IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.29, NO.6, JUNE 2003 1

Comments on “Formal Methods Application:
An Empirical Tale of Software Development”

Daniel M. Berry and Walter F. Tichy

Abstract—We comment on the experimental design and the result of the paper
mentioned in the title. Our purpose is to show interested readers examples of what
can go wrong with experiments in software research and how to avoid the
attending problems.

1 INTRODUCTION

EMPIRICAL studies and controlled experiments in particular have
become an important tool for understanding the nature and
efficacy of software methods and tools. A positive trend in recent
years has been that the number of papers with empirical data
published in IEEE Transactions on Software Engineering (TSE) and
elsewhere has been increasing. This trend is motivated in part by
the realization that, unlike in the early days of software research,
mere demonstration of a new tool or method is not enough. There
is a bewildering variety of software engineering methods and the
relative merits of competing approaches are poorly understood.
Furthermore, the methods and their interactions with the real
world of software development are too complicated to be under-
stood by theory alone. Actual observation of programmers in
realistic settings is beginning to go hand in hand with the
development of new methods and techniques, thus putting
software research on a firm footing.

In this vein, it is heartening to see the experiment by Sobel and
Clarkson [5]. The experiment collected evidence that “formal
methods students had increased complex problem solving skills”
and that “the use of formal analysis during software development
produces ‘better’ programs.” Formal methods have a long history
of theoretical research, but rigorous, empirical evaluation is scarce.
Pfleeger and Hatton published a case study [3] on formal methods
with inconclusive results; their paper points to additional case
studies in this area. Sobel and Clarkson report on the first quasi
experiment on formal methods.

Unfortunately, the paper contains several subtle problems. The
reader unfamiliar with the basic principles of experimental
psychology may easily miss them and interpret the results
incorrectly. Not only do we wish to point out these problems,
but we also aim to illustrate what to look for when drawing
conclusions from controlled experiments. We thus hope to help
both experimenters and readers of empirical software research to
become more astute in regards to meaningful experimentation in
software research.

Much has been written about experimental methodology; a
classic text is the book by Christensen [2]. The book covers a wide
range of experimental principles, including control, experimental
design, data collection, validity, ethics, and hypothesis testing.
However, since the book is written for psychologists, it may appear
dry and inaccessible to software researchers and practitioners.
However, by using the experiment by Sobel and Clarkson as a

o D.M. Berry is with the School of Computer Science, University of
Waterloo, 200 University Ave.,, West Waterloo, Ontario N2L 3GI,
Canada. E-mail: dberry@haifa.math.uwaterloo.ca.

o W.F. Tichy is with the Department of Informatics, University of Karlsruhe,
76128 Karlsruhe, Germany. E-mail: tichy@ira.uka.de.

Manuscript received 12 July 2002; accepted 20 Feb. 2003.

Recommended for acceptance by D. Rosenblum.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 116936.

0098-5589/03/$17.00 © 2003 IEEE Published by the IEEE Computer Society

concrete example, many of these principles come into sharp focus.
Never have we read Christensen with more interest than in the
context of the Sobel and Clarkson experiment! We hope that this
note will help motivate computer scientists to study with renewed
interest the body of knowledge about experimental design.

2 OVERVIEW OF PUBLISHED PAPER

In the following discussion, the published paper [5] by Sobel and
Clarkson is referred to as “the TSE paper.” The personal pronoun
“we” refers to the authors of the present note, i.e., Berry and Tichy,
while the phrase “the investigators” refers to Sobel and Clarkson.'

In the TSE paper, the investigators describe an experiment in
which two groups of mostly two-person teams of university
students were asked to develop running programs to meet the
requirements of a given problem, an elevator simulation problem.
One group of teams developed formal specifications, the other did
not. The investigators observe that the formal methods group’s
solutions are “far more correct than the nonformal solutions.”
Additional details appear in a second paper, hereafter called the
“Inroads paper,” authored by only Sobel [4].

The formal methods group consisted of undergraduate stu-
dents who had voluntarily participated in a formal methods
curriculum. This curriculum consisted of a course on formal
program derivation and a course on the axiomatic semantics of
data structures, both taught using a first-order-logic specification
language, plus a course on object-oriented design including UML.
The other group, the control group, consisted of undergraduate
students whose training differed in that they did not take part in
the program derivation course, took a data structures course
covering the same topics as the formal group except for the
axiomatic semantics, and took the same course on OO-design. The
elevator programming task was an assignment in the OO-design
course. There were additional courses to be taken later.

Both curricula taught the same material, in the same sequence,
by the same instructors, using the same examples, the same
programming assignments, and the same exams, except for formal
methods. Thus, the investigators have tried to maintain the
equivalence of the two groups except for the experimental
treatment, the continual exposure to formal methods by the
members of the formal methods group.

The programming task used to assess the two groups was the
development of an elevator simulation. Each group divided into
teams, each with two members on average. Each team was to
develop a running solution as a homework assignment. Six teams
of the formal methods group and 11 teams of the control group
handed in solutions that compiled properly.” Each team was
encouraged to submit UML diagrams of its design. Each formal
method teams was asked to submit a formal specification of its
solution.

The investigators found that 100 percent of the programs
produced by the formal method group teams passed all of a set of
six test cases, while only 45.5 percent of the programs produced by
the control group teams passed all of the same set of test cases.
This is the main result of the experiment and seen as strong
evidence of the power of formal methods.

Standardized ACT tests found no statistical difference between
the abilities of students in the two groups at the beginning of the
curricula. The investigators conclude, therefore, that the two
populations, the students in the two groups, are alike in all aspects
except for the training in formal methods.

1. This is a simplification because Clarkson was actually a student
participating in the experiment.

2. There is a discrepancy regarding the number of formal methods
teams—it is four in the Inroads paper but six in the TSE paper. In personal
communication, Clarkson asserted that the correct number is six.

The conclusion can be made that it was the use of formal analysis
employed by the students during the development of their software
solutions which caused the increase in the correctness of their
solutions.

That is, the investigators conclude that it was the use of formal
analysis by the formal methods group teams that caused that
100 percent of the programs produced by formal methods group
teams passed all of six test cases while only 45.5 percent of the
program produced by the control group teams passed the same six
test cases.

3 WEAKNESSES OF THE EXPERIMENTS

The experiment performed by the investigators had a number of
weaknesses in its basic experimental design, its failure to recognize
Hawthorne and novelty effects, its lack of control, and its poor
measurement. These weaknesses reduce our confidence in its
results.

3.1 Experimental Design

The major weakness of the experiment is that each student, by
virtue of having decided whether or not to take the formal
methods course, assigned him or herself to one of the two groups.
Thus, assignment was voluntary and not random. The investiga-
tors assumed that the groups were nevertheless evenly matched on
the basis of matching ACT scores and the fact that lectures
presented the same material to the groups except for formal
methods.

The design of the experiment is called Nonequivalent Posttest-
Only Design in Christensen’s book and is discussed in the section
on Faulty Research Design (pp. 234-238).° As if to address the
investigators’ very experiment, Christensen explains that matching
based on a number of variables such as age, sex, and ACT scores is
“no assurance of having attained equated groups.” Thus, it is
ironic that the investigators announce that they have matched their
groups based explicitly on ACT scores and implicitly on age (since
all subjects were undergraduate students), all the while citing
Christensen. However, Christensen writes:

The only way one can have any assurance that the groups are

equated is to assign subjects randomly to the two groups....In studies

where it is not possible to assign participants randomly, the next best
technique is to match on relevant variables. However, matching is

no substitute for random assignments because it does not control for
other variables such as motivation [emphasis added].

Nonequivalent groups do not provide a way of isolating the effect
of the treatment condition because they cannot exclude rival
hypotheses. There is strong evidence that the control and
experimental groups in the experiment were affected by a number
of extraneous variables, including the very motivation given as the
Italicized such-as example by Christensen. At a bare minimum, the
investigators should have alerted the reader to potential problems
by classifying their work as a quasi experiment. A quasi
experiment is one that has a design that does not meet all the
requirements necessary for controlling the influence of confound-
ing variables. Drawing causal interpretations from a quasi
experiment is invalid, unless rival hypotheses arising from the
confounding variables are shown to be implausible. In the
following, we discuss the main confounding variables.

1. Differences in motivation. There are several clear indica-
tions that the experimental group was better motivated.
The students in this group wvolunteered for a tougher
curriculum: They were willing to take two extra courses,
“Introduction to Program Derivation” and “Formal

3. It is not a before-after design because the pretest, the ACT, was
different from the posttest, the grades in the programming class. Thus, it is
not possible to perform a before-after comparison.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.29, NO.6, JUNE 2003

Analysis of Concurrent Programs.”* Furthermore, the data
structures course required more time than others because
of the additional effort needed for studying and writing
specifications. The Inroads paper says about the formal
version of the data structures course (p. 159):

At times we were forced to meet outside of regularly

scheduled class time. Some students found this pace
gruelling.

Only superior, well motivated students are willing to
undergo such treatment. Page 158 of the Inroads paper
reveals:

The [experimental] group remained highly motivated and
committed to this educational experience.

Finally, four of the formal methods students later
volunteered to undertake a completely formal derivation
of the program. The work was presented at the 1998
SIGCSE conference as a poster. The work shows that at
least four students of the experimental group were highly
motivated as well as highly talented. One of the formal
methods students even became a coauthor of the TSE
paper.

2. Differences in exposure. The experimental group received
significantly more instruction. Students in this group took
an extra course and had a tougher data structures course
which required extra time to cover the material. It is likely
that by having been taught longer and more carefully, they
performed better in the programming task. Put another
way, because the control group was not instructed as
thoroughly, it is not surprising that its performance was
lower.

3. Differences in learning style. The experimental group
took a learning style survey that categorized the group
members as collaborative and competitive; collaborative
students share ideas among each other and competitive
students want to receive recognition for their efforts. Since
the control group members did not take the same test, it is
impossible to exclude the rival hypothesis that subjects in
the experimental group were better learners or harder
workers.

4. Differences in skills. Students chose the formal or
informal curriculum freely. The formal methods students
knew that they were signing up for the tougher course
sequence. ACT test scores not withstanding, we cannot
exclude the hypothesis that the formal methods group
were the more talented students.

The Inroads paper contains indications that the experi-
mental group did have superior analytic skills, as
measured by a subset of the Computer Science GRE. We
quote from page 160:

A general analytic exam was given to all senior majors in
order to compare the two group’s [sic] analytic skills when
solving computer science problems. The questions were
randomly selected from sample test questions in the
analytic portion of the GRE examination... The formal
methods students answered thirty-six percent more ques-
tions correctly than the average senior major.

The GRE test was apparently given after the formal
methods classes had been administered. It is unlikely that

4. The second course was taken after the experiment concluded, but the
students had volunteered for both.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.29, NO.6, JUNE 2003 3

exposure to formal methods alone improved general
analytic skills by over 30 percent. Thus, there is strong
support of the rival hypothesis that the students in the
formal methods class were the more talented students to
begin with. The fact that ACT and exam scores did not
differentiate the groups says something about the differ-
entiating power of these tests, but not enough to discount
the GRE results. It is unclear why the GRE test results were
not mentioned in the TSE paper, especially since the
Computer Science GRE test is more appropriate for
assessing the quality of the students relative to the research
question.

Given the differences among the groups enumerated above, a
substantial number of rival hypotheses cannot be excluded. The
experimental group could have outperformed the control group
because of better motivation, harder work, more practice, more
exposure, better learning style, or superior skills and talent.

Indeed, one of us, Berry, has hypothesized that it is more the
nature of people who willingly and enthusiastically apply formal
methods than the formal methods themselves that accounts for the
reported successful applications of formal methods [1].

These willing and enthusiastic appliers of formal methods are,
as Martin Feather observes,

particularly adept at getting to the heart of any problem, abstracting

from extraneous details, carefully organizing their whole approach

to problem solving, etc. Surely, the involvement of such people

would be beneficial to almost any project, whether or not they
applied “formal methods.”

Perhaps, in the investigators’ study, the self assignment into the
formal methods group caused the formal methods group to consist
of people who were more adept than those in the control group at
getting to the heart of the problem, abstracting from extraneous
detail, and carefully organizing their whole approach to solving
the problem. Perhaps these differences did not show up as
differences in the standard tests. Indeed, it is not even clear how
to test this sort of ability in short multiple choice questions given in
typical standardized tests.

Random assignment of subjects to treatment would have helped
avoid some of the above problems, but not all. Since the treatment
lasted several semesters, students would have noticed sooner or
later that they were in a particular curriculum because of a trial of
formal methods and would have started behaving differently given
this knowledge (more about the Hawthorne effect see in the next
section). Thus, an alternative design would be needed. For testing
program quality, all students should have been trained in formal
methods. The teams should have been assigned randomly to a
formal or informal solution just prior to the actual task (the
posttest), for instance, by handing out different task descriptions
according to a random number generator. We discuss several
possible improved designs for this experiment in Section 3.4.

Note finally, that we are not blaming the authors for not having
random assignment, since they also wanted to check problem
solving skills with and without formal methods training. We are
merely stating a fact. In this case, with the experiment conducted
with university students and in which training for the treatment
was delivered as a course, self assignment was unavoidable;
students could not be forced to take this course. However, as
necessary as self assignment may have been, it nevertheless
introduces a confounding factor that cannot be separated out,
namely, that the people in the formal methods group may
naturally be better at systematic thinking, independently of
whether or not they use a formal method. Thus, the favorable
results may be at least partially a consequence of the formal
methods people’s natural abilities and not only of the formal
methods.

3.2 Hawthorne Effect and Novelty Effect

The Hawthorne effect refers to the fact that subject performance is
affected by the knowledge of being in an experiment. For instance,
subjects knowingly participating in an experiment may be more
willing to perform certain tasks than under normal conditions or
may perform them more diligently; students in particular have a
strong desire to please their instructors. The novelty effect states
that subjects behave differently when asked to do something new
or different. When the novelty wears off, the treatment effect might
disappear as well. If the Hawthorne or novelty effects occur, the
experimental results are not produced by only the treatment.

It seems quite clear that the students knew they were
participating in a trial of formal methods and that this was a
novelty. The Inroads paper states:

The students involved [in the experimental group] formed a

fraternal bond among themselves and their group identity extended

well beyond the classroom. We have already scheduled a reunion ...
Furthermore, the Inroads paper reports some enthusiastic com-
ments by the formal methods group, for example:

Leads to something in academia that is applicable in the real world

regardless of consciously or subconsciously. Awesome!

The expectation of the main investigator, Sobel, was quite clear. On
page 309 of the TSE paper, we find:

Given the goal of establishing an increase[emphasis added] in the
complex problem solving skills of students who use formal analysis,

We find it unlikely that the goals of the experiment were kept from
the students, given two parallel curricula with extra work in one of
them, the goal of the grant, and the investigators” enthusiasm for
formal methods. There is nothing wrong with experimenter
expectations. In fact, it is unavoidable and legitimate for
experimenters to have desires and biases. The problem arises
when subjects behave differently because of their knowledge of
experimenter expectations. They help, perhaps subconsciously, to
fulfill the expectations. It is often extremely difficult to withhold
experimenter expectations from subjects, and if one does, then
subjects might guess them anyway. The only way to avoid that
experimenter expectations affect the results is a blind or partially
blind technique. For example, the investigators could have trained
all subjects in formal methods, then let an independent proctor
assign them randomly to formal or informal programming task at
the time of the assignment. It is also possible to fully automate the
test procedure to avoid experimenter-subject interaction. Further-
more, subject expectations and the positive self-presentation
motive should have been neutralized. A possible approach is
deception, i.e., giving the subjects a hypothesis unrelated to the
real hypothesis. For instance, the test could have had no indication
that there were different task prescriptions. Christensen provides
several insights in this regard. Finally, a posttreatment question-
naire should have asked what the subjects thought of the
experiment, what they thought the experimenters expected, and
how they thought others would respond in this situation. Such a
questionnaire helps separate out subject perceptions.

3.3 Lack of Control

A control group serves as a source of comparison. For this
experiment, there is no record of what the control teams actually
did. The TSE paper states that “almost no record of the design (if
any) these teams used is available. None of these teams elected to
submit a UML diagram, as they were invited to do.” However,
three of the six formal teams submitted UML diagrams; all of the
formal teams submitted specifications, though to varying degrees
of completeness.

Two rival hypotheses arise from this situation:

1. The control teams spent no or little time on the analysis of
the problem and instead started programming early. This
hypothesis springs from the well-known fact that students
try to get by with the minimum effort. It is no surprise that
the control group did not produce UML diagrams or
written, informal specifications. The experimental group,
however, was a highly motivated group and half of these
teams produced the optional diagrams. If the hypothesis of
a lack of informal specifications in the control group is
true, it is not surprising that the resulting programs fared
poorly.

There is indirect support for this hypothesis because the
Inroads paper reports that, even in the formal curriculum,

Some students reported actually “fighting” the overwhelm-
ing desire to start the problem solving process by coding.

The investigators also noted that the control group delivered
poor code: Four of the nine control teams produced tightly
coupled designs, mixing display code with scheduling code,
and several teams duplicated code. One control team
duplicated the entire scheduling code for each elevator.
These coding foibles are symptoms of poor or nonexistent
designs. It is reasonable to assume that students not in the
formal track had less encouragement to step back and
analyze the problem, formally or informally, before coding.
We conjecture that at least some of the teams in the informal
group started problem solving with coding.

2. The control teams might actually have performed no
analysis, informal analysis, formal analysis, or a mixture.”

The point is that too little is known about the behavior of the
control group to serve as a source of comparison. The experiment
compares the formal methods group with a group whose problem
solving approach is essentially unknown. Since there was no
supervision and no records were kept, one can argue both sides of
the issue ad infinitum. In the end, the reader is left in doubt.

In controlled experiments, the behaviors of both the experi-
mental and control groups must be observed closely.

1. In the present experiment, handing in designs, formal or
informal, depending on the group, should have been
mandatory. For formal method application to have caused
the benefits claimed for them, the application had to have
been carried out before coding began. We find no clear
statement as to the order of the activities. For example, one
might expect some statement about the students having to
submit specifications, designs, and running programs for
grading in separate homeworks due in that order. On the
other hand, in the TSE paper’s Section 7.2, we see a
description of a fully formal solution carried out after the
experiment was finished and, in this solution, the formal
specification was completed before the implementation
began.

2. Furthermore, all subjects should have worked in a
programming environment with automatic capture of the
majority of actions, for example, start and finish times, the
times at which subjects compiled, debugged, edited, etc.
The various work products should have been captured and
stored for later analysis.

3. Finally, instead of allowing the students to work unsu-
pervised, the students should have worked in a laboratory
in which an impartial proctor could have supervised and
ensured that the desired behaviors were followed.

5. This hypothesis was pointed out by one of the investigators.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.29, NO.6, JUNE 2003

Up to this point, we have argued that there are a number of
alternative hypotheses arising from the quasi-experimental design.
Since these have not been shown to be implausible, it is not valid to
draw the causal conclusions that the experimenters advocate. We
now turn to the question of whether measurements were properly
taken and analyzed.

3.4 Analysis of the Results

In a paper about experiments, one first sees a statement of a
general research question, e.g., “We study the effects of formal
methods on the production of correct software.” Then, she sees one
or more concrete testable hypotheses, typically stated in form of a
null hypothesis, e.g., “There is no difference in the correctness of
programs produced by application of formal methods from that of
programs produced without application of formal methods.”
Then, the paper goes on to reject or fail to reject each null
hypothesis based on data gathered during the experiment.

The introduction and conclusion of the TSE paper refer to two
different benefits (here, we quote from the introduction):

Formal methods students had increased complex problem solving
skills.

The use of formal analysis during software development produces
“better” programs.

These research questions can be stated as two hypotheses,
assuming that the terms are defined to be measurable.

1. Teaching formal methods to undergraduate students
increases their skill to solve complex problems.
2. The use of formal analysis during software development
produces programs that are more correct.
Hypothesis 2 is indeed captured in the first paragraph of the TSE
paper’s Section 3 (we quote):
...this experiment tests the hypothesis that the formal methods group
solutions were better than the control group solutions (using the

criteria of code correctness, conciseness, and complexity) due to their
use of formal methods.

In giving the hypothesis, the investigators give also a way to
measure the goodness of solutions, via code correctness, concise-
ness, and complexity.

These two hypotheses require different experimental designs.
When testing the first hypothesis, the control group should have
been taught alternative material to compare against because
teaching the same material more thoroughly can also be done
with approaches other than formal methods. In particular, the
control group could have been trained in the use of informal, but
precise specifications. Comparing “nothing” with formal methods
leads to strongly biased results, as explained above. Also, problem
solving skills, even if limited to programming, could be tested
more directly than by requiring a running program. The problem
is that delivering a running program requires skills besides
problem solving, for example, teamwork. Although one might be
tempted to see teamwork skills as part of problem solving skills, it
is unclear how formal methods affect teamwork skills.

The design of the investigators’ experiment addresses the
second hypothesis, regarding the quality of programs. The
investigators compare several software metrics and find no
significant differences. However, on functional correctness, mea-
sured by running six test cases, the “formal method group’s
solutions are found to be far more correct than the nonformal
solutions.” All six implementations of the formal group passed all
six test cases, but only five out of the 11, or 45.5 percent, of the
implementations of the informal group passed the same test cases.

The investigators did not provide a test for significance of the
difference in functional correctness. Since the distributions appear
strongly nonnormal, the Mann-Whitney U-Test for the difference

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.29, NO.6, JUNE 2003 5

of the medians should be used rather than a parametric test. We
reconstructed the test data to the best of our knowledge and found
the difference to be indeed significant at the p=0.05 level.
However, is this statistically significant difference meaningful?
The trouble is the size of the test case set. It consists of only six test
cases. Nothing is revealed about the test cases themselves. Even
though the average length of the programs is only 129 lines, six test
cases are hardly sufficient to provide a representative sample of
the state space of something as intricate as elevator scheduling. The
measured superiority of the formal solutions could be entirely due
to the choice of test cases. In other words, the data points and,
hence, the given percentages are untrustworthy. The 5 percent
p-value of the significance test says merely that, if one tests elevator
schedulers with exactly those six test cases, then a result different
from that observed might occur in less than 5 percent of the
repetitions of the experiments. We know nothing at all about what
would happen in a more realistic test scenario.

It is surprising to learn that the main result of the paper rests on
a set of six test cases. This situation is particularly distressing
because the elevator problem is amenable to automatic test case
generation. The appropriate approach would have been to
randomly generate a large number of test cases that sample the
state space of the elevator problem uniformly. Of course, manually
generating a large number of test cases, determining their correct
answers, and comparing them with the outputs of the programs is
infeasible. However, the outputs of the programs could have been
compared by software with those of a so-called gold program. An
observably good program developed by one of the formal methods
teams would have been a good candidate for such a gold program.
Alternatively, the program of the fully formal solution carried out
after the experiment was finished would make the perfect gold
program. A testing framework such as CppUnit could have been
used to automate the testing process.

In conclusions, significance tests or even simple ratios,
provided by an experimenter are only as good as the quality of
the data on which they are computed.

Finally, we point out a major missed opportunity, that of
observing the time students spent on their solutions. An important
question is whether the use of formal methods requires an increase
in time or not. Any rational programming method can be made to
produce good results, if the program is small enough and subjects
work hard enough at it. Thus, for useful results applicable to real-
life software development, it is mandatory to explore not only
program quality but also the time required to achieve the observed

quality.

3.5 Related Work

We were surprised that the earlier study of formal methods by
Pfleeger and Hatton [3] was not cited. The study is directly related
to the second hypothesis and comes to a contradictory result. Thus,
it is important for the investigators to explain the differences. For
instance, could the differences be caused by the different settings,
i.e., students working on homework versus professional program-
mers working on safety-critical software? Although the Pfleeger
and Hatton work is a case study rather than a controlled
experiment, its results are quite strong, because it uses data from
a real and sizeable system, an air-traffic-control information
system of about 200,000 lines. The study reports on over 3,000 fault
reports before delivery and 273 after delivery generated by an
unknown but large number of tests, for a span of over four years.
Pfleeger and Hatton compared modules that were developed
informally with those that were developed using finite state
machines, VDM, or CCS. Pfleeger and Hatton

...found no compelling evidence that formal design techniques alone
produced code of higher quality than informal design techniques....
We can conclude that formal design, combined with other
techniques, yielded highly reliable code.

In the face of such prior work, at least a brief discussion of the
differences is necessary.

3.6 External Validity

A research report on an experiment should include an honest and
careful discussion of threats to construct, internal, and external
validity. Only if shortcomings are discussed can readers decide
where the experiment was strong, where it was not, and where
additional research is needed. There is no discussion of threats to
validity in either the TSE paper or the Inroads paper, although the
Inroads paper is quite candid about what actually happened.
Authors should resist the temptation to present a sanitized version
of an experiment. Occasionally, we have encountered fears among
experimenters and reviewers that discussing problems would
distract from the main message, weaken the results, even throw the
whole experiment into doubt. The opposite is the case. Remaining
silent about threats to validity raises suspicion among experienced
readers because they know that no experiment is perfect.
Experiments interact with the real world and unexpected or
unavoidable problems arise. Experimenters, reviewers, and read-
ers need to accept that experiments do not occur in an ideal or
theoretical world. When problems surface, careful judgments have
to be made about whether the problems invalidate the results.
Making such judgments, however, requires that the report reveal
and discuss those flaws that may have had a significant influence.

4 CONCLUSION

Perfection in experiments, especially in those involving human
subjects, is unattainable. In the Sobel and Clarkson experiment, the
many problems mentioned in this note call for a complete redesign
of the experiment. Clearly, the research question is immensely
important. Given the sizeable research and teaching investment
that has gone into formal methods worldwide for over three
decades, extensive studies are warranted that analyze whether the
precision, structure, and discipline of formal methods do indeed
improve problem solving skills, program quality, or programmer
productivity. Sobel and Clarkson deserve the credit of a first
attempt at answering these questions with a quasi experiment. We
hope that, by studying the problems cited in this note, future
experimenters can avoid these problems and gather data from
which valid, meaningful, and significant conclusions can be
drawn.

ACKNOWLEDGMENTS

The authors would like to thank Mike Godfrey, Matthias Miiller,
Karl Reed, and Steve Schach for their comments on an earlier draft
of this paper. They also thank Bill Berry for a careful explanation of
certain statistical issues in experiment design. Any mistakes
remaining after this explanation are solely our faults. D.M. Berry
was supported in part by NSERC grant NSERC-RGPIN227055-00.

REFERENCES

[1] D.M. Berry, “Formal Methods, the Very Idea, Some Thoughts on Why They
Work When They Work,” Science of Computer Programming, vol. 42, no. 1,
pp- 11-27, Jan. 2002.

[2] L.B. Christensen, Experimental Methodology, eighth ed. Allyn and Bacon,
2001.

[3] S.L. Pfleeger and L. Hatton, “Investigating the Influence of Formal
Methods,” Computer, vol. 30, no. 2, pp. 33-43, Feb. 1997.

[4] A.EXK. Sobel, “Empirical Results of a Software Engineering Curriculum
Incorporating Formal Methods,” ACM Inroads, vol. 32, no. 1, pp. 157-161,
Mar. 2000.

[S] A.EK. Sobel and MR. Clarkson, “Formal Methods Application: An
Empirical Tale of Software Development,” IEEE Trans. Software Eng.,
vol. 28, no. 3, pp. 308-320, Mar. 2002.

