
AbstFinder, A Prototype Abstraction Finder for Natural Language Text
for Use in Requirements Elicitation: Design, Methodology, and Evaluation

Leah Goldin Daniel M. Berry

Computer Science, Technion, Haifa 32000, Israel

Abstract

In order to help solve the problems of requirements el-
icitation, this paper motivates and describes a new ap-
proach, based on traditional signal processing methods,
for finding abstractions in natural language text. The
design of AbstFinder, an implementation of the ap-
proach, and the evaluation of its effectiveness on an
industrial-strength example are described.

1 Introduction

It appears that the least understood step of systems
development is the requirements gathering and specifica-
tion stage, and that within this stage, gathering is less un-
derstood than specification.

Many system design or programming methods start
from an assumed clear statement of requirements and
show how to arrive at a design of a program meeting
those requirements. However, none of these methods
really explain how these requirements are obtained in the
first place.

Large, complex software, for which it is difficult or
even impossible to obtain clear requirements, is usually
developed for a client organization in which there are
many people who have some view or say as to what the
desired system should do. These views range from being
totally unrelated to each other to being totally inconsistent
with each other. It is no wonder that the distillation of
these views into a consistent, complete, and unambiguous
statement of the requirements, albeit in natural language,
is a major part of the problem of developing software
which meets the client’s needs. Therefore, it is essential
to have methods and tools that help in distilling these
many views into coherent requirements.

Extant production quality tools, methods, and systems
for requirements engineering focus on the analysis stage
and by and large ignore the problem of eliciting require-
ments from the client.

More recently the software engineering community
has been paying attention to the problem of eliciting the
raw information from the clients [6,4,8].

There are a number of environments envisioned or be-
ing built, e.g., REGEE [5] and AMORE [15] for gather-

ing, analyzing, and writing requirements. Many of these
provide a way to organize a domain model into a collec-
tion of abstraction nodes into which all information about
these abstractions is stored. One tool that these environ-
ments need is to help identify the abstractions that form
the domain model.

2 Abstraction identification

An early stage in requirements engineering is abstrac-
tion identification. Heretofore, abstraction identification
has been done manually by an RA. The RA scans all the
transcripts, trying to note important subjects and objects
of sentences, i.e., nouns. The problem is that humans get
tired, get bored, fall asleep, and overlook relevant ideas.
So it is proposed that REGEE contain tools that do the
clerical part of the search without getting tired, falling
asleep and overlooking anything. The human RA still has
to do all of the thinking with the output of the tools, but he
or she will be confident that no piece of information has
been overlooked in the process of gathering input to the
human process of abstraction identification.

Note that we are excluding expert-system approaches.
We do not believe that enough is understood about re-
quirements identification to codify the process.

That is, no matter what, the RA must read all the input
at least once. The larger this input, the more that must be
digested in the RA’s process of abstraction identification.
There is the danger of information overload in gathering
this input. To avoid information overload, it is useful to
somehow reduce the size of the input that must be dig-
ested. The danger in reducing the size of the input and re-
lying only on the reduced input is that something impor-
tant might be overlooked. Therefore, confidence is needed
that nothing important is overlooked.

It is useful to have a definition of abstraction so that it
is understood what must be identified. An abstraction is a
concept left after ignoring irrelevant details. This
definition is hard to pin down because the terms “con-
cept” and “irrelevant” defy precise definition. However,
most competent software engineers and RAs recognize an
abstraction when they see one. Therefore, we are reduced
to finding implementable syntactic definitions with the

84
0-8186-5480-5/94 $03.00 0 1994 IEEE

hope that they match the semantic reality

2.1 Assumptions

Underlying all the approaches attempted in the past
and finally taken here are some assumptions that ulti-
mately have to be validated. Their validation will come
retroactively as a result of the success of the resulting
tools. The assumptions are that

1 . at least some manifestation of all abstractions is ex-
pressible within the confines of a single sentence and

2. each individual abstraction is discussed in more than
one sentence.

If these assumptions hold, then a repetition-based ap-
proach, such as proposed below, should work. The main
idea behind such an approach is that the importance of a
term in the text is proportional to its frequency of occur-
rence within the text. It has been empirically verified that
a writer repeats important words in the text as he or she
tries to explain or verify them [9].

The assumptions seem to overlook a high-level ab-
straction that consists of a concept spread out over several
sentences that individually do not expose the concept. Ei-
ther these do not occur or if they do occur, it is assumed
that the human RA will notice them as an aggregate of
several identified concepts. For this identification to be
possible, it must be that each individual subconcept is
mentioned more than once so that all of them show up
and can be recognized. Our experience has shown that
these high level abstractions are not a problem to identify.

2.2 Existing abstraction identification tools

An early idea for abstraction identification, reported in
[2] was to use a parser in order to find the nouns. The
result was that the few errors it made were distracting and
it was more comfortable to find the nouns manually. Ulti-
mately, the idea of using a parser in order to find the
nouns for abstraction identification was abandoned, be-
cause it did ilot inspire confidence that it found every-
thing. More importantly, the parser would overlook an
important noun because it appears to the parser as a verb.
For example, in the phrase “book a flight”, “book” is a
verb and not a noun as thought to be by many parsers.
Even a better, but still ultimately imperfect, parser does
not solve this confidence problem. Finally, the abstrac-
tions are often noun phrases and not just words. In the
same example phrase, the key concept is “flight booking”
and not just “flight”, the only real noun found in the
phrase.

A second idea [I] was to use findphrases, a repeated
phrase finder, a repetition-based approach. Counting iso-
lated words in the text is not sufficient, because a lot of in-
formation is lost. In particular, information on the rela-
tionships in which words are involved is lost. Therefore, it
is necessary to consider the phrases in which the words
appear.

findphrases was found to be effective in aiding the
human RA to identify abstractions in all stages of the
life-cycle. However, one particular weakness was noticed.
A repeated phrase finder fails to count as a repetition of
“book a flight” the phrase “book the flight” since it looks
for fixed patterns. Were each of these phrases to appear
only once, the concept of “booking a flight” would not
show up at all in the list of repeated phrases, even though
the concept shows up twice. In many cases, concepts do
not appear as adjacent words but rather a set of words
separated but not more than a few words. Most of these
concepts appear as closely separated pairs of words stand-
ing for an agent-object relation.

A third idea [lo] was to use lexical ajinities (LAs) as
the atomic unit for identifying major abstractions within a
text. An LA stands for the correlation of the common ap-
pearance of two items in sentences of the language [3].
For the purposes of the LA finder, the definition was res-
tricted, by observing LAs within a finite document rather
than on the whole language. For instance, in the present
paper, “abstraction” and “identification” are bound by a
lexical affinity.

The LA finder was found to be as a bit more effective
in finding abstractions than the repeated phrase finder, but
not much more. At present, the LA finder does not find
LAs consisting of more than two words of common gram-
matical structure, verb-noun, adjective-noun, etc.

findphrases and the LA finder have each weaknesses
that the other does not have. findphrases finds long
phrases but identifies only fixed pattems, whereas the LA
finder identifies nonadjacent words in possibly differing
order but is limited to precisely pairs of words. Neither of
them identifies synonyms.

One key point that emerged in the consideration of the
past work is that it is critical for the tool to have
guaranteed coverage, even if it is less intelligent. The lack
of intelligence is no real drawback since the human RA
has to analyze the output of the tool anyway. He or she
will provide the missing intelligence. Indeed, there are
some advantage to forcing the human to think carefully.
However, to be sure that the thinking is supplied with full
information, full coverage by the tool is critical. Particu-
larly disastrous is a so-called intelligent tool that makes
mistakes and leaves things out in its attempt to be intelli-
gent.

85

2.3 New approach

This section describes a new approach that eliminates
many but not all of the weaknesses of the older tools.
While the new approach solves most of the weaknesses of
the older tools, there are a few remaining.

2.3.1 Motivation and informal description: It is
desired to determine for any pair of sentences, the set of
chunks that they have in common independently of the
order of these chunks in the sentences. The chunks in
general will be words. However, many times, it is desired
that these chunks be words sans suffixes and prefixes in
order to capture the commonality in the form of the gram-
matical root of two occurrences of the same word in
different parts of speech. Therefore, it is necessary to al-
low these chunks to not begin and end at word boun-
daries. That is, in the two sentences

The flights are booked
He is booking a flight

we wish to find the two chunks “flight” and “book”, nei-
ther of which is a full word in both sentences. (The fact
that they are in different orders in the two sentences is
dealt with below.) The upshot of this desire is that the
sentences are considered streams of characters with no
particular status accorded to the usual word-ending char-
acters such as blanks and punctuation.

One side effect of ignoring word boundaries is that
noise can creep into the matching chunks. For example,
among

book flight
book funny

the matching chunk is “book f”. Fortunately, the human
RA can ignore the “f” as meaningless. During prototyp-
ing, it was determined that attempting to algorithmically
excise the noise caused significant material to be lost, e.g.,
in formulae, variables are significant single-character
chunks. Also, we are counting on the intelligence of the
human user of the program to recognize meaningful
words from the chunks. Sometimes this may be difficult.
Among

impossible to see
a possibility seems

the common chunks are “possib” and “see”. The two
main problems are illustrated here. Will a human be able
to connect “possib” to the correct root “possible”? Will
the human be misled to believing that “to see” is a com-
mon concept. To assist the human in finding abstractions
and avoiding being misled, it will be necessary to print
with an abstraction at least a pointer to the sentences in-

volved.
A run in common in two sentences S and Tis a string

of consecutive characters that appears in both such that
the character before the run in each differ and the charac-
ter after the run in each differ. For a run to be significant,
it is required that its length be greater than WordThres-
hold, a value that has to be set experimentally as
described below. From the sentences (not really, but the
example has to be kept short!)

file to ignore
the ignored files

the runs are “file” and “ignore”. Abst(S,T) is the set of
all runs in common in S and T.

To find runs, a cyclic shifting algorithm is used. First,
each sentence is padded by an extra blank to prevent the
beginning of a sentence concatenated to its end from
forming a spurious word. Then the shorter sentence is
padded with more blanks to the length of the padded
longer one. Finally, the padded longer sentence is con-
catenated to itself and the padded shorter sentence is com-
pared for runs with the doubled sentence after positioning
its beginning at each successive character of the first half
of the doubled sentence. Figure 1 shows the steps of the
run search for the example sentences. Note that it is not
really necessary to pad the second occurrence of the
longer sentence.

file to ignore=
file to ignore=
file to ignore=

Figure 1: Finding runs in two sentences

This algorithm will be recognized as the traditional
signal processing algorithm to find commonality in two
signal streams [14]. In the new approach, a sentence is
regarded as a stream of characters rather than a string of
words. Perhaps the power of this approach comes from
its treatment of a sentence as a stream of arbitrary charac-
ters with the subsignals appearing anywhere rather than

86

being constrained to fall on word boundaries.

2.3.2 Avoiding weaknesses of previous approaches:
The new approach provides an effective way of identify-
ing abstractions in natural language transcripts of client
interviews, which allows

1. unlimited phrase length, within the confines of a sen-

2. phrases with unlimited gaps between the words within

3. arbitrary permutations of a phrase to be recognized as
the same phrase,

4. automatic matching of subwords that share a common
root, when the variation to other parts of speech is reg-
ular, e.g., as for “purchased” and “purchase”.

The new approach solves the weaknesses of
findphrases and the LA finder algorithms, of being un-
able to deal with phrases with arbitrary numbers of words,
with arbitrary gaps between words of the phrases, and
with arbitrary permutations of the words in the phrases.

One weakness of all previous methods remains,
namely that of identifying as a single concept phrases that
have nothing textual in common. There are two manifes-
tations of this, irregularity in changes to other parts of
speech, e.g., the past tense of “buy” is “bought”, and
synonyms. People use different words, called synonyms,
for the same thing, and a particular word might appear
less used than its concept actually is. Synonyms are used
particularly when the requirements are written by more
than one person. Both of these problems can be regarded
as that of replacing one word by another. Therefore, the
program, AbstFinder, containing the basic algorithm, has
been provided a facility for synonym replacement, ac-
cording to a dictionary that can be enhanced by the user.

tence,

a sentence,

2.3.3 Possible weaknesses of new approach: One prob-
lem of the new approach is to set the WordThreshold
parameter. If it is not set high enough, then parts of
words-called noise in signal processing temiinology-
might hide the the real abstractions to be identified. With
too much noise, the human RA will not zee the trees in
the forest and will not find the abstractions. If the
WordThreshold is set too high, then abstractions that are
identified by a word shorter than the WordThreshold will
be missed. The risk is that to get only meaningful
phrases, the threshold may be set too high and not all
abstractions will be found. So, it will be necessary to ex-
periment with threshold values, and the values may prove
to be different for each problem and possibly even
different for different portions of a problem. Fortunately,
based on our experience using AbstFinder, after a few

uses of the systems, the RA learns to estimate a good set-
ting for WordThreshold after one run and to reccgnize
sections of the input that would be badly handled by any
particular setting. In any case, coverage is not lost be-
cause the same job can be run with different settings of
WordThreshold.

A second noise problem can be caused by words or
phrases which are meaningful but do not contribute to the
abstraction identification process. For each application
area, there appears to be characteristic sets of (1) common
words and (2) application-dependent keywords, which ap-
pear often enough to skew the list of abstractions, making
it harder for the RA to find real abstractions.

1. The common words, e.g., “a”, “on”, “the”, “in”, etc.
obviously do not identify any abstraction. One should
fill an ignored-phrases-file with common words, in
order to mark them for not taking part in the similarity
calculation. The ignored-phrases-$le can also accu-
mulate application-independent words that can be used
for any project.

2. The application-dependent keywords are actually im-
portant and repeat a lot in the text. For example, in the
text of the RFP case study (See Section 4.2), entitled
“Unmanned Aerial Vehicle (UAV)”, the words “un-
manned”, “aerial”, “vehicle”, and “UAV” appear in al-
most every sentence. One should fill an ignored-
application-phrases-jle with these frequent application
keywords, which identify larger abstractions than are
useful.

Filling these ignored phrases files requires experimen-
tation and is basically a learning process. This process is
described in Section 3.

2.3.4 AbstFinder program: The AbstFinder program
incorporates the algorithm described in the previous sec-
tion. A pseudo code rendition of the program is shown in
Figure 2 at the end of the paper. AbstFinder’s algorithm
uses the information yielded by Abst(S, T) for all distinct
combinations of two sentences S and T. A sentence is not
compared with itself, but no attempt is made to avoid
comparing a sentence to another sentence that happens to
be a duplicate. Recall that the set of runs returned by an
invocation of Abst on one pair of sentences, is called the
set of abstractions for that pair of sentences. The main
data structure of the program is corr-phrases, an array
with at most one element per sentence. Each entry in
corr- phrases is the set of abstractions obtained by com-
paring one sentence to all of the other sentences; any sen-
tence for which no phrases are found does not have an en-
try in corr- phrases.

The output of AbstFinder comes in two parts. The
first part is a table summarizing the identified abstrac-

tions, and the second part gives a full description of each
of the abstractions. Appendix 1 shows the first part of a
run of AbstFinder that features in a later discussion.
There is one row in the table per identified abstraction.
The first field, labeled Y)”, gives a serial number for the
abstraction. The field labeled “Abst#” gives the abstrac-
tion number assigned by AbstFinder as it found its first
phrase (the NA of the algorithm). The “phrase#’ field
gives the number of distinct phrases that were united into
the abstraction by AbstFinder. The “lines#” field gives
the number of distinct lines or sentences that contain these
phrases. Finally, the “correlated-phrases” field shows the
phrases themselves with vertical bars in between them
and after the last one. Each blank starting from the second
column after the beginning of the field is significant and is
part of its run. This field is truncated by its flowing
beyond the physical width of the paper. Even if the
phrases are truncated, the full list may be found in the
corresponding entry in part 2.

An abstraction identified by one phrase is more dis-
tilled than one that is identified by more phrases. So, the
first criterion for ordering the abstractions in the output is
in order of increasing numbers of correlated phrases.
Then, when two abstractions have the same number of
correlated phrases, the second criterion for ordering is in
order of decreasing numbers of sentences from which the
phrases came. The more sentences contained in an
abstraction the more significant it probably is.

The AbstFinder program can be thought of as a kind
of clustering [121 with the length of a run as the criterion.
However, the abstraction classes are not predetermined
and do not form a partition.

2.3.5 Performance analysis of program: As mentioned
in Section 2.3.3. the WordThreshold parameter must be
set very carefully. In order to be able to identify single
word matches, WordThreshold has to be set to 3, if we as-
sume that the minimum length of a meaningful word is 3
characters. However, while testing the tool, It was de-
cided to keep all input spaces between words, and to take
them into consideration while calculating similarity.
Therefore, a threshold of 3 characters was found to be too
low, as it yields meaningless runs of the form ‘‘x y” from
around interword gaps. So, the threshold was raised to 5
characters, and the result was that AbstFinder appeared
to capture only meaningful phrases.

Another important concern is the performance of
AbstFinder. The time complexity of AbstFinder is
o (c x N *) , where N is the number of sentences in the do-
cument, and c depends on the length of the sentences,
which can be regarded as bound by natural limits. There
are faster algorithms based on the use of tries or Patricia
trees. These can be made o (c x N) if desired [7]. How-

ever, experience with AbstFinder on an industrial-sized
example shows that its real performance problem is
space; and this problem is only exacerbated when the fas-
ter algorithms are used. In any case, it is no problem for
the RA to go out to lunch while waiting for it to report on
a large input. Moreover, generally speaking AbstFinder
is run only on early documents only for the purpose of as-
sisting in identifying abstractions. Therefore, the slow
runtime of AbstFinder on large files is no real burden.

3 Usage of AbstFinder

This section describes a typical scenario that an RA
might follow in order to have AbstFinder help identify
the abstractions in a new problem given to him or her by a
client. It is assumed that the RA has on-line what the
client believes is a complete description of the system to
be built, written mostly in some natural language.

First some trial runs need to be done on small parts of
the transcript, taken from different sections of it, in order
to learn the language of the document. Learning here
consists in identifying the ignored words, putting the
common words into the ignored-phrases$le, and the spe-
cial application words into the ignored-application-
phraseslfile. Besides words to ignore, the ignored-
application-phrases- le may later contain very important
high level abstractions that have been recognized, noted,
and put into the ignored-application-phrases-file in order
not to clutter up the output.

When using AbstFinder with huge transcripts, the RA
should read the output list of abstraction and note the
abstractions identified by fewer than four or five phrases.
Abstractions identified by more than five phrase are
difficult to understand. They are also often extraneous be-
cause they capture concepts that are too general to be use-
ful. The extreme example is the one abstraction that
identifies the whole transcript, and that abstraction is
clearly not very useful. Therefore, the RA has to stop at
some point, at which the abstractions are still useful, and
beyond which they are not useful. It may be impossible to
find a single point meeting both criteria, so often the RA
has to settle for a point beyond which they are not useful.

The main purpose of the clerical tool is to identify all
meaningful abstractions. Without full coverage, the RA
will never trust the tool to not overlook something. So if
the list is cut off just before the point at which abstrac-
tions are identified by six phrases, the concern is whether
there are any abstractions that are not recognized because
they are identified by more than five phrases. In order to
eliminate any worry about a possible lost of abstractions,
the following iterative procedure should be carried out.

Activate AbstFinder once on the original document.
Then, with the strainer program, remove from the origi-

88

nal document the abstractions already recognized and
logged by the RA, leaving what is left in another filef
Then, activate AbstFinder on f. The result of Abst-
Finder is a new list of abstractions, without the ones that
were recognized before, but with some that had been
buried in the first abstraction list after the cut-off point.

The process repeats until finally the RA is left infwith
a very short list of abstractions, which are all meaning-
less. That meaningless list indicates that all the meaning-
ful abstractions were identified previously and strained
out from the transcript. The accumulated list of meaning-
ful abstractions provide full coverage.

This iterative way of applying AbstFinder and then
strainer, is suitable for a human RA to capture large
amounts of information. Doing it step by step allows him
or her to look each time over a limited, readable, and
understandable amount of information and to accumulate
it. The RA is confident that nothing is overlooked, be-
cause things that have not been seen yet will pop up in
some later iteration. The iterations continue until finally
she or he is sure that the document has been wrung dry of
abstractions.

4 Evaluation of AbstFinder

This section considers the evaluation of the effective-
ness of AbstFinder for finding abstractions in natural
language text. It is first necessary to explain how such a
tool can be evaluated with the help of case studies. Then
two of the case studies are described. These lead to the
conclusion that for them, AbstFinder is indeed effective.

With any new idea of a method or a tool one must
evaluate its effectiveness. First, it is useful to compare
the new tool to old tools, such as findphrases and the LA
Finder, to verify that the new tool does at least as well or
better than the old ones.

One must really test such a tool against a human effort,
since heretofore requirements elicitation has been done
manually by a humans. There is no simple analytic
method for testing human efforts. As for many software
engineering issues, controlled experiments are out of the
question. Running sufficient numbers of instances to ob-
tain significant results is prohibitively expensive when the
instances involve industrial-sized problems [131. More-
over, too often, individual differences dominate the con-
trolled variable of the experiment [l 11.

An important issue is the question of whether the
abstractions found by the tool are meaningful to the hu-
man RA that has to approve them. Meaningfulness can
be confirmed only by humans, and is very much affected
by the WordThreshold.

The key objective measures of the effectiveness of
AbstFinder are: (1) its coverage, and (2) how summariz-

ing it is. A tool that is not covering or which does not
summarize is not good, for the following reasons:

It must be that this tool does not overlook any impor-
tant abstraction that will need to be present in the require-
ments specification. A tool that does not overlook impor-
tant abstraction is said to be covering. An RA will not be
willing to be assisted by any tool unless he or she is
confident that it is covering.

Clearly, the identity function is a covering tool. How-
ever, presenting all the input does not help the RA either.
The other main requirement for the tool is that it reduce
the amount of text that the RA must look at. A human
RA still has to do the thinking with the output of the tool,
in order to approve the abstractions found. The RA will
not be effective if the amount of information that must be
examined is too big. A tool whose output is significantly
smaller than its input is said to be summarizing.

Note finally, that a tool that is only summarizing is no
good either. The most summarizing tool is that which out-
puts nothing. The tool must summarize while preserving
coverage.

Measuring the ability to summarize is easy. It is done
by simply comparing the ratio of sizes between the input
.transcript to the output of AbstFinder. Coverage is much
harder to measure. One must compare the list generated
by AbstFinder to that made by a known expert (and pray
that in fact the expert is good) and judge whether all con-
cepts found in the latter are present in the former. There
is no better measure than experience, and ultimately the
proof will be in acceptance of tool by the RA community.

To put the evaluation in context, it is important to
understand typical scenarios of abstraction identification
with and without AbstFinder to help the RA.

1. reads all the documents once to get a sense of what is

2. then repeatedly reads individual documents and parts
thereof in order to find and verify abstractions until no
more new abstractions are found.

Without AbstFinder, the RA

there, and

With AbstFinder, the RA

1. reads all the documents once to get a sense of what is

2. follows the iterative procedure of Section #iteration#

Thus, in traditional abstraction identification, the full set
of documents are read over and over, with no prior limit.
In AbstFinder-assisted abstraction identification, if the
output is covering, the full set of documents is read only
once. Thereafter, only the much smaller summaries need
to be examined over and over. Besides being smaller than

there, and

until no new abstractions are found.

89

the full set, the summaries gather the most important con-
cepts to the top of the list for a better focus.

For the evaluation, since the first steps of the two
scenarios are the same, the comparisons focuses on the
differences in what must be examined for the second
steps.

Two of the case studies used to evaluate AbstFinder
are described below.

Data Abstraction
stringtype-file

4.1 Findphrases case study

The findphrases decomposition was used as a case
study because the decomposition was already known.
Moreover, it had been the subject of case studies for
abstraction identification with the help of findphrases
and the the LA Finder. Therefore, it could be used to
check AbstFinder’s results against already known results
and against previous tools. The document that served as
the requirements was the manual page of findphrases,
because in fact the manual page was written before the
program was written as a requirements document. The al-
ready known abstractions were taken from Aguilera’s [l]
program decomposition, and her own list of abstractions
identified by findphrases, and Maarek’s [lo] list of
abstractions identified by lexical-affinities (See Table 1).

As shown in Appendix 1, the first 25 of the 48 entries
of the AbstFinder output list includes all the abstractions
found by Aguilera in implementing findphrases, all
abstractions found by findphrases, and all abstractions
found by Maarek with lexical affinities. So, for this case
study, AbstFinder was found to be at least as covering as
findphrases and the LA finder and was found to cover all
abstractions found by a human programmer.

Phrases
strings, characters

4.2 RFP case study

The Request For Proposal (RFP) document for the Un-
manned Aerial Vehicle-Short Range (UAV-SR) system is
a large industrial-strength case, about 100 pages long,
containing about 2200 sentences, which we were lucky to
get. The RFP transcript was already analyzed by three ex-
perts over a month, for a total effort of three person-
months. The experiment consisted of the first author,
called “the RA” below, analyzing the RFP with the help
AbstFinder, and comparing the resulting abstractions list
to the list of requirements produced by the three experts.
The list of requirements produced by the three experts is
called “the human-made’’ document below. The RA did
not see this human-made document until after she had
finished generating her list with the help of AbstFinder.
The hope was the RA would find meaningful abstractions
in a summarizing output list of AbstFinder while provid-
ing full coverage of the client’s requirements, and with a
lot less effort than three person-months.

output-file
chunk-fi le
punc-keyword-table

I The abstractions of findphrases

output, tables of the output
file(s), free format
punctuation keyword(s) file

I argument-line I argument, option

I multi-tokens-table I multi tokens file
I text-file I text, input, arbitrary text

phrases phrase(s), repeated phrases,
ignored phrases

I sentences 1 sentence(s)

Table 1 : The abstractions of findphrases

In the thesis of the first author, the effectiveness of
AbstFinder for the RFP case study is evaluated. Space
limitations do not permit presentation of the full details of
this evaluation. Instead, this section indicates how the
evaluation was carried out and the draws only the specific
and general conclusions.

4.2.1 Meaningfulness: After the AbstFinder user was
finished generating what she thought was a complete list
of abstractions, the phrases in this list were examined by
the three expert analysts of the RFP transcript. They all
found all of the AbstFinder-generated phrases to be
meaningful to them. One of them was very impressed to
see in the beginning of the AbstFinder-generated list
some abstractions, such as “surrogated training”, that they
had overlooked for a long time until finally the customer
pinned it on their noses.

4.2.2 Summarizing: The output of AbstFinder was
summarizing. The original document RFP was 169,323
bytes long whereas AbstFinder’s final result was only
47,105 bytes, about 25% of the size of the original data.

4.2.3 People and computer power: Using AbstFinder
helped the RA to get the list of abstractions faster. The list
of requirements generated by the three experts required
one month of concentrated work for a total of three
person-months. Running AbstFinder took about five
hours total CPU time, three hours operating time, and
about two hours of RA overview, which is about one day
of work. The first run of AbstFinder on RFP took about
two hours. The second run, after straining out the top,
most frequent abstractions on the list, took about 30
minutes. The last run took about 5 minutes. However,
note that the RA was doing other things while the CPU

90

was running.

4.2.4 Coverage: The problem with evaluating coverage
is that someone must sit down and see that all abstractions
in the human-made document show up in the
AbstFinder-generated list. The high probability of error
in this tedious job makes any claimed “yes” answer
highly suspect. In addition, the person doing the job had a
vested interest in finding a “yes” answer. Therefore a
more systematic way to evaluate coverage had to be
found.

The coverage question can be answered by straining
from the human-made document all abstractions that ap-
pear in AbstFinder’s result and seeing if there are any
leftovers. No leftovers ineans full coverage. The smaller
size of the leftovers and the greater visibility of meaning-
less text increases the credibility of the answer. The
result of that subtraction was 3019 bytes. The RFP is
169,323 bytes (about 100 pages) long and the human-
made requirements document is 83 pages (about 140K
bytes) long. The phrases of the remainder were analyzed
very carefully in order to find out if AbstFinder missed
any abstraction. The phrases of the remainder were
separated into several categories according to their
characteristics.

Most of the phrases were in the meta-language for re-
quirements specification such as “activate”, “allow”,
“deactivate”, “herein”, “include”, “integrate”, “must”,
“only”, “provide”, which are not meaningful abstractions.
Perhaps these should be added to the ignored-phrases-Ble.

Some concept were in different grammatical forms
such as “transmit” in one document and “transmitting”,
“transmitters”, and “transceiver” in the other one, or
“calibrate” and “calibration”, or “assigned” and “assign-
ment”. Those are actually the same abstractions. While
AbstFinder is able to classify all the “transmit ...” words,
all the “trans...”, etc. as single abstractions, strainer
works on whole words and is not able to remove words
that properly contain a recognized root.

Acronyms such as “NBC” are introduced to replace a
longer full phrase such as “Nuclear, Biological, Chemi-
cal”; the full phrase appears only once at the introduction
of the acronym or in a dictionary of acronyms and the
acronym appears many times throughout the document.
The acronyms are used to save the writing of the longer
full phrase. AbstFinder did not identify many acronyms
and failed to find most of the full phrases that the acro-
nyms replaced. Many acronyms are shorter than the
WordThreshold, and a full phrase that appears only once
is not going to be caught by any frequency-based scheme.
Given that reducing WordThreshold causes generation of
too much noise, there are two solutions, both general
enough to be made part of a standard scenario for the RA.

1 . The synonym dictionary can be used to replace the
acronyms by their full phrases for the purpose of
abstraction identification.

2. Recognize all the acronyms as important abstractions,
log them as abstractions, and then add them to the
ignored-application-phrases-$le.

The latter solution is useful for the RA who actually
prefers to work with the acronyms.

To sum up, after some generally ,applicable modifica-
tions that should be part of a standard scenario for use of
AbstFinder, it was clear that full coverage was achieved
in the AbstFinder-assisted abstractions list.

4.2.5 Does better than human experts: We were in-
terested to see if AbstFinder found some concept that the
human RA overlooked. This meant checking if the list of
requirements in the human-made document cover the list
of abstractions found by AbstFinder. That question was
answered by having strainer remove from the Abst-
Finder abstraction list all that appears in human-made do-
cument to see if there are any leftovers in the AbstFinder
results that the humans overlooked.

The result was about 35,402 bytes long. In these bytes
were found concepts that were hidden in the Classified
Requirements Appendix of the RFP document, non-
software requirements, and concepts, such as “surrogated
training”, that the human experts did overlook. There-
fore, we got the impression that a human RA assisted with
AbstFinder can do better than several unassisted human
R A S .

4.3 Results

For the specific case studies carried out,

1. AbstFinder was found to be at least as good as
findphrases and the LA finder on the findphrases re-
quirements. All the abstractions found by findphrases
and the LA finder were found on the top of the output
list of AbstFinder.

2. a human RA assisted by AbstFinder is at least as good
as three human experts on the RFP, and in fact found
some abstractions that the experts did not find.

The conclusion is that for the case studies presented,
AbstFinder is good, it has coverage and it is summariz-
ing.

5 Conclusions

More experiments on industrial sized examples must
be carried out. With each such experiment, it is important
to have a qualified, independent analysis available with

91

which to compare the AbstFinder-generated list of
abstractions. To encourage such experiments, the authors
are making the source code of the tool available. Please
contact the second author at dberry@cs.technion.ac.il for
more details.

Also now that the prototype has successfully proved a
concept, it is time to consider scrapping the oft-modified
prototype in favor of a freshly written production version,
in which better algorithms and data structures are used.

References

[l] Aguilera, C. and Berry, D.M., “The Use of a Repeated
Phrase Finder in Requirements Extraction,” Journal of Sys-
tems and Sofhvare 13(9), p.209-230 (1990).

[2] Berry, D.M., Yavne, N.M., and Yavne, M., “Application of
Program Design Language Tools to Abbott’s Method of
Program Design by Informal Natural Language Descrip-
tions,” Joumal of Software and Systems 7 , p.221-247
(1987).

[3] Cruse, D.A., Lexical Semantics, Cambridge University
Press, Cambridge (1986).

[4] Goguen, J.A. and Linde, C., ‘Techniques for Requirements
Elicitation,” pp. 152-164 in Proceedings of the IEEE Inter-
national Symposium on Requirements Engineering, San
Diego, CA (January, 1993).

[5] Goldin, L., “An Environment for Aiding Requirements
Analysts in Requirements Elicitation for Large Software
Systems,” Ph.D. Dissertation, Faculty of Computer Sci-
ence Department, Technion, Haifa, Israel (December,
1993).

[6] Holtzblatt, K. and Jones, S., “Contextual Inquiry: Principles
and Practice,” Technical Report DEC-TR 729, Digital
Equipment Corporation (October, 1990).

[7] Knuth, D.E., The Art of Computer Programming: Sorting
and Searching, Addison-Wesley, Reading, MA (1973).

[8] Leite, J.C.S.P. and Franco, A.P.M., “A Strategy for Con-
ceptual Model Acquisition,” pp. 243-246 in Proceedings of
the IEEE International Symposium on Requirements En-
gineering, San Diego, CA (January, 1993).

[9] Luhn, M., “The Automatic Creation of Literature
Abstracts,” IBM Joumal of Research and Development

[lo] Maarek, Y. and Berry, D.M., “The Use of Lexical Affinities
in Requirements Extraction,” Technical Report, Technion,
Haifa, Israel (November, 1988).

[111 Sackman, H., Erickson, W.J., and Grant, E.E., “Exploratory
Experimental Studies Comparing Online and Offline Pro-
gramming Performance,” Communications of the ACM
11(1), p.3-11 (January, 1968).

[121 Salton, G., Automatic Text Processing: The Transforma-
tion, Analysis and Retrieval of Information by Computer,
Addison-Wesley, Reading, MA (1989).

[131 Schach, S.R., Software Engineering, Aksen Associates &
Irwin, Boston, MA (1992). Second Edition.

[141 Sklar, B., Digital Communication Fundemcntals and Appli-
cations, Prentice-Hall, Englewood Cliffs, NJ (1988).

[15] Wood, D.P., Christel, M.G., and Stevens, S.M., “A Mul-
timedia Approach to Requirements Capture and Modeling,”
in Proceedings of the International Conference on Require-
ments Engineering, Colorado Springs, CO (April, 1994).

2(2), p.159-165 (April, 1958).

Read a punctuation-keyword-file, an ignored-phrases-file, an ignored-application-phrases-jile, and a synonyms-file;
Partition the text into one sentence per line, a sentence being the text lying between two consecutive elements of the

punctuation-keyword-file;
Remove from the text substrings found in the ignored-phrases-jile and substrings found in the ignored-application-phrases-file,

and replace words by their synonyms according to the synonym-file;

deciare N := number of lines; comment = number of sentences tnemmoc
declare corr-phrases[l :NI, corr-lines[l :NI;
declare NA := 1; comment number of abstractions accumulated so far 5 N tnemmoc
for i from 1 to N do

corr-phrases[NA] := 0; corr-lines[NA] := {i};
for j from i+l to N do

if Abst(line[i],linelj]) # 0 then
corr- phrases[NA] := corr- phrases[NA]uAbst(line[i],line[jl); corr-lines[NA] := corr-lines[NA]u{i}u~} fi od;

if corr-phrases[NA] # 0 then NA := NA + 1 fi od;
NA := NA - 1 ; comment correct overshoot tnemmoc

Sort both corr-phrases and corr-lines so that correspondence between corr- phrases[i] and corr-lines[i] is preserved and
the elements of corr-phrases are ordered mainly by increasing numbers of phrases in the elements and within the
group for any number of phrases, by decreasing numbers of lines from which the phrases came;

Prepare and print the output as described in Section 2.3.4;

Figure 2: The AbstFinder program

92

m
e

m 4

9 :
Y .- *
'3
0

o U

G
c m - m
a

p
8

2

u
m
u

a -

h
u
U

L4

c

u m
rl rl

u
m
E
W

m 0-
L 4 m w r l

m r l u
4 -4

u m u 4
-sen
u 0-

-
n m o m

n u - m -

m E :

-_
d m o

c u
' r l a
I40 u m -

m

a U k

2:
o m w Y

m c m o
k .d w u

m
- 3

w -

93

