tries or Patricia 
trees. These can be made o ( c x N )  if desired [7].  How- 

ever, experience with AbstFinder on an industrial-sized 
example shows that its real performance problem is 
space; and this problem is only exacerbated when the fas- 
ter algorithms are used. In any case, it is no problem for 
the RA to go out to lunch while waiting for it to report on 
a large input. Moreover, generally speaking AbstFinder 
is run only on early documents only for the purpose of as- 
sisting in identifying abstractions. Therefore, the slow 
runtime of AbstFinder on large files is no real burden. 

3 Usage of AbstFinder 

This section describes a typical scenario that an RA 
might follow in order to have AbstFinder help identify 
the abstractions in a new problem given to him or her by a 
client. It is assumed that the RA has on-line what the 
client believes is a complete description of the system to 
be built, written mostly in some natural language. 

First some trial runs need to be done on small parts of 
the transcript, taken from different sections of it, in order 
to learn the language of the document. Learning here 
consists in identifying the ignored words, putting the 
common words into the ignored-phrases$le, and the spe- 
cial application words into the ignored-application- 
phraseslfile. Besides words to ignore, the ignored- 
application-phrases- le may later contain very important 
high level abstractions that have been recognized, noted, 
and put into the ignored-application-phrases-file in order 
not to clutter up the output. 

When using AbstFinder with huge transcripts, the RA 
should read the output list of abstraction and note the 
abstractions identified by fewer than four or five phrases. 
Abstractions identified by more than five phrase are 
difficult to understand. They are also often extraneous be- 
cause they capture concepts that are too general to be use- 
ful. The extreme example is the one abstraction that 
identifies the whole transcript, and that abstraction is 
clearly not very useful. Therefore, the RA has to stop at 
some point, at which the abstractions are still useful, and 
beyond which they are not useful. It may be impossible to 
find a single point meeting both criteria, so often the RA 
has to settle for a point beyond which they are not useful. 

The main purpose of the clerical tool is to identify all 
meaningful abstractions. Without full coverage, the RA 
will never trust the tool to not overlook something. So if 
the list is cut off just before the point at which abstrac- 
tions are identified by six phrases, the concern is whether 
there are any abstractions that are not recognized because 
they are identified by more than five phrases. In order to 
eliminate any worry about a possible lost of abstractions, 
the following iterative procedure should be carried out. 

Activate AbstFinder once on the original document. 
Then, with the strainer program, remove from the origi- 
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nal document the abstractions already recognized and 
logged by the RA, leaving what is left in another filef 
Then, activate AbstFinder on f. The result of Abst- 
Finder is a new list of abstractions, without the ones that 
were recognized before, but with some that had been 
buried in the first abstraction list after the cut-off point. 

The process repeats until finally the RA is left infwith 
a very short list of abstractions, which are all meaning- 
less. That meaningless list indicates that all the meaning- 
ful abstractions were identified previously and strained 
out from the transcript. The accumulated list of meaning- 
ful abstractions provide full coverage. 

This iterative way of applying AbstFinder and then 
strainer, is suitable for a human RA to capture large 
amounts of information. Doing it step by step allows him 
or her to look each time over a limited, readable, and 
understandable amount of information and to accumulate 
it. The RA is confident that nothing is overlooked, be- 
cause things that have not been seen yet will pop up in 
some later iteration. The iterations continue until finally 
she or he is sure that the document has been wrung dry of 
abstractions. 

4 Evaluation of AbstFinder 

This section considers the evaluation of the effective- 
ness of AbstFinder for finding abstractions in natural 
language text. It is first necessary to explain how such a 
tool can be evaluated with the help of case studies. Then 
two of the case studies are described. These lead to the 
conclusion that for them, AbstFinder is indeed effective. 

With any new idea of a method or a tool one must 
evaluate its effectiveness. First, it is useful to compare 
the new tool to old tools, such as findphrases and the LA 
Finder, to verify that the new tool does at least as well or 
better than the old ones. 

One must really test such a tool against a human effort, 
since heretofore requirements elicitation has been done 
manually by a humans. There is no simple analytic 
method for testing human efforts. As for many software 
engineering issues, controlled experiments are out of the 
question. Running sufficient numbers of instances to ob- 
tain significant results is prohibitively expensive when the 
instances involve industrial-sized problems [ 131. More- 
over, too often, individual differences dominate the con- 
trolled variable of the experiment [l  11. 

An important issue is the question of whether the 
abstractions found by the tool are meaningful to the hu- 
man RA that has to approve them. Meaningfulness can 
be confirmed only by humans, and is very much affected 
by the WordThreshold. 

The key objective measures of the effectiveness of 
AbstFinder are: (1) its coverage, and (2) how summariz- 

ing it is. A tool that is not covering or which does not 
summarize is not good, for the following reasons: 

It must be that this tool does not overlook any impor- 
tant abstraction that will need to be present in the require- 
ments specification. A tool that does not overlook impor- 
tant abstraction is said to be covering. An RA will not be 
willing to be assisted by any tool unless he or she is 
confident that it is covering. 

Clearly, the identity function is a covering tool. How- 
ever, presenting all the input does not help the RA either. 
The other main requirement for the tool is that it reduce 
the amount of text that the RA must look at. A human 
RA still has to do the thinking with the output of the tool, 
in order to approve the abstractions found. The RA will 
not be effective if the amount of information that must be 
examined is too big. A tool whose output is significantly 
smaller than its input is said to be summarizing. 

Note finally, that a tool that is only summarizing is no 
good either. The most summarizing tool is that which out- 
puts nothing. The tool must summarize while preserving 
coverage. 

Measuring the ability to summarize is easy. It is done 
by simply comparing the ratio of sizes between the input 
.transcript to the output of AbstFinder. Coverage is much 
harder to measure. One must compare the list generated 
by AbstFinder to that made by a known expert (and pray 
that in fact the expert is good) and judge whether all con- 
cepts found in the latter are present in the former. There 
is no better measure than experience, and ultimately the 
proof will be in acceptance of tool by the RA community. 

To put the evaluation in context, it is important to 
understand typical scenarios of abstraction identification 
with and without AbstFinder to help the RA. 

1. reads all the documents once to get a sense of what is 

2. then repeatedly reads individual documents and parts 
thereof in order to find and verify abstractions until no 
more new abstractions are found. 

Without AbstFinder, the RA 

there, and 

With AbstFinder, the RA 

1. reads all the documents once to get a sense of what is 

2. follows the iterative procedure of Section #iteration# 

Thus, in traditional abstraction identification, the full set 
of documents are read over and over, with no prior limit. 
In AbstFinder-assisted abstraction identification, if the 
output is covering, the full set of documents is read only 
once. Thereafter, only the much smaller summaries need 
to be examined over and over. Besides being smaller than 

there, and 

until no new abstractions are found. 

89 



the full set, the summaries gather the most important con- 
cepts to the top of the list for a better focus. 

For the evaluation, since the first steps of the two 
scenarios are the same, the comparisons focuses on the 
differences in what must be examined for the second 
steps. 

Two of the case studies used to evaluate AbstFinder 
are described below. 

Data Abstraction 
stringtype-file 

4.1 Findphrases case study 

The findphrases decomposition was used as a case 
study because the decomposition was already known. 
Moreover, it had been the subject of case studies for 
abstraction identification with the help of findphrases 
and the the LA Finder. Therefore, it could be used to 
check AbstFinder’s results against already known results 
and against previous tools. The document that served as 
the requirements was the manual page of findphrases, 
because in fact the manual page was written before the 
program was written as a requirements document. The al- 
ready known abstractions were taken from Aguilera’s [ l] 
program decomposition, and her own list of abstractions 
identified by findphrases, and Maarek’s [lo] list of 
abstractions identified by lexical-affinities (See Table 1). 

As shown in Appendix 1, the first 25 of the 48 entries 
of the AbstFinder output list includes all the abstractions 
found by Aguilera in implementing findphrases, all 
abstractions found by findphrases, and all abstractions 
found by Maarek with lexical affinities. So, for this case 
study, AbstFinder was found to be at least as covering as 
findphrases and the LA finder and was found to cover all 
abstractions found by a human programmer. 

Phrases 
strings, characters 

4.2 RFP case study 

The Request For Proposal (RFP) document for the Un- 
manned Aerial Vehicle-Short Range (UAV-SR) system is 
a large industrial-strength case, about 100 pages long, 
containing about 2200 sentences, which we were lucky to 
get. The RFP transcript was already analyzed by three ex- 
perts over a month, for a total effort of three person- 
months. The experiment consisted of the first author, 
called “the RA” below, analyzing the RFP with the help 
AbstFinder, and comparing the resulting abstractions list 
to the list of requirements produced by the three experts. 
The list of requirements produced by the three experts is 
called “the human-made’’ document below. The RA did 
not see this human-made document until after she had 
finished generating her list with the help of AbstFinder. 
The hope was the RA would find meaningful abstractions 
in a summarizing output list of AbstFinder while provid- 
ing full coverage of the client’s requirements, and with a 
lot less effort than three person-months. 

output-file 
chunk-fi le 
punc-keyword-table 

I The abstractions of findphrases 

output, tables of the output 
file(s), free format 
punctuation keyword(s) file 

I argument-line I argument, option 

I multi-tokens-table I multi tokens file 
I text-file I text, input, arbitrary text 

phrases phrase(s), repeated phrases, 
ignored phrases 

I sentences 1 sentence(s) 

Table 1 : The abstractions of findphrases 

In the thesis of the first author, the effectiveness of 
AbstFinder for the RFP case study is evaluated. Space 
limitations do not permit presentation of the full details of 
this evaluation. Instead, this section indicates how the 
evaluation was carried out and the draws only the specific 
and general conclusions. 

4.2.1 Meaningfulness: After the AbstFinder user was 
finished generating what she thought was a complete list 
of abstractions, the phrases in this list were examined by 
the three expert analysts of the RFP transcript. They all 
found all of the AbstFinder-generated phrases to be 
meaningful to them. One of them was very impressed to 
see in the beginning of the AbstFinder-generated list 
some abstractions, such as “surrogated training”, that they 
had overlooked for a long time until finally the customer 
pinned it on their noses. 

4.2.2 Summarizing: The output of AbstFinder was 
summarizing. The original document RFP was 169,323 
bytes long whereas AbstFinder’s final result was only 
47,105 bytes, about 25% of the size of the original data. 

4.2.3 People and computer power: Using AbstFinder 
helped the RA to get the list of abstractions faster. The list 
of requirements generated by the three experts required 
one month of concentrated work for a total of three 
person-months. Running AbstFinder took about five 
hours total CPU time, three hours operating time, and 
about two hours of RA overview, which is about one day 
of work. The first run of AbstFinder on RFP took about 
two hours. The second run, after straining out the top, 
most frequent abstractions on the list, took about 30 
minutes. The last run took about 5 minutes. However, 
note that the RA was doing other things while the CPU 
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was running. 

4.2.4 Coverage: The problem with evaluating coverage 
is that someone must sit down and see that all abstractions 
in the human-made document show up in the 
AbstFinder-generated list. The high probability of error 
in this tedious job makes any claimed “yes” answer 
highly suspect. In addition, the person doing the job had a 
vested interest in finding a “yes” answer. Therefore a 
more systematic way to evaluate coverage had to be 
found. 

The coverage question can be answered by straining 
from the human-made document all abstractions that ap- 
pear in AbstFinder’s result and seeing if there are any 
leftovers. No leftovers ineans full coverage. The smaller 
size of the leftovers and the greater visibility of meaning- 
less text increases the credibility of the answer. The 
result of that subtraction was 3019 bytes. The RFP is 
169,323 bytes (about 100 pages) long and the human- 
made requirements document is 83 pages (about 140K 
bytes) long. The phrases of the remainder were analyzed 
very carefully in order to find out if AbstFinder missed 
any abstraction. The phrases of the remainder were 
separated into several categories according to their 
characteristics. 

Most of the phrases were in the meta-language for re- 
quirements specification such as “activate”, “allow”, 
“deactivate”, “herein”, “include”, “integrate”, “must”, 
“only”, “provide”, which are not meaningful abstractions. 
Perhaps these should be added to the ignored-phrases-Ble. 

Some concept were in different grammatical forms 
such as “transmit” in one document and “transmitting”, 
“transmitters”, and “transceiver” in the other one, or 
“calibrate” and “calibration”, or “assigned” and “assign- 
ment”. Those are actually the same abstractions. While 
AbstFinder is able to classify all the “transmit ...” words, 
all the “trans...”, etc. as single abstractions, strainer 
works on whole words and is not able to remove words 
that properly contain a recognized root. 

Acronyms such as “NBC” are introduced to replace a 
longer full phrase such as “Nuclear, Biological, Chemi- 
cal”; the full phrase appears only once at the introduction 
of the acronym or in a dictionary of acronyms and the 
acronym appears many times throughout the document. 
The acronyms are used to save the writing of the longer 
full phrase. AbstFinder did not identify many acronyms 
and failed to find most of the full phrases that the acro- 
nyms replaced. Many acronyms are shorter than the 
WordThreshold, and a full phrase that appears only once 
is not going to be caught by any frequency-based scheme. 
Given that reducing WordThreshold causes generation of 
too much noise, there are two solutions, both general 
enough to be made part of a standard scenario for the RA. 

1 .  The synonym dictionary can be used to replace the 
acronyms by their full phrases for the purpose of 
abstraction identification. 

2. Recognize all the acronyms as important abstractions, 
log them as abstractions, and then add them to the 
ignored-application-phrases-$le. 

The latter solution is useful for the RA who actually 
prefers to work with the acronyms. 

To sum up, after some generally ,applicable modifica- 
tions that should be part of a standard scenario for use of 
AbstFinder, it was clear that full coverage was achieved 
in the AbstFinder-assisted abstractions list. 

4.2.5 Does better than human experts: We were in- 
terested to see if AbstFinder found some concept that the 
human RA overlooked. This meant checking if the list of 
requirements in the human-made document cover the list 
of abstractions found by AbstFinder. That question was 
answered by having strainer remove from the Abst- 
Finder abstraction list all that appears in human-made do- 
cument to see if there are any leftovers in the AbstFinder 
results that the humans overlooked. 

The result was about 35,402 bytes long. In these bytes 
were found concepts that were hidden in the Classified 
Requirements Appendix of the RFP document, non- 
software requirements, and concepts, such as “surrogated 
training”, that the human experts did overlook. There- 
fore, we got the impression that a human RA assisted with 
AbstFinder can do better than several unassisted human 
R A S .  

4.3 Results 

For the specific case studies carried out, 

1. AbstFinder was found to be at least as good as 
findphrases and the LA finder on the findphrases re- 
quirements. All the abstractions found by findphrases 
and the LA finder were found on the top of the output 
list of AbstFinder. 

2. a human RA assisted by AbstFinder is at least as good 
as three human experts on the RFP, and in fact found 
some abstractions that the experts did not find. 

The conclusion is that for the case studies presented, 
AbstFinder is good, it has coverage and it is summariz- 
ing. 

5 Conclusions 

More experiments on industrial sized examples must 
be carried out. With each such experiment, it is important 
to have a qualified, independent analysis available with 
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which to compare the AbstFinder-generated list of 
abstractions. To encourage such experiments, the authors 
are making the source code of the tool available. Please 
contact the second author at dberry@cs.technion.ac.il for 
more details. 

Also now that the prototype has successfully proved a 
concept, it is time to consider scrapping the oft-modified 
prototype in favor of a freshly written production version, 
in which better algorithms and data structures are used. 
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Read a punctuation-keyword-file, an ignored-phrases-file, an ignored-application-phrases-jile, and a synonyms-file; 
Partition the text into one sentence per line, a sentence being the text lying between two consecutive elements of the 

punctuation-keyword-file; 
Remove from the text substrings found in the ignored-phrases-jile and substrings found in the ignored-application-phrases-file, 

and replace words by their synonyms according to the synonym-file; 

deciare N := number of lines; comment = number of sentences tnemmoc 
declare corr-phrases[l :NI, corr-lines[l :NI; 
declare NA := 1; comment number of abstractions accumulated so far 5 N tnemmoc 
for i from 1 to N do 

corr-phrases[NA] := 0; corr-lines[NA] := {i}; 
for j from i+l to N do 

if Abst(line[i],linelj]) # 0 then 
corr- phrases[NA] := corr- phrases[NA]uAbst(line[i],line[jl); corr-lines[NA] := corr-lines[NA]u{i}u~} fi od; 

if corr-phrases[NA] # 0 then NA := NA + 1 fi od; 
NA := NA - 1 ; comment correct overshoot tnemmoc 

Sort both corr-phrases and corr-lines so that correspondence between corr- phrases[i] and corr-lines[i] is preserved and 
the elements of corr-phrases are ordered mainly by increasing numbers of phrases in the elements and within the 
group for any number of phrases, by decreasing numbers of lines from which the phrases came; 

Prepare and print the output as described in Section 2.3.4; 

Figure 2: The AbstFinder program 
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