
PRACTICE AND EXPERIENCE

DITROFF/FFORTID, An Adaptation of the
UNIX” DITROFF for Formatting Bidirectional
Text
CARY BUCHMAN and DANIEL M. BERRY
University of California, Los Angeles

JAKOB GONCZAROWSKI
Hebrew University

DITROFFIFFORTZD, a collection of pre- and postprocessors for the UNIX DZTROFF (Device
Independent Typesetter RunOFF) is described. DITROFF/FFORTID permits formatting of text
involving a mixture of languages written from left to right and from right to left, such as English and
Hebrew. The programs are table driven or macro-generated to permit them to be used for any
languages written from left to right and from right to left so long as fonts with the proper character
sets can be mounted on a typesetting device supported by DZTROFF. The preprocessors are set up
to permit phonetic, unidirectional input of all of the alphabets needed using only the two alphabets
(each case counts as an alphabet) available on the input device. These macro-generated preprocessors
can be adjusted to the user’s pronunciation, the language’s rules about a letter’s form, depending on
its position in the word, and the language of the user’s input keyboard. The postprocessor is set up
to properly change direction of formatting when the text switches to a language written in a different
direction. The collection of programs is also designed to allow use of any of DZTROFF’s preprocessors,
such as PZC, EQN, TBL, and the various device drivers.

Categories and Subject Descriptors: H.4.1 [Information System Applications]: Office Automa-
tion--word processing; 1.7.2 [Text Processing]: Document Preparation--format and notation

General Terms: Design, Human Factors, Languages

Additional Key Words and Phrases: Bidirectional text, bidirectional formatting, macro, preprocessor,
postprocessor

1. INTRODUCTION

DITROFF/FFORTID [2] is a collection of programs developed at the University
of California, Los Angeles, for augmenting the UNIX [13] DITROFF (Device
Independent Typesetter RunOFF) [4] so that it can be used to format text
involving languages written left to right, right to left, and in both directions. It

n UNIX is a trademark of AT&T Bell Laboratories.
Authors’ addresses: C. Buchman, Deloitte Haskins & Sells, Cracker Center, 333 So. Grand Ave., Los
Angeles, CA 90071; D. M. Berry, Department of Computer Science, University of California, Los
Angeles, CA 90024; J. Gonczarowski, Department of Computer Science, Hebrew University, Jerusa-
lem, Israel.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.
0 1985 ACM 0734-2047/85/1000-0380 $00.75

ACM Transactions on Office Information Systems, Vol. 3, No. 4, October 1985, Pages 380-397.

DITROFF/FFORTID - 381

is intended to be another of the many macro, pre-, and postprocessors available
for DITROFF to permit a variety of useful text generation functions such as
dealing with bibliographies, drawing pictures, building tables, writing equations,
typesetting on a variety of devices, etc. The centered, in-line examples and the
appendixes were formatted and typeset on an Imagen’ laser printer with the help
of the DITROFFIFFORTID system.2

2. GOALS AND DESIGN
Assume that one wishes to write a document involving text in two languages.
One of these languages is a left-to-right language called, for the purpose of
keeping the discussion language independent, LR. LR is typically written with
the Latin alphabet. The other is a right-to-left language called RL. The two
languages also involve different alphabets. First consider what is available for
input and output.

2.1 Available Input and Output Devices

Typically, the input device available is a standard ASCII keyboard with two cases
of Latin letters designed for use with language LR. There also exist keyboards
with the alphabet of the language RL in all of its forms, with possibly one case
of Latin available also. In each of these cases, the associated screen can usually
exhibit only what is capable of being input. There do exist terminals that can
switch between the above two systems; however, at any one time only one
alphabet or the other, but not both, can appear on the screen. Currently, with
the advent of high resolution graphic devices, there exist terminals that can input
both LR and RL in all cases and forms, using the standard keyboard arrangement
for each, and can exhibit all letters of each on the screen at the same time [l].
Function keys are used to switch from one language to another; upon a switch,
the key-to-byte code mapping is changed. The language under which a character
is entered is remembered so that all characters can be exhibited on the screen in
their correct glyph. Ideally then, the formatting system should be able to accom-
modate input from any kind of keyboard.

The output device may be anything from a lineprinter to a high-resolution
phototypesetter. The device may have a programmable character set or it may
have fixed character sets. In any case, it is assumed that whatever the output
device, the alphabets of LR and RL in all of their respective cases may be
mounted.

The desire is to be able to prepare input on the input device, giving the text
interspersed with formatting commands, and produce nicely formatted output on
the output device, with each language written in its own alphabet and direction.

r Imagen is a trademark of Imagen, Inc.
*The manuscript that the referees saw was typeset on the Imagen laser printer in as close an
approximation of TOOIS format as possible, in the hopes that this copy would be accepted camera-
ready for direct inclusion in the journal. The low, 240 dots-per-inch (dpi) resolution of the device
made that copy unacceptable for direct inclusion in the journal. Furthermore, no typesetter of
sufficiently high resolution, available to the authors, has a full Hebrew alphabet. Hence it was decided
to have the article typeset by the journal’s normal printer and to use the manuscript copy directly
only for those portions that actually make use of the bidirectional capabilities, that is, the in-line
examples and the appendixes.

ACM Transactions on Office Information Systems, Vol. 3, No. 4, October 1985.

382 . C. Buchman, D. M. Berry, and J. Gonczarowski

2.2 Software Engineering, Human Interface,
and Program Design Considerations

There are a number of software engineering, human interface, and program
design considerations. It is necessary to consider existing formatting systems
with an eye to reusing existing software, if possible, and to consider the preferred
way of entering the text that is to be formatted.

It is highly desirable that the formatting commands be similar to or even
identical to those of an existing formatting system. If so, then

(1) at least the users of that system do not have much new to learn,
(2) new users have a higher payoff when learning to use the bidirectional

formatting system because,what they learn is useful for ordinary formatting,
(3) there exists a large environment consisting of prepasses, macros, databases,

experience, expertise, folklore, etc., that makes it easier for both the new and
not so new user of the bidirectional formatter,

(4) it may be possible to use the software for the existing formatting system as
at least the basis for the bidirectional formatter.

Of course, the bidirectional formatter has new capabilities for which new com-
mands must be provided. These will require new learning and new software in
any case. These must be designed carefully to mesh well with the features and
commands of the existing system.

The existing system chosen for extensions is the Device Independent TROFF
system that can be obtained from AT&T for running on UNIX systems. This is
a powerful, stable, existing system with many macro sets for making it appear
higher level and many existing preprocessors for dealing with bibliographical
citations, pictures, tables, equations, etc. There is a group of experts on this
system available for consultation on the USENET UNIX network. Most UNIX
sites have resident experts. Most important from the point of view of the designers
of the bidirectional formatter, it is available in source form so it is easy to modify.
Also the UNIX system, by its very design, encourages composing existing software
with new small programs to obtain programs with more function; the UNIX pipe
and file redirection concepts are indispensable for this purpose [7].

For what kind of user should the input scheme be designed? It seems appro-
priate to design the input scheme for a person who is a touch-typist in both
languages.3 Such a person would type all the characters of a document in the
order in which they are heard, hitting a function key and/or dropping in a
language or font changing command when the language is changed. Thus, for
such a person, all input would be in time order and each language would be in its
own ASCII code.4 For devices which do not support direct input of all languages
in their own ASCII codes, it is easy enough*to provide translators which map
from, say, a phonetic encoding of the missing language to its ASCII coding. Then
no matter what, all input can be in time order. Note that if the input is in time
order, then the characters of the input are stored in the file in time order also.

3 The second author has taught himself to touch-type in Hebrew and English. So, such people exist.
Also many secretaries in Israel touch-type in both.
4 The ASCII encoding for any alphabet should assign codes to letters in lexicographical order, SO that
sorting into alphabetical order can be done by sorting the codes numerically.

ACM Transactions on Office Information Systems, Vol. 3, No. 4, October 1985

DITROFF/FFORTID l 383

The next question to consider is that of printing each language in its own
direction. For the purposes of this discussion let LR be English in the Roman
font, called R, and let RL be English in the Typewriter font, called T, and written
right to left5 The input to the formatter would be6

\fRThe next sentence contains one verb.
\fTThis sentence contains one verb.
\fRThe previous sentence contains one verb.

Note that all input is in the order in which it is heard, although in this
representation, the second sentence, which is in RL, is printed backward with
respect to the way it is supposed to be printed. This yields the output:

ncncxtscn~containsonc
Verb. Thim 8entellce
ccmtaina me verb. 'Ihe
prcviousscn~am~clac
VUb.

Note that in this output the Typewriter text, in language RL, is written backward,
with respect to the way it is supposed to appear.

Now the problem is to get RL to be printed right to left. Reversing the input,

\fRThe next sentence contains one verb.
\ff .brev eno sniatnoc ecnetnes sihT
\fRThe previous sentence contains one verb.

does not help. In the output,

ncncxtscntcnccamtainsone
Verb. .brev eno sniatncc
eCnetnsm SihT ?hc pmk~3
senteace am- one verb.

The second sentence is split on the lines incorrectly causing the beginning of the
sentence to be on the line after that containing the end of the sentence.

The solution proposed by the third author, in an earlier prototype7 [2] of the
present system, is to format the text in its input form, that is, with all text in
time order, to discover where the line breaks are, and then to reverse the RL text
within each line. This scheme works because of the simple fact that the decision
of where to break lines depends on the sums of the widths of the letters on the
line and not on the direction in which these letters are written; a character’s width

’ As might have been written by Leonardo da Vinci had he known English!
e \f is the in-line command to switch fonts. \fR means “switch to Roman font.” \fT means “switch
to Typewritter font.”
‘The present system is an improvement over the earlier prototype in that it is built on top of
DITROFF, which is better structured than TROFF [12] upon which the prototype runs. In particular,
the prototype requires the use of a slightly modified TROFF, while the new programs run with a
standard version of DZTROFF. Additionally, as a result of having to use the original TROFF with its
various restrictions, the prototype imposes a number of restrictions on overall document format; the
new programs eliminate almost all the restrictions and give the user greater formatting flexibility.

ACM Transactions on Office Information Systems, Vol. 3, No. 4, October 1985.

364 * C. Buchman, D. M. Berry, and J. Gonczarowski

does not change when the direction of printing changes. With such a scheme, a
slight variation of the first input above,8

\fRThe next sentence contains one verb.
\ffThis sentence contains one verb\fR.
\fRThe previous sentence contains one verb.

yields the following output:

lllcnutscntcnc8amtainsonc
VU-b. ecnetne8 8ihT
brev en0 8niatnoc. Tbc
previw scnm amtaim one
verb.

This scheme is general enough to be applied to any system in which a
representation of the text after breaking into lines, but before printing, exists. In
the DITROFF system, the output of the device-independent part of the system,
actually the DITROFF program itself, is of the desired form. This output is sent
to a device driver that interprets the output in order to print the text of each
line. The scheme then requires that a new program be written to sit between
DITROFF and the device driver, reorganizing the DITROFF output so that the
RL text is printed by the device driver in the right-to-left direction. This program
is called FFORTID. This bidirectional capability can easily be added also to the
TEX [8] system by writing a program that reorganizes the device-independent
DVI form output in a similar way.g

Evidently, this scheme is not obvious at first sight. The evidence of this is a
suggestion in Knuth’s TEX book [8, p. 661 that one way to handle right-to-left
languages is to have characters with negative widths [8]. This information is
used in order to determine which text goes on what line and how far apart to
spread the words on a line by the stage causing the generation of the DVI output.
In fairness to Knuth, it must be noted that the suggestion also carries the
observation that using negative widths works only to a limited extent, since the
line-breaking algorithm is based on the assumption that words do not have
negative widths. The present authors’ observation is that trying to deal with
direction of printing during the line-breaking stage is hopelessly complicated and
that dealing with it after the lines have been broken is the simplest.

2.3 System Flow and Module Function
Thus the bidirectional formatting system, called DITROFFIFFORTID, consists
of a variety of input translators called *TRN plus a program called FFORTID.
The schematic for using the pieces of DITROFFIFFORTID with DITROFF is
shown in Figure 1 [5, 6, 9, 10, 151.

The in-line examples, the flow diagram, and the appendixes of the present
paper were done with the help of REFER, PIC, TBL, EQN, DITROFF, FFORTID,
and a device driver. In what follows, the reader is assumed to be familiar with

a It is necessary to switch to the R font before the period, because the RL sentence is a phrase within
a sentence in a left-to-right language document. Section 4 deals with documents in a right-to-left
language.
’ A group at the Weizmann Institute and Pierre MacKay are building such programs.

ACM Transactions on Oflice Information Systems, Vol. 3, No. 4, October 1985.

DITROFF/FFORTID l 385

s l------- :- I (aFci=w L,,,,,-
1 r

I I

c)c
I I

J L

Figure 1

the commands of TBL, EQN, and DITROFF. The discussion herein makes use
of such knowledge with little or no further explanation.

Each *TRN, named with a different expansion of “*“, is capable of translating
input involving only the characters available on some keyboard into a fuller set
involving all needed characters in all alphabets. The use of a *TRN is optional
because one may just happen to have a keyboard with all needed characters. If
one’s keyboard completely lacks a particular alphabet, then one may wish to
phonetically encode the letters of the missing alphabet with letters of an available
alphabet. The *TRN in this case translates the coding letter into a suitable
internal representation of the coded letter. The most suitable internal code for
any alphabet is that used by its own standard keyboard, that is, its ASCII
encoding. Because there is, in general, no unique transliteration for a language
into the alphabet of another language, each user may prefer a different translit-
eration scheme based on his or her dialect of that language. In addition, each
output device may have a different mapping between internal character codes
and letters of the output alphabet. Each transliteration *TRN is constructed
from a single TRN scheme in order to support a particular transliteration and a
particular device. Thus, either the transliteration or the device’s encoding can be
changed without changing the remaining programs.

Another possibility is that one case, but not both, of the letters for an alphabet
is available. Then one wants the ability to let the available case represent the
most common case for the language and to be able to use some escape character
to denote a case shift for the following character. For such a translation, the
*TRN takes the escape character as a parameter.

As a consequence, whether or not the input must be subjected to some *TRN,
by the time DITROFF gets the document, the entire text in both languages is in
a form such that if it is sent to the output device with the proper fonts mounted,
the correct letters are printed, but not in the proper direction.

DITROFF takes the command-laden input, makes use of tables telling it how
wide each character of each alphabet is, and breaks the text into properly adjusted
lines with the commands obeyed. These commands include those for indenting
paragraphs, changing fonts, centering lines, breaking the text into lines and
pages, numbering pages, printing footnotes, printing figures, printing equations,
printing tables, drawing pictures, making tables of contents, etc. If this output
were to be sent directly to the device driver, each line would contain all the
characters it should, but the characters in RL would be in the reverse direction
on a line-by-line basis.

ACM Transactions on Office Information Systems, Vol. 3, No. 4, October 1985.

386 l C. Buchman, D. M. Berry, and J. Gonczarowski

FFORTID takes DITROFF output and produces output that appears to the
subsequent device driver as if it had come from DITROFF itself. FFORTID
searches for right-to-left text and properly rearranges the output so that when
the output is sent to a device with the proper alphabets mounted, the output
appears as it should with each language printed in its own direction.

3. *TRN

There are two kinds of *TRNs available: transliterating, and missing case. The
transliterating *TRN provides a missing alphabet by building an encoding for its
letters using letters of an available alphabet. The missing-case *TRN provides a
missing case of a present alphabet by using an escape character to denote a case
shift in the following letter. Due to space limitations, these *TRNs are not
discussed further here. See [2] for more details.

3.1 Transliterating l T/?Ns

Each transliterating *TRN is a generically generated, table-driven program which
defines the mapping between the characters of the input device and the character
codes for the output device. The mapping is built out of two table-defined
mappings. One maps characters of the input device to characters of the language’s
alphabet. The second maps characters of the language’s alphabet to the codes
causing the printing of the characters’ glyphs on the output device. Since each
mapping is table driven, each can easily be varied to produce another version of
*TRN. The first mapping can be constructed to represent a phonetic encoding
based on the user’s own pronunciation of the language or can be constructed to
represent the standard typewriter keyboard for the language for the convenience
of a user who can touch-type. The second mapping can be constructed to fit the
output device available. For example, the codes for the Hebrew letters on a
Diablo” daisy-wheel printer are different from those of the Berkeley Versatec”
fonts [14], so a different output would be needed for each. Use of these tables
permits the translator and the other programs in the system to be input and
output device independent.

It is recognized that most of the use of these programs will be for right-to-left
Middle Eastern languages, such as Arabic, Hebrew, and Farsi. These languages
have some letters whose forms change depending on their positions in the
containing words. Therefore, the table for the first mapping is set up so that the
translation is also dependent on a character’s position within a word. Thus, there
are indications in this table of which letters change form depending on their
position within a word. Additionally, there is a third table giving the set of
characters that serve to delimit a word. The end-of-word indicators in this table
can be both single ASCII chracters and DITROFF escape sequences.12

Finally, in these languages, vowels tend not to be printed. However, vowels are
useful for increasing the readability of phonetic input. Thus, the tables also allow
input characters to be translated into no or zero-width characters on the output.

“Diablo is a trademark of Xerox Corporation.
I’ Versatec is a trademark of Xerox Corporation.
“This includes only DITROFF escape sequence characters of the form \X or \(XY, for any X
and Y.

ACM Transactions on Office Information Systems, Vol. 3, No. 4, October 1985.

DITROFF/FFORTID 8 387

Any input character not included in the first table is translated into no character
and does not appear in the output. On the other hand, an input character can be
translated to a zero-width character by mapping it to an appropriate output code
in the second table. It should be noted that an input character not included in
the first mapping table, thus translating into no character, can still be included
as an end-of-word indicator in the third table. In this manner, the character can
serve as a word delimiter without appearing in the output. This capability is
useful for forcing a word-ending form of a letter even when it is not followed by
an end-of-word indicator.

Because the transliterating *TRNs are generally used to represent the letters
of a right-to-left alphabet by letters of a left-to-right alphabet, it must be possible
for such *TRNs to exchange the common bracketing pairs. For example, an open
parenthesis might be represented by “(” in the input and might be represented
as “)” in the output.

Appendix A contains a user’s description of ISRATRN, a *TRN for Hebrew
assuming an Israeli pronunciation of the letters. Other *TRNs include one based
on a Yiddish pronunciation and one designed for a Hebrew touch-typist; this last
*TRN assumes that a Latin letter maps to a particular Hebrew letter if, in the
standard touch-typing keyboards of both languages, they occupy the same key.
All three of these assume the same output device, one in which the representation
of the standard letters and punctuation is ASCII.

It was considered to let the transliterating *TRN programs turn translation on
and off on the basis of font changes. That is, whenever the text is in a font for
the language of RL, the translation is turned on. However, because of the various
preprocessors and macro packages [ll], it may not be possible to discern a font
change from the text prepared by the user. For example, in most macro packages,
the “new section” macro causes its argument, the title of the section, to be
printed in another font. Thus either the translator would have to know about all
possible macros and preprocessor commands or else it would have to be applied
just before entering DITROFF when all macro and preprocessor commands have
been converted to DITROFF commands. However, besides being very inflexible,
this approach complicates the process of identifying word boundaries. The macro
processors and preprocessors tend to build up long words out of .ds and .as
commands. It would then be impossible to find the end of a word in the human
sense of the word. Thus it was decided to make the *TRN programs have their
own control characters that turn translation on and off almost independently of
the text.

Each transliterating *TRN has an argument, -e, for setting its escape character
in order that more than one language be processible in a document. The default
escape character is %. In what follows, 90 is used to stand for whatever is in fact
the escape character. The program distinguishes two kinds of environments. One
kind is the single, global textual environment, and the other kind consists of
individual, local, in-command environments occurring within each command line
and each DITROFF escape sequence. In any environment, 9oN turns translation
on, %F turns translation off, and 9% % stands for % itself. Entering a command
line, recognized by a line beginning with a “.” or ““‘, or entering a DITROFF
escape sequence, recognized by an occurrence of “\” anywhere, temporarily
suspends whatever global translation may be going on. Ending the command or

ACM Transactions on Office Information Systems, Vol. 3, No. 4, October 1985.

388 . C. Buchman, D. M. Berry, and J. Gonczarowski

escape sequence resumes whatever global translation was suspended. Within each
command line or escape sequence, embedded text may be translated by issuing a
%N that remains in effect until the next %F or the end of the command line
or escape sequence, whichever comes first. In this manner, a *TRN processes
the input on a strict character-by-character basis, recognizing and preserving
DITROFF macro package commands and DITROFF escape sequences, and
applying the translation mapping to all other input. It is therefore the user’s
responsibility to turn the translation off before any DITROFF preprocessor
command that does not look like a DITROFF command or escape sequence.
Examples of such commands are TX’s table layout commands.

Within either kind of *TRN translation environment, determining if an input
character is at the beginning or in the middle of a word depends only on the
occurrence of textual and word delimiting characters within the environment.
Thus, if an end-of-word indicator within the global text environment is followed
by DITROFF command lines or escape sequences, which constitute local *TRN
environments, the next text character is still considered to be at the beginning
of a word. Likewise, even if a non-end-of-word text character is followed by
DITROFF command lines or escape sequences, the next text character is still
considered to be in the middle of a word.

When determining if an input character is at the end of a word, *TRN does
only a one-character look-ahead. If the next input character, whether it is a text
character or even part of a DITROFF escape sequence construct, is one of those
found in the end-of-word indicator table, the character is considered to be at the
end of a word. Thus, even if a character is followed by a nonbreaking DITROFF
escape sequence, which is in turn followed by one of the characters in the word
delimiter table, the character is not considered to be at the end of a word. *TRN’s
one-character look-ahead also limits the use of escape sequence character as end-
of-word indicators. If an escape sequence is included in the word delimiter table,
any text character following it would be considered the beginning of a word.
However, *TRN’s one-character look-ahead would recognize and evaluate the
7” part of the escape sequence construct only when processing any preceding
text character. In most cases, these limitations do not restrict *TRN’s usefulness.
In the first case, the escape sequence can usually follow the end-of-word indicator
and still yield the same formatting results. In the second case, the escape sequence
character can be preceded by a single character that is included in the word
delimiter table but is mapped to no character (i.e., it is not included in the first
mapping table). In this manner, the escape sequence character would indicate
that the following text character is at the beginning of a word, while the extra
single character would indicate that the preceding character is at the end of the
word. On the other hand, the fact that a character is at the end of a word
can easily be concealed by following it with a \&, the DITROFF zero-width
character.

*TRN is invoked by a command line of the form:
*TRN [-e*TRN escape character] [-hhyphenation-on-argument]
[-lligature-mode-on-argument]

[input file list]
ACM Transactions on Oflice Information Systems, Vol. 3, No. 4, October 1985.

DITROFF/FFORTID l 309

As explained above, the -e argument is used to set *TRN’s escape character to
something other than the default %.

As was mentioned before, *TRN’s translation capabilities are generally used
for the non-English portions in a document. In most cases, then, when starting
a portion of text to be translated by *TRN, it is necessary to turn off DITROFF’s
ligature and hyphenation mechanisms [ll]. Similarly, it may be desired to turn
them back on at the end of these portions of text. Therefore, as a convenience
for the user, if the -h and or -1 arguments are specified, *TRN automatically
turns the appropriate DITROFF mechanism off and on when it encounters the
%N and %F control characters, respectively. Unless otherwise specified in the
command line, *TRN uses the DITROFF .hy command with an argument of
1 to turn automatic hyphenation on. Similarly, by default, *TRN uses the
DITROFF .lg command without any argument to turn the ligature mode on. In
both cases, *TRN uses the appropriate DITROFF command with an argument
of 0 to turn these mechanisms off.

If no input files are specified, *TRN reads from the standard input. Addition-
ally, since *TRN is intended to be a DITROFF preprocessor, it always writes to
the standard output.

4. FFORTID

FFORTID’s job is to take the DITROFF output which is formatted strictly left-
to-right, to find occurrences of text in a right-to-left font, and to rearrange each
line so that the text in each font is written in its proper direction. As illustrated
in Figure 1, FFORTID deals exclusively with DITROFF output; it does not know
and does not need to know anything about any of DITROFF’s preprocessors.
Therefore, the results of using FFORTID with any of DITROFF’s preprocessors
depends only on the DITROFF output generated by the use of the preprocessors.
Furthermore, the output of FFORTID goes on to the same device drivers to
which the DITROFF output would go; therefore, FFORTID’s output must be in
the same form as that of DITROFF.

FFORTID is invoked by a command line of the form:

FFORTID [-rfontposition list][-wpuperwidth]

The -r argument is used to specify which font positions are to be considered
right to left. FFORTID, like DITROFF, recognizes up to 256 possible font
positions (O-255). The actual number of available font positions depends only on
the typesetting device and its associated DITROFF device driver. The default
font direction for all possible font positions is left to right. Once the font direction
is set, either by default or with the -r argument, it remains in effect throughout
the entire document. Observe then that FFORTID’s processing is independent
of what glyphs actually get printed for the mounted fonts. It processes the
designated fonts as right-to-left fonts even if, in fact, the alphabet is that of a
left-to-right language. Indeed, the examples of this section use a typewriter font
in position 4 as the right-to-left font. In fact, it is possible that the same font be
mounted in two different positions, only one of which is designated as a right-

ACM Transactions on Office Information Systems, Vol. 3, No. 4, October 1985.

390 - C. Buchman, D. M. Berry, and J. Gonczarowski

to-left font position. This is how the typewriter font can also be printed left-to-
right in the same document.

The -w argument is used to specify the width of the paper, in inches, on which
the document will be printed. As explained later, FFORTID uses the specified
paper width to determine the width of the right margin. The default paper width
is 8.5 inches and, like the font directions, remains in effect throughout the entire
document.

In addition to the specified font directions, the results of FFORTID’s refor-
matting also depends on the document’s current formatting direction, which can
be either left to right or right to left. The default formatting direction is left to
right and can be changed by the user at any point in the document through the
use of the .PL and .PR macro commands. These commands set the current
formatting direction to left to right and right to left, respectively.

If the current formatting direction is left to right, all formatting, filling,
adjusting, indenting, etc., is to appear as occurring from left to right. In each
output line, any sequence of right-to-left font characters is rotated about its
center axis. For example, the following DITROFF input

.PL

.I1 3.251

.ti + .5i
\flThis is an example of how FFORTID
reformats \f4 right-to-left
fonts \fl when the current \f4 formatting
direction is \fl left-to-right.

produces when using just DITROFF:

This is an example of how F’FORTID refor-
mats right-to-left fonts when the ament
formatting direction is left-twight.

When the same DITROFF output is presented to FFORTID with -r4, the
following output is obtained:

‘Ihis is an example of how FFORTJD refor-
mats stnof tfel-ot-thgir when the current
si noitceria gIlatamrof left-to-right.

If the current formatting direction is right to left, all formatting, filling,
adjusting, indenting, etc., is to appear as occurring from right to left. Each
DITROFF output line is rotated about its center axis, including both the left and
right margins. Then, any sequence of left-to-right font characters is rotated about
its own center axis. For example, the following DITROFF input:

.PR

.II 3.251

.ti + .5i
\f4 This is an example of how FFORTID reformats
\fl DITROFF
output \f4 when the \fl formatting
direction is \f4right-to-left.

ACM Transactions on Office Information Systems, Vol. 3, No. 4, October 1985.

DITROFF/FFORTID l 391

produces with DITROFF alone:

This is en example of how FFORTID
reformat8 DlTROFF output when the
for&t.@ direction is right-to-left.

When the same DITROFF output is presented to FFORTID with -r4, the
following is produced:

DITROFF w0h f0 elpmare M 13i sihT
eht nehw DlTROFF output etamrofer

.tfel-ot-thgir formattingdirEti0niS

It is important to note that DITROFF uses the specified paper width to
determine the margin widths in the reformatted output line. For instance, suppose
that a document is formatted for printing on paper 8.5 inches wide with a left
margin (page offset) of 1.5 inches and a line length of 6 inches. This results in a
right margin of 1 inch. Suppose then that the text specifies a current formatting
direction of right to left. Then, FFORTID’s reformatting of the output line
results in left and right margins of 1 and 1.5 inches, respectively. This margin
calculation works weli for documents formatted entirely in one direction. How-
ever, as a document’s formatting direction changes, the resulting margins widths
are exchanged. Thus .PL’s right and left margins end up not being the same as
.PR’s right and left margins. The use can make FFORTID preserve the left and
right margins by specifying, with the -w argument, a paper width other than
the actual paper width. This artificial paper width should be chosen so that both
margins will appear to FFORTID to be as wide as the desired left margin. For
example, for the document mentioned above, a specified paper width of 9.0 inches
results in reformatted left and right margins of 1.5 inches each. The resulting
excess in the right margin is just white space that effectively falls off the edge of
the paper and does not effect the formatting of the document.

There is one exception to these simple rotation rules in that FFORTID, at
present, makes no attempt to reverse any of DITROFF’s drawing functions, such
as those used by PIG’ and IDEAL (which are also available directly to the user).
It is therefore suggested that these drawing functions, and thus PIC and IDEAL,
be used only when the current formatting direction is left to right. Additionally,
due to the cleverness of the DITROFF output generated by most substantial
EQN equations, it is suggested that EQN’s use also be limited to a left-to-right
formatting direction for all but the simplest forms of equations. These rules do
not in any way restrict the use of right-to-left fonts in the text dealt with by any
of the preprocessors, but simply suggest that these particular preprocessors be
used only when the formatting direction is left to right.

An additional point to keep in mind when preparing input both for DITROFF’s
preprocessors and for DITROFF itself is that FFORTID rotates, as a unit, each
sequence of characters of the same direction. In order to force FFORTID to
rotate parts of a sequence independently, one must artificially separate them

ACM Transactions on Office Information Systems, Vol. 3, No. 4, October 1985.

392 - C. Buchman, D. M. Berry, and J. Gonczarowski

with a change to a font of the opposite direction. For example, the following
input for a TBL table (G3 stands for the tab character):
.PL
.TS
center;
cccc.
column 1 @\f4column 2@column 3@\fl column 4
column 1 @\f4column 2\fl\ 1 @\f4column 3@\flcolumn 4
.TE

would produce

column 1 3nmuloc 2nlmlloc column 4
cohlmn 1 2nmlloc 3nmuloc column 4

when presented to FFORTID with -r4. The additional small white
space (Look for it! It is right there after the 2 nmuloc in the second line
of the table.) introduced by the artificial font break is usually negligible and if
necessary can be balanced by adding additional small white spaces to other input.

In short, some experimentation on the part of the user may be necessary to
achieve the desired results. However, keeping in mind FFORTID’s reformatting
approach under both possible formatting directions, formatting results are for
the most part predictable.

5. CONCLUSIONS

The DITROFFIFFORTID system meets the goals given in Section 1. It provides
a bidirectional formatting system whose basic commands are identical to those
of an existing system, DITROFF, and which adds only two macro commands for
dealing with the new capabilities. It, in fact, makes use of the existing DITROFF
program so that all associated prepasses, macros, experts, etc., may be used
without change. It was built in a way that only one new program is needed,
sitting between the unchanged DITROFF and its current unchanged device
drivers.

The scheme used in the new program is general enough to be applied to other
formatting systems.

The system is currently being extended with Arabic, Farsi, and Urdu, three
other languages with almost identical right-to-left alphabets. In addition, the
system is being extended to handle Japanese and Chinese. Although these do not
require right-to-left processing, they have extremely large alphabets, which
DITROFF is not normally equipped to handle, and they have problems being
input with standard ASCII keyboards.

APPENDIX A. ISRAELI l TRN

Under amtrol of ZSRATRN, when translation is tumcd on, the mpon&nce
between the input character set and the letters of the Hebrew alphabet is as
dmwn in Table 1. Note though that when actually creating ZSRATRN, it is IWXS-
sary to include an entry in the inpuMxlphabet mapping table indicating the in-
put character for all characters available in the output font that are desired to be
useable, including punctuation duractexs. As mentioned above, any input not in-
cluded in this input-to-alphabet table would be translated into no character and
would not appear in the output.
ACM Transactions on Office Information Systems, Vol. 3, No. 4, October 1985.

DITROFF/FFORTID l 393

Table 1 - h$nd to &habet hiapping for ISRAW

(Any character not appccing in second or fourth
cdumn is translated into no character on output.)
JO means “followed by end-of-word indication”~

ZZ”
Input Represented Input
(use any one listed) cllaracter (use any one listed)

x ,,
0 0

2 b 1
1

:
2 i

'I 3 3
ia h 4 4
1 ouvw 5 5
? z 6 6
n i 7 7
E) T 8 8
9 iy 9 9

i

k)
kn (1
1

0 m ‘r I
R me

f
n : f
nD > <

0 < >
Y /” ‘

rl kffn
I

new-m

;
C tab rob
cn blank blank

P 9 !
1 I e k3
v X #
Jl t s s”

::
A x %
Q ,. a

s V x l

3 B
a H
\ 0 + +
1 U I =
n
. r I ;
* I \\
n

ii
t

P 3 ;
s J ,
5 L
II F ; i

Ll
P ? 7
S

wheretheend-of-wordindicationsarennvlinctiblarrk,-. ;?I:)‘]}>‘+
&

ACM Transactions on Office Information Systems, Vol. 3, No. 4, October 1985.

394 ’ C. Buchman, D. M. Berry, and J. Gonczarowski

Table 2 - Alphabet to Output Mapphg
(Also apprarinwety ASCII Coding)

khy Hebrew font character not shown here is coded bv itself.)
character QLareacr

6
ri
C

d

f”

t
i
i
k
1
m

n 0
P
9

r s

U t
V

W

L
2

t

ii
H

I 3 :
n W
1 l?
* I
” Y

5”
K
L

5 J
a F

ii
P

w ;
0 0

2 1 :
3 3
4 4

6 5 5 6

7 6 5
9
) P

(1 1’
1

: i
> >
< <

9
”

The following principles guided the construction of this +ZJW.
1. There are no possibly ambiguous diphthongs. For example if th represents n

(Tav), t represents D (Tet), and h represents il (Heh), then one cannot easily
tell whether to take th as one letter or two.

2. The correspondence is phonetic, particularly if one recalls the Castellano B
(pronounced as the Hebrew 3 (Bet) which, as in Castellano, is pronounced
sometimes as the English B and sometimes as almost the English V), the
Castellano J (pronounced as the Hebrew n (C&t)), the Geman or Serbian C
(pronounced as the Hebrew S @add&)), the Brazilian Ibrtugum X (pro-
nounced sometimes as the Hebrew b (Sin) and sometimes as the Hebrew 0

(shin)).
3. Some Hebrew letters have more than one pronunciation. Therefore whenever

possible without ambiguity, each of the corresponding Latin letters maps to
the same Hebrew letter. Tbus 0150 (Shalom) can be written as xlom, xhvm,
xlvm, or xtum.

4. The non-letkrs ” and / are used as axiings for the so-called silent letters E(
ACM Transactions on Office Information Systems, Vol. 3, No. 4, October 1985.

DITROFF/FFORTID l 395

(Aleph) and y (Ayin). This frees their more usual representations m and c,
which are not always their pronunciations, for other purposes. It was decided
to leave these to represent no characters so that they can be us4 to improve
the human-readability of the phonetic input without affecting the output.
Tlu1~01%7 canbealsobewrittenasdomand~pfK (ElAl)canbewitten
titmhfkwrrl.

5. Note that representing no letter is not the same as being the zero-width char-
acter, because the zero-width dwacter is used as a letter for preventing
letters sitting in the last position of a word from being converted into final
form, so that for example, it is possible to specify a”y3 by LPmUk)

6. There are occasionally two Hebrew letters with the same pronunciation. In
each case, the more commonly occur&g Hebrew letter is assigned the lower
sue Latin letter with the same pronunciation, and the less commonly occur-
ring Hebrew letter is assigned the correspondiq upper case Latin letter. Tlw
np'uunu canbewrittcnasmatrmaTIqah~1lacanbewrittenesFred.

7. Digits are provided only as a convenience. When given in Hfhrew, digit se
quences are rotated in the same manner as the other text. Thus numerals
have to be entered backwards, just as they do with a Hebrew typewriter.

The output of ZSZ?AZW assumes that the output device is one of the Hebrew
fonts in use or developed at UC3.A In all of these fonts, each basic Hebrew
letter, each digit, and most of the punctuation symbols are addressed by their
A!XIt codes. A number of other nonstandard glyphs are provided, in&ding
some ligatures, and vowels. These nonstandard glyphs are addressed by the
unusedAscIIcodes.‘IhemappingofAsQI~~~toglyphsisasshownin
Table 2.

APPENDIX B. INPUT AND OUTPUT SAMPLE

This Appendix exhibits inputs to generate some interesting mixed English-Hebrew
text. Specifically, The text below involves both Hebrew and EQN equations. The
two Hebrew lines say “And Gd said” and “And there was light” respwively!
Below this text is a possible ZSRATRN input for this.

B'plSK lDK'1

6 BdS=O

c6 -daB
Ed=7

. .

c=*
11x 'il'l

ACM Transactions on Office Information Systems, Vol. 3, No. 4, October 1985.

396 - C. Buchman, D. M. Berry, and J. Gonczarowski

Input: ’

.I1 4.51

.EQ
dellm $$
define circlnt %% ‘L+8V(~(is\sO\fP\(ci” %%
define thf %% “,\v’-.5m’.\v’.5m’.” %%
.EN
.PR
V(HF%Nvay”mer “eloqim:%NR
-sp
.ce loo
$epsilon sub o circint bold E cdot d bold S = q$

g%lnt bold B cdot d bold S = 0$

!$rdnt bold B cdot d bold I = mu sub o epsilon sub o {d PHI sub (bold E)}
over {d t} + mu sub o I$

$kcint bold E cdot d bold I = {- d PHI sub (bold B}} over {d t}$
.ce 0

gf!§
l sp
.ce 100
$c = 1 over {sqrt (mu sub o epsilon sub o))$
xx 0

;fsPHF%Nvayehi “or

APPENDIX C. HEBREW TITLE AND ABSTRACT

This appendix shows the Hebrew title and abstract for this paper.

UNIX +rO DITROFF +to ;ItjMrl ,DITROFF/FFORTID
‘31’3 -1-l t9Dptl VI+

OV~~D-l~Kl ?2’73)7tJ-Cllj7 h? 701N WlW ,DllROFF~FFORlTDSM lKnt3 illil lPKt);l
lWDDKf3 DlTROFFlFFOR77D .UNlX h? mevice Indepardmr T&e.wtter RwtOFF) DIIROFF 113p
mm haolS1 own mm3 nnm im3 ,nim ‘ma zin3;r bopu 93, wiy
ACM Transactions on Office Information Systems, Vol. 3, No. 4, October 1985.

DITROFF/FFORTID l 397

ACKNOWLEDGMENTS

The authors thank Danny Braniss for providing the Hebrew font used herein,
and they thank Tim Morgan and Lou Salkind for their help in getting DITROFF
to run and the ability to use the Berkeley Versatec fonts in the available output
devices. They thank Brian Kernighan for his help in dealing with the intricacies
of DITROFF. They also thank DDD Ltd., Israel, for providing a Hebrew terminal
to the authors for experimentation.

REFERENCES

1. BECKER, J. D. Multilingual word processing. Sci. Am. 252, 1 (July 1984).
2. BLJCHMAN, C., AND BERRY, D. M. User’s manual for DITROFF/FFORTID: An adaptation of

the UNIX DITROFF for formatting bi-directional text. Tech. Rep., Computer Science Depart-
ment, UCLA, Los Angeles, Calif., July 1984.

3. GONCZAROWSKI, J. HNROFF/HTROFF Hebrew formatters based on NROFF/TROFF. Tech.
Rep., Hebrew University, Jerusalem, Israel, 1980.

4. KERNIGHAN, B. W. A typesetter-independent TROFF. Computing Science Tech. Rep. 97, Bell
Laboratories, Murray Hill, N.J., March 1982.

5. KERNIGHAN, B. W. PIC-A graphics language for typesetting, user manual. Computing Science
Tech. Rept. 85, AT&T Bell Laboratories, Murray Hill, N.J., March 1982.

6. KERNIGHAN, B. W., AND CHERRY, L. L. Typesetting Mathematics-User’s Guide, 2nd ed.
AT&T Bell Laboratories, Murray Hill, N.J., 1978.

7. KERNIGHAN, B. W., AND PIKE, R. The UNIX Programming Environment. Prentice-Hall,
Englewood Cliffs, N.J., 1984.

8. KNUTH, D. E. The 7’EX Book. Addison-Wesley, Reading, Mass., 1984.
9. LESK, M. E. Some applications of inverted indexes on the UNIX system. Computing Science

Tech. Rep. 69, Bell Laboratories, Murray Hill, N.J., June 21, 1978.
10. LESK, M. E. TBL-A Program to Format Tables. Bell Laboratories, Murray Hill, N.J., 1978.
11. LESK, M. E. Typing Documents on the UNIX System: Using the -ms Macros with Troff and

Nroff. Bell Laboratories, Murray Hill, N.J., March 1982.
12. OSSANA, J. F. NROFF/TROFF User’s Manual. Bell Laboratories, Murray Hill, N.J., Oct. 11,

1976.
13. RITCHIE, D. M., AND THOMPSON, K. L. The UNIX time-sharing system. Commun. ACM 17, 7

(July 1974).
14. UNIX Programmer’s Manual. Fourth Berkeley Distribution, University of California, Berkeley,

Calif., Nov. 1981.
15. VAN WYK, C. J. IDEAL user’s manual. Computing Science Tech. Rep. 103, Bell Laboratories,

Murray Hill, N.J., Dec. 17, 1981.

Received May 1984; revised June 1985; accepted June 1985

ACM Transactions on Office Information Systems, Vol. 3, No. 4, October 1985.

