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1.1 INTRODUCTION 

In block structumed languages, upon entry to 
a block or procedure, storage is allocated for the 
identifiers declared in the block or procedure. 
There are two choices as to'when to deallocate this 
storage: 

l) upon exit from the block or procedure, 
2) when the storage becomes inaccessible. 
The former is referred to as the deletion 

strategy because storage for a block or procedure 
is deleted (deallocated) automatically upon exit. 
The latter is referred to as the retention strategy 
because it is possible for storage for a block or 
procedure to be retained after exit. These two 
strategies are not equivalent, as there exist 
numerous example programs making use of pointer, 
label, and procedure values, which show the dif- 
ference between these two strategies. FoP ex- 
amples, see Bry71b, CDMPS 73, Fis72, 0rg73, and 
Weg71. The difference shows up in the form of a 
dan~lln~ reference in the deletion strategy which 
does not appear in the retention strategy. 

In the deletion strategy, storage for blocks 
and procedures is allocated and deallocated in a 
last-in-first-out order. Therefore, storage for 
blocks and procedures can be managed efficiently 
on a pushdown stack. However, deletion gives rlse 
to dangling references in the use of pointer, la- 
bel, and procedure values. This is dealt with in 
one of two ways which compromlse~elther security 
or generality: 

I) There is no attempt to prevent or detect 
dangling references, and errors, which 
ape hard for the programmer to detect, 
can o c c u r .  This is the case in PL/I-F 
in which a pure stack model with no Pun 
time check can be used [Wlk69]. 

2) There are restrictions on the use of 
pointer, label, and procedure values 
which require the addition of some run 
time checks to the basic stack model. 
This is the case with ALGOL 68, in which 
the run time checks are to prevent 
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dangling reference% and with Deletion 
Parallel Eule~ in which the run time 
checks ape to detect dangling references 
[vWn 69, CDMPS 73]. 

Retention is both mope secure and mope general 
in that it eliminates all possibility of dangling 
references, and it therefore removes all restric- 
tions on the use of pointer, label, and procedure 
values. This is the case with GEDANKEN, PAL, 
Oregano, and Retention Parallel Euler [WE 70, Rey 
70, Bry 73, CDMPS 73]. Howeve~ retention is con- 
sidered to be less efficient than deletion, as it 
requires mope sophisticated storage management 
techniques, including the use of a free list, re- 
ference count management, and/or garbage collection. 

While retention is clearly nicer, its ineffi- 
ciency appears to be the major obstacle t o  its 
general use. Most programs that ape written are 
single task programs which use integer, real, 
Boolean, and character string values almost exclu- 
sively. They use pointers only for passing para- 
meters by reference, and they use labels and 
procedures only as constants. Furthermore, these 
procedures return only integer, real, Boolean, and 
character string values. These programs do not re- 
quire metentlon and Pun correctly on an implementa- 
tion using the deletion strategy. We call such 
programs which run correctly on a deletion imple- 
mentation, e.g. the stack model, well-stacked (WS). 
It is only the rare program doing list manipulation 
or demonstrating a principle of computer science, 
etc., which requires retention. It seems unfair to 
penalize the vast majority of programs which ape 
well-stacked with the overhead required fop reten- 
tion. 

This paper develops an implementation of gen- 
eralized (single task)~ block structured languages 
with compile time type determinability, which is 
capable of handling full retention but which keeps 
the run time cost of many well-stacked programs 
near that of the same program on a typical ALGOL 68 
style implementation. 

This implementation can be regarded as the 
architectural basis for a block structured machine. 
Indeed the implementation is described in terms of 
microcode for an abstract machine. 

~Although the implementation appears to be easily 
extendable to handle multi-tasking. 
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Other similar and independent work with the 
same ~oals has been done by Bobrow and Wegbreit 
[BW73J. They propose an implementatlon which dif- 
fers from ours, primarily in two places: 

i) The heavy copying overhead of their model 
occurs with some of the block exits and 
procedure returns, whereas ours places 
the heavy copying overhead on the label 
bindings and gotos. 

2) Their model is general enough to handle 
LISP as well as ALGOL identifier binding 
and assumes run time type checking. Ours 
is restricted to languages with ALGOL 
binding and compile time type checking. 
These restrictions permit certain opti- 
mizations. 

This paper assumes familiarity with the 
following topics: 

i) Retention vs. deletion and dangling 
references [Bry71a, CDMPS73, Weg71] 

2) Stack model [RR6~] 
3) Contour model [Joh71, CDMPS73] 
4) ALGOL 68 and its implementation [vWn69, 

Bry70, BL70 , Pck70, WegT1]. 

1.2 STRATEGY OF THIS PAPER 

A generalized block structured language is 
defined to have only the "interesting" features 
with the usual block-structured and compile-time- 
type-checklng semantics. First, its concrete syn- 
tax is given followed by an abstract syntax repre- 
senting a partially translated and pruned parse 
treeTin which it is assumed that all type compati- 
bility and other context conditions have been 
checked. 

Two machines are defined which have identical 
instruction repertoires. One of these is the Life- 
time Stack Machine (LSM) which is a variant of a 
typical abstract machine used fop ALGOL 68 [BL70, 
Bry70, Weg71]. The machine is a stack machine 
coupled with run-time lefetime checks on the as- 
signment of pointer, label t and procedure values 
which prevents potential dangling references. The 
run time overhead incurred for the llfetlme checks 
appears to be an acceptable cost for preventing 
dangling references while getting some of the 
general use of pointer label and procedure values. 

The second machine is our proposed implemen- 
tation of retention, the Partial Reference Count 
Contour Machine (PRCCM) which: is a variant of the 
contour model~as defined by Johnston [Joh71] and 
as extended by Chirica, Dreisbach, Martin, Peetz, 
and Sorkln [CDMPS73]. 

The definition of each machine consists of a 
description of a machine state and microcode de- 
scribing the execution of each instruction in the 
execution of each instruction in the common ma- 
chine language. 

This is followed by a scheme for translating 
pruned parse trees of programs into machine lan- 
guage programs. This translation effectively de- 
fines the semantics of the various language fea- 
tures in each machine. 

By knowing how much time is required for each 
instruction by each machine, and knowing which in- 
structions implement each source language feature, 
it is possible to obtain comparative time estimates 
for the two machines, as a function of the features 
appearing in a program. 

It is proved that a large subset of the well- 
stacked programs (which is to be defined precisely) 
will run on PRCCM in almost the same time as on the 
LSM. The main idea is to take the run time over- 
head required for LSM's lifetime checks (which pre- 
vent potential dangling references in the context 
of deletion) and use this time to do some reference 
count management in PRCCM ~. 

SPECIAL NOTE: Due to space limitations, it 
will not be possible to give the machine instruc- 
tions, their microcode definitions, the translation 
of GBSL programs to machine language, and the 
proofs of the theorems in this version of the paper. 
For a complete copy of the paper, the interested 
reader should write to the first co-author. 

2. GBSL 

GBSL, t h e  generalized block structured language 
is a powerful but simple language capturing all of 
the "interesting" features and ignoring those not 
thought to be relevant to the results. 

2.1 FEATURES 

GBSL has five types of values (modes), integer, 
Boolean, pointer, label and procedure values. All 
of these values may be assigned freely to any vari- 
able of the same mode. The basic value returning 
entities are constants, nils, and identifiers. The 
operations of the language include binary and unary 
arithmetic and Boolean operators, assignment, poin- 
ter computation (PL/I ADDR), pointer indirection 
(ALGOL 68 dereferencing), procedure calls, and gotos. 
The statement grouping facilities include condi- 
tionals, blocks, and procedure bodies, the last of 
which may be assigned to procedure valued variables. 

Blocks contain declarations declaring identl- 
fiefs to be variables of any mode. Statements may 
optionally be labeled by label constant identifiers 
which are assumed to be declared in the inner most 
containing block. Procedure bodies contain declar- 
ations of formal parameters of any mode. Actual 

p arameters are passed by value in the ALGOL 60 Nau63] sense so that formal parameters are assign- 
able variables. 

2 .2  SYNTAX 

The following is a context-free grammar giving 
the concrete syntax of GBSL. Lower-case hyphenated 
words are non-terminals, and upper case words, di- 
glts, and punctuation except for "-~" and "I" are 
terminals : 

program-~block 
block÷BEGIN declaration-part statement-part END 
declaration-part-~ I declaratlon-sequence 

~This way of descmibin~ the idea of the proof is 
due to Henry Bowlden [Bow71]. 
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declaration-seque nce'~declaration ; I 
declaration ; declaration-sequence 

declaration-~mode identifier 
mode-phasic mode I pointer-mode I procedure-mode 
basie-mode~INT I BOOL I LABEL 
pointer-mode÷PTRmode 
procedure-mode+PROC ( mode-list ) mode 
mode-list-Rhode I mode , mode-list 
statement-part-optionally-labeled expression I 

optionally-labeled statement ; 
statement-part 

optionally -labeled÷identifier : I E 
statement'~g0to i expPesslon 
gotc~GOTO expression 
expPession'~binary I unary I assignment I 

address-of I indirection I call I 
conditional I block ] procedure- 
body I constant I nil | identifier I 
( expression ) 

binamy-~expression binary-operatom expression 
unary-~unaPy-operator expression 
binary-opemator~- I = I... 
unary-operator-t-1 ... 
assignment~left-pamt expression 
left-P aPt~identifier T indirection 
addmess-of÷ADDR identifier 
indirectlon-~expPession IND 
call-~expression ( expPession-llst ) 
expression-llst-~expresslon I expression , 

expresslon-list 
oonditional~IF expression THEN expression 

ELSE expression FI 
procedure-body~PROC declaration-part 

expression CORP 
constant~integer | boolean 
integ em~O I I I 2 I ... 
boolean~TRUE I FALSE 
nil-hNIL mode 
identifiers+... (the usual set of identifiers) 

The grammar is ambiguous; however, following 
Scott and Stmachey [SS72] we observe that by suf- 
ficient use of parentheses it is possible to dls- 
amblguate any program. 

2.3 CONTEXT CONDITIONS 

In any block a procedure a given identifier 
may appeem in at most one declaratlon of any kind. 

The usual block-s~uctumed scope rules hold. 
The scope of a declaration of an identifier is the 
entire block or procedure in which the declaration 
occurs minus any internal blocks or procedures in 
which the same identifier is redeclared. A use of 
an identifier identifies the declaration of the 
same identifier in whose scope it lles. Every use 
of an identifier must identify some declaration. 

The declaration of an identifier associates a 
mode with the identifier. This mode is either INT, 
BOOL, LABEL, a pointer-mode or a procedure-mode. 
A pointer-mode specifies the mode of the object 
pointed to, and a procedure-mode specifies the or- 
doped list of parameter modes and the mode of the 
returned result. 

All expressions return some value whose mode 
is computable at compile time from the mode of the 
immediate constituents. Sometimes theme are re- 
strictions on the mode of the constituent. The 
mode computation and restrictions are described in 
the table below. To the left of the arrow is the 

expression form with allowable modes in place of 
the operands and to the might of the arrow is the 
result mode. 

binary + 

unary - 
assignment 
address of 
indirection 

call 

conditional 

block 

procedure body 

integer 
boolean 
nil 
identifier 

INT + INT ~ INT 
m = m ~ BOOL, for any mode m 
- INT ~ INT 
m ÷ m ~ m, for any mode m 
ADDR m~m, fop any mode m 
m IND ~ n, if m = PTR n for any 
mode n 

P(ml, ..., mj) ~ m, if p = PROC 
(ml, , mj)m, for any modes 
ml, ..., m~, m with j~l 

IF BOOL THEN m ELSE m FI=~m, fol 
any mode m 

BEGIN ...; m END or BEGIN ...; 
id: m END ~ m fop any mode m 

PROC m I idl; ...; mjidj; m CORP" 
PROC(ml, ... m~)m fop any 

modes ml, ...mj, m~ with jal 
INT 
BOOL 
NIL m ~ m fop any mode m 
the mode m of the declamation 
identified by the identifier 

A goto is in a class all by itself. Its argu- 
ment must be an expression of mode LABEL, but the 
goto itself does not return a value and it has no 
mode. 

To make the mode of all expressions computable 
at compile time, a goto has been excluded from 
appearing as an arm of a conditional, as the last 
statement of a block, and as the expression of a 
procedure body. A goto can, however, appear as a 
non-last statement of a block which is, or is in, any 
of these constructs. 

2.~ ABSTRACT SYNTAX 

The following abstract syntax [LW69] defines 
the set of partially pruned parse trees of concmete 
GBSL programs in which all context conditions are 
satisfied and in which 

I) got~s to labels within the same block ape 
converted to hopto's 

2) label constants not referred to or re- 
ferred to only by hopto's are eliminated 

3) the remaining label constants ape con- 
vemted into implicitly declared label 
variables which are initialized to full- 
fledged label values on entry to the de- 
claring block. 

I. is-program=is-block 
2. ~is-block=(<s-decl-part:is-decl-list>,<s-st- 

part:is-st-list~<is-expr>>) 
3. is-decl=(<s-ld:is-ld>,<s-mode:is-mode> 
4. is-mode=is-baslc-modevis-ptr-modevis-proc-mode 
5. is-ba{~c-mode={INT,LABEL,BOOL} 
6. is-ptr-mode=(<s-ptr:is-mode>) 
7. is-proc-mode=(<s-params:is-mode-list>,<s-ret: 

is-mode>) 
8. is-st=is-gotovis-hoptovis-expm 
g. is-goto=(<s-goto:is-expr>) 

~(~s-p-llst~<is-q>)(t)=d f ÷s-p-list(t) 6 
is-q(elem(length(t),t)) g 
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10. is-hopto=(<s-hopto:is-int>) 
11. is-expr=is-blnaryvis-unamyvis-assignvls-adch,- 

ofvis-indirectionvis-callVis-condvis- 
blockvis-proc-bodyvis-constvis-nilVis- 
label-const 

12. is-binary=(<s-rdl:is-expr>,<s-rd2;is-expr>, 
<s-op:is-bop>) 

13. is-bop={+,=,...} 
I~. is-unamy=(<s-rd:is-expr>,<s-op:is-uop>) 
15. is-u%p={-,...} 
16. is-assign=(<s-lp:is-ldvis-indimction>, 

<s-rp:is-expr>) 
17. is-addr-of=(<s-addr:is-id>) 
18. is-indirection=(<s-ind:is-expr>) 
19. is-call=(<s-proc:is-expr>,<s-pavams:is-expr- 

list>) 
20. is-cond=(<s-cond:is-expr>,<s-then:is-expr>, 

<is-else:is-expr>) 
21. is-proc-body=(<s-params:is-decl-list>, 

<s-ret:is-mode>,<s-body:is-expr>) 
22. is-const=is-intvis-bool 
23. is£int=... 
2~. is-hooi={TRUE,FALSE} 
25. is-nil=(<s-nil:is-mode>) 
26. is-label-const=(<s-label:is-int>) 
27. is-ld=... 

~) 

U0(<s-hopto:j> 
where j is the index of the statement 
part of b. 
For each block, b, the following is done: 
Let El, ..., in' with nk0, be all of the 
label constants in b which are still re- 
ferred to (after (3) has been done). 
a) The deelavatlon-list 

<W0(<s-id:El>,<s-mode:LABEL>)> 
^ 

-<~0 i<s - id :Zn , ,<s -mode :LABEL, ) "  
is concatenated to the declaration 
part of b. 

b) The statement-list 
<~0(<s-lp:~>,<s-rP:U0(<s-label: 
j l + n > ) > ) >  

- < ~ 0 ( < s - l P : £ n > , < s - r p : U 0 ( < s - l a b e l :  
in+n>)>)> 
where Ji is the index within the 
statement part of b of the statement 
labeled £i, is concatenated to the be- 
ginning of the statement part of b. 

e) The argument of all hopto's in the 
statement pavt of b is incremented by 
n. 

2.5 ASSUMPTIONS 

The partial translation inherent in the ab- 
stract syntax includes: 

1) Ascertaining that the scope mules have 
been Obeyed, 

2) Ascertaining that all expressions ave 
used consistently with their modes, 

3) Each goto, g, whose argument is a label 
constant declamed in the block, b, in 
which g appeavs is replaced by the hopto 

SECTIONS 3 and 4 

The following two sections which define the 
two machines are given in parallel with the defi- 
nition of the LSM in the left column and the defi- 
nition of the PRCCM in the right oolumn. This or- 
ganization is both to take advantage of similav- 
ities and to point out the differences. When the 
two machines agree completely, the description runs 
across both columns. When they differ, the des- 
crlptlon is split into two columns. 

--Continue reading at the top of the right-han6 
column 

3. THE LIFETIME STACK MACHINE 

The Lifetime Stack Machine (LSM) is an exten- 
sion of the basic stack model for block s~Tuctur~d 
languages [RR64]. The additional overhead in the 
LSM is to implement the lifetime checks (scope 
checks) suggested by the ALGOL 68 Report [vWn69]. 

3.1 WORDS 

4. THE PARTIAL REFERENCE COUNT CONTOUR MACHINE 

The Pamtial Reference Count Contour Machine 
(PRCCM) is a variant of the basic contour model as 
defined by Johnston [Joh71] and as modified by 
Chlrica et al [CDMPS73]. The varlations include 
facilities for maintenance of mefemence countsand 
partial reclamation of contours whose reference 
counts indicate that they ape inaccessible. 

~.I WORDS 

The basic unit of storage in both machines is the word, whose length is left unspecified. Subfields of 
the word are specified as follows: 

ITag I Hi Mid i Lo 

Val 

Fig~e 1 
~ e m  a m  f o r  d i s j o i n t  f i e l d s  c a l l e d  t ~ ,  h i ,  mid and l o .  The i r  s izes  a m  u n s p e c i f i e d .  The r e l a t i v e  s i zes  
g i ven  i n  the d i ~ r a m  above ave in tended  t o  b~ sugges t i ve~  as t a d  and mid w i l l  have t o  ho ld  va lues  i n  a 
s m a l l e r  range than those he ld  by h ~ a n d  l o .  Hi  and l ~ w i l l  have t o  ho ld  ad~esses  o f  o t h e r  words. The h~,  
mid ,  and l o  f i e l d s  may be se lec ted  as a cont iguous group by use o f  the f i e l d  name v a l .  

Each va lue  i s  assumed to  occupy 1 o r  2 words. The word 's  t ~  f i e l d  i n d i c a t e s  what type and what pav t  
o f  a va lue  i s  s t o red  i n  the  w o ~ .  The tag  o f  a w o ~  i s  ma in ta ined  bu t  no t  checked d ~ i n g  a computa t lon ;  
t h a t  i s ,  an assignment o f  a va lue  t o  a w o k  sets  the  t ~  o f  the word t o  the  t ~  assoc ia ted  w i t h  the  va lue  
regavd less  o f  the tag  t h a t  was t he re  b e f o r e .  There i s  no need t o  check tags dur ing  the  execu t i on  o f  i n -  
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structions because of the assumption of compile-tlme mode checking. However, the tag i sneeded by the stoP- 
age management system and the garbage collector. 

3.2 COMPONENTS ~.2 COMPONENTS 

The major components of the model ape the algorithm 

3.2.1 Algorithm 

The algorithm consists of a fixed reentrant program 
later. The polish style code goes hand-in-hand with the 
machine. 

3.2.2 Record of Execution The record of execution 
consists of a single pushdown stack and a processor. 

3.2.2.1 Pushdown Stack The pushduwn stack con- 
tains interleaved activation records (AR's) and 
mlni-expression stacks (me__s's). 

3.2.2.1.1 Activation Record An A_~is pushed into 
the stack upon entry to a block or procedure. The 
AR is said to be a descendent of the block or pro- 
cedure, and the block or procedure is said the AR's 
antecedent. The same AR is popped on exit from the 
block or procedure. 

An AR is organized as shown in Figure 3. The 
0 th word of an AR, A, is an AR control word with 
tag ARC. Its components ape: 
I. In the hi field is the static link, S_!, point- 

ing to an AR which is a descendent of the 
block or--procedure nested about A's antecedent. 
If A's antecedent is a procedure then the sl 
is a copy of the ep of the called procedure 
value. 

2. In the io field is the dynamic link, d l, point- 
ing to the AR immediately below A on the stack. 

3. In the mid field is the nesting height , n h, giv- 
in K the static nesting height of A's antecedent. 
The outermost block is at nesting height 0 and 
each successive inner block or procedure is of 
height one greater. 

If A's antecedent is a procedure then the word 
I contains a return label with tag RTL whose com- 
ponents ape: 
1. In the io field, an instruction pointer, i~, 

pointing to the instruction to be resumed with 
upon return from the procedure. 

2. In the mid field, a nesting_hei~h_t, n h, which 
is one more than that of the AR pointed by A's 
dynamic link. 

The remaining words of the AR, i.e., words 1 
through n if the antecedent is a block, and words 2 
through n in the antecedent is a procedure, contain 
the subcells for the identifiers declared in the 
antecedent. 

In Figure 2 the stack has three AR's of nest- 
ing heights 1, 1, and 0 (from top to bottom). The 
top AR's antecedent is a procedure because it has a 
return label. The other two have blocks as ante- 
cedents. 

3.2.2.1.2 Mes's Above each AR is a mini-expression 
stack. Each mes serves as an expression evaluation 
stack for the expressions of the antecetlent of the 
AR just below it. Each mes represents the status 
of the expressio n stack at the time the antecedent 
of the AR just below it. Each mes represents the 
status of the expression stack at the time the an- 
tecedent of the AR just above it was entered or 

and the record of execution. See Figures 2 and 6. 

~.2.1 Algorithm 

composed of polish style instructions to be defined 
pushdown stack expression evaluation used in the 

~.2.2 Record of Execution The record of execution 
consists of a contour segment, an expression stack, 
a stack segment, and a processor. 
~.2.2.1 Contour Segment The contour segment con- 
sists of two doubly llnked lists: 
1. One is a list of allocated contours. 
2. The other is a list of free blocks of memory. 

Both lists are ordered by address. The first two 
words of the seEmept contain the list heads for 
these two llsts. "Both list heads have LH tags and 
each consists of: 
I. in the hi field, a for~ard link, f l, and 
2. in the io field, a backward llnk, bl, which 

points to its first and last elements respect- 
ively. 

~.2.2.1.1 Contour A contour is allocated upon en- 
try to a block or procedure. The contour is said 
to he a descendent of the block or procedure and 
the block or procedure is said to be the antecedent 
of the contour. The contour is deallocated only 
after it has become inaccessible. 

The general form of a contour is shown in Fi- 
gure 7. The -1 th word of a contour, C, has a tag 
of LNK and consists of storage management informa- 
tion including: 
I. in the hi field, a forward link, f_l, and 
2. in the lo field, backward link, b! , for linking 

the contour into the doubly linked list of con- 
tours, 

3. in the mid field, a length, le___n, which gives 
the total length or the contour in words. 

Word 0 has a CT tag indicating that it is the base 
word of a c6ntour. It consists of: 
I. in the hi field, a static llnk, s l, which 

points to a contour which is a descendent of 
the block or procedure nested about C's ante- 
cedent. Specifically, if C's antecedent is a 
block, then the sl points to the contour poin- 
ted to by the ppocessor's ep just before entry 
to C's antecedent. If C's antecedent is a pro- 
cedure, then the sl is a copy of the called 
procedure value's ep, 

2. in the mid field, a nesting height, n h, giving 
the static nesting height of C's antecedent. 
The outermost block is at nesting height 0 
and each successive inner block or procedure 
is of helght one greater. 

3. in the io field, a reference count, r c, count- 
ing the number of ep's and static links point- 
ing to the countour except for those that re- 
side in the countour itself. 

If the contour's antecedent is a procedure, then 
word I contains a return label which has a tag of 
RTL and which consists of three components: 
I. In the io field is an i~ pointing to the in- 

ssrcuction to be resumed with upon return from 
the Drooedure. 

2. In the hi field is an ep_pointlng to the con- 
tour poinZed to by the processo~'s ep.~ust 
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called. If there is no AR above ames, it is the 
cuzTent one (see Figure 2). Since most block en- 
tries and procedure calls occur at statement boun- 
daries, most mests ape empty. Only those mes's 
just below an AR whose antecedent was entered oP 
called as part of an expression evaluation will be 
non-empty, e.g., the block and procedure call be- 
low: 

..;a÷I+BEGIN INTa; a÷l END+p(2)÷3;... 

n( 
i n- l  i 

2 

1 RTL 

0 ARC sl 

nh 
nh 

ip 
dl 

Fi gure 3 

integer 

Boolean 

label part l 
part 2 

procedure 

pointer 

'~ val ~j I I TM ! 

i t ag l  hi : mid , lo 
I I I I I 

I INTI value including sign I 

I BOoEZZZ=x==Z_] I 

LB2 sp ts 

IPRCI e p l n h l i p  I 
I PTRI ep L J ' " ]  ptr I 

Figure 5 

n 
n-l 

xY 

2 
l RTL 

0 CT 
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3.2.2.2 Processor 

The processor consists of a site of activity (label) 

before the call of the antecedent. 
3. In the mid field is a n__hwhich is one mope than 

that of the contour pointed to by the ep. 

The remainder of the contour, i.e., words 1 through 
n if the antecedent is a block, and words 2 through 
n if the antecedent is a procedure, contain the sub- 
cells for the identifiers declared in the antece- 
dent. 
4.2.2.1.2 Free Block A free block is a block of n 
contiguous words which ape free to be allocated. 
The first word of a free block has a tag of LNK and 
consists of three components. 
1. In the hi field, a forward link, f l, and 
2. In the Io field, a backward link, b l, fop link- 

ing the free block into the doubly linked list 
of free blocks a length, lean glving the length 
of the free block including this word. 

4.2.2.2 Expression Stack 

The expression stack ES serves as the expres- 
sion evaluation stack of the entire computation, 
(i.e., it can be thought of as the mes's merged to- 
gether). 
4.2.2.3 Stack SeBment The stack segment consists 
of two doubly linked lists, both ordered by address: 
1. One of copies of the ES (ces's); 
2. The other of free blocks of memory. 

The first two words of the stack segment are the 
heads of the two lists which ape o~anized exactly 
as the heads of the contour segment lists. 
4.2.2.3.1 Ces Aces fo~s the stack part of a la- 
bel value LCDMPS73]. Rather than storing the stack 
with the label value, the stack is stored in the 
stack segment as aces, and the sp of the label 
value points to the ces. The ces is a copy of the 
active portion of the ES at the time the label 
value is cmeated; that is, if the copied ES has a 
height of n (is=n), then the ces would be n+2 words. 
Word 1 is tagged LNK and is arranged exactly as the 
first word of a contour; Word 2 is tagged CES and 
it consists only of a reference count, Pc, occupy- 
ing the lo field. The Pc counts the number of sp's 
pointing to the ces. The remaining words of the 
ces contain the valid part of the copied ES. 

Once initialized, a cos is newer modified. 
When a goto is done using a particular label value, 
the entire ces of the label is copied into the ES 
and the ts of the processor is set to the height of 
the ¢es. 
4.2.2.3.2 Free Block The free blocks of the stack 
segment are arranged exactly as the free blocks of 
the contour segment. 

W.2.2.4 Processor 

and a display (see Figure 4). 

3.2.2.2.1 Site of Activity 

The site of active (soa) occupies the last two words 
The word tagged LB1 consists of 
I. in the io field, an instruction pointer, ip~ pointing 
2. in the hi field, an environment pointer, e~, 

pointing to the topmost AR on the stack 

4.2.2.4.1 Site of Activity 

of the processor which ape tagged LB1 and LB2. 

to the next instruction to be executed 
2. In the hi field, an environment pointer, e~, 

pointing to a contour which is a descendent of 
the currently executed block or procedure. 

3. in the mid field, a nesting height, nh, which is one more than that of the AR or contour pointed by the 
ep. 

The word tagged LB2 consists of The word tagged LB2 consists of 
4. in the hi field, a stack pointer, _sp, pointing 4. In the hi field, a stack pointe~, sp, pointing 

to the base of the stack to the base of the ES. 
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5. in the lo fieldl a top of stack index, ts, 5". In the lo fields a top of stack index, is, 
which gives the displacement, in woz~ds9 of the which gives the displacement of the first free 
first free word on top of the mes on top of the word on top of the ES (see Figure 6). 
topmost AR, i.e.j the current height of the 
stack measured in words t i.e., ts÷sp points to 
the first free word on top of the topmost mes 
(see Figure 2) .  

3 .2 .2 .2 .2  Disp lay ~ .2 .2 .4 .2  Display 

The p rocessor ' s  accessing environment i s  the ordered l i s t  o f  ARs or  con tou r~An ,  . . . ,  An, With nk0 r such 
t ha t  the p rocessor ' s  ep po in t s  to  A ,and f o r  each i such t h a t  n k i k l ,  the s t a t i c  l i n k  o f  A i pSin ts  to  A i -1 .  

• n NecesaPtly the nestzng he igh t  o f  each A i i s  i t  and the nes t ing  he igh t  o f  the processor  i s  n÷ l .  

The d i sp lay  i s  a vec to r  o f  po in te r s  to  the ARs or  contours o f  the processor 'senv i ronment  such t ha t  DISP 
[ i ]  po in ts  to  A I .  Each element o f  the d i sp lay  i s  tagged DIS and the p o i n t e r  occupies the l o  f i e l d .  The 
d i sp lay  i s  of  some convenient  s i z e ,  max~whlch i s  thereby the maximum nes t ing  he igh t  a l lowed f o r  any program. 
The d i s p l a y  can be const ruc ted a t  any t ime from the p rocessor ' s  ep and nh accord ing t o  the f o l l o w i n g  axioms: 

I) DISP[nh-1] = ep 
2) for i from nh-2 ~-1 to 0~ DISP[i] = the static link of the AR pointed to by DISP[i÷I]. 

In practicer the ~splay is rec~structed~ posslbly only partially~ only when the environment of the proc- 
essor changes. 

3.3 VALUE REPRESENTATIONS ~.3 VALUE REPRESENTATIONS 

The individual subcells of the AR's~ mes's~ contours~ ES, and ces's contain valueswhich may be one of 
the following types: integers boolean9 pointerl label, or procedure. Each value occupies one or two words. 
Figure 5 shows all of the value formats. 

3.3.1 Integer Value ~.3.1 Integer Value 

An integer value has an INT tag and occupies the entire val field. It is assumed that the representabll 
values are the signed integers in some large convenient range. 

3.3.2 Boolean Value q.3.2 Boolean Value 

A boolean value has a tag of BOO and is treated as though it occupies the entire val field (even though 
only one bit is really needed). The range of representable values is TRUE and FALSE. 

3.3.3 Pointer Value ~.3.3 Pointer Value 

A pointer value, which is tagged by PTR consists of two parts: 
1. in the io field is the pointer proper~ ptr, which points directly to the pointed-to subcell; 
2. in the hi field is the environment pointer ep, which points to the AR or contour containing the pointed- 

to subcell. 

3.3.~ Label Value A label value is a copy of an 
soa of the processor and consists of two words 
tagged LB1 and LB2. The word tagged LB1 has 
1. in the lo field, an i~ pointlng to the first 

instruction of the labeled statement, 
2. in the hi fields an eB. | I-all copies of 
3. in the mid fields an n h I I the same com- 

and the word tagged LB2 has ponents of the 
~. in the hi field, an s_p processor at 

| the time the 
| label value is 
L c r e a t e d  

5. i n  the lo  f i e l d ,  a ts which i s  one less than 
the ts  o f  the processor  a t  the t ime the l a b e l  
value i s  c rea ted .  

~.3.q Label Value A label value is a partial copy 
of an soa of the processor and consists of two 
words tagged LB1 and LB2. The word tagged LB1 has 
1. in the io fields an ~pointing to the first 

instruction of the labeled statement, 
2. in the hi field, an e~ ~ ~oth copies of the 
3. in the mid fields an n_h) [same component of 

~processor a t  the 
Jtlme the label value 
Lis created 

and the word tagged LB2 has 
q. in the hi field an s~ pointing to aces which 

is a copy of the active portion of the ES minus 
the top word at the time the label value is 
created t 

5. in the io fields a ts, which iS one less than 
the ts of the processor at the time the label 
value is created. 

3.3.5 Procedure Value ~.3.5 Procedure Value 

A procedure value which is tagged PRC, has but three parts: 
I. in the io field, an ip pointing to the entry point of the procedure, 
2. in the hi field, an ~ computed as follows: Let nhp be the nesting height of the innex~nost block or pro- 

cedure surrounding th~procedure body which contains the identified declaration of a non-local of the 
body. If nhp is defined , then the ep is a copy of DISP [nhp] of the processor at the time the pro- 
cedure value is created. If nhp is not defined then the ep is NIL. 

3. In the mid field, an n h which equals nhp+1 if nhp (described in (2) above) is defined and is zero 
otherwise. 
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The ep of the procedure value will be recognized as the necessary environment pointer of the procedure [Bry 
70]. 

3.4 IDENTIFIER ACCESSING ~.4 IDENTIFIER ACCESSING 

In the LSM and the PRCCM, identifier accessing is done by the traditional (i,j) pair method. At com- 
pile time each identifier is converted into an (i,j) pair, where i is the nesting height of the block or pro 
cedure containing the declaration of the identifier, and j is the relative displacement of the subcell for 
the identifier within the AR or contour for the declaring block or procedure. 

Assume that the declaration part of the block or procedure, bp, declaring the identifier id£ is 
<~0(<s-ld:idl>,<s-mode:m1>)> 

^. .... ̂<~o(<s-id:idn>,<s-mode:mn>)> 
where 1~£~n, the idi's are identifiers and the mi's are modes. 

Associated with each mode, m, is a size S(m) as follows 
S(m) = ~ if m = LABEL 

o the rw ise  . t ¢  
Then the j for id£ is computed by 

where 

3.5 LIFETIME CHECK 

£-1 
j = 1 + p + ~ S(m k) 

{~ if bp is a procedure body 
P = if bp is a block. 

Each assignment of a pointer, label or pro- 
cedure value is accompanied by a lifetime check 
which ascertains that the ep of the assigned value 
points to an AR no higher on the stack than the AR 
containing the subcell to which the value is being 
assigned. This insures that the AR pointed to by 
the ep of the assigned value will be on the stack, 
and therefore, the assigned value will be valid, at 
least as long as the AR to which the value is being 
assigned. 

Upon exit from a block or procedure, if a 
pointer, label, or procedure value is returned, a 
lifetime check must be performed. This check as- 
certains that the eP of t h e  value being returned 
points to an AR no higher on the stack than the AR 
pointed t o  by the dynamic link of the popped AR. 
This insures that the ep of the returned value does 
not point to the AR being popped from the stack. 

The time overhead for the lifetime checks is 
as follows: 
I. Each assignment of a pointer, label, or pro- 

cedure value requires a constant time for the 
lifetime check. 

2. Each exit of a block or procedure in which a 
pointer, label, or procedure value is being re- 
turned requires a constant time for the life- 
time check. 

3.6 MACHINE INSTRUCTIONS 

Section omitted. 

3.7 DEFINITIONS 

Definition 1: A program peGBSL is said to be 
lifetime well-stacked (LWS) if it can be run on 5SM 
without incurring a lifetime e r r o r .  

It may be observed that 
{PlP is LWS}.~-{pl p is WS}. 

The inclusion is obvious since the LSM is a dele- 

4 . 5  REFERENCE COUNTS AND STORAGE MANAGEMENT 

Each copying a n d / o r  e r a s i n g  o f  a r e f e r e n c e  
coun tab le  va lue  i s  accompanied by an upda te  of  
t h e  r e f e r T e d - t o - c e l l .  A r e f e r e n c e  coun tab l e  va lue  
is either 
I. a pointer value 
2. a label value 
3. a return label 
4. a proeedume value 
5. a site of activity of the processor, or 
6. a static llnk of a contour. 

A referred-to cell is the contour pointed to by 
I. the ep of a pointer value, 
2. the ep of a label value, 
3. the ep of a return label, 
4. the ep of a procedure value, 
5~ the ep of a site of activity, or  
6. the static link of a contour, 

or the cos pointed to by 
2. the sp of a label value. 

In p a r t i c u l a r ,  i f  a r e f e r e n c e  coun tab le  va lue  
i s  c o p i e d ,  pushed ,  o r  c r e a t e d ,  then  the  r e f e r e n c e  
count  of  each r e f e r T e d - t o  c e l l  i s  i nc remen ted  by 
one u n l e s s  the  va lue  r e s i d e s  in  t he  r e f e r r e d - t o  
cell. 

If a reference countable value is erased, 
overwritten, or popped, then the reference count of 
each referred-to cell is decremented by one unless 
the value resides in the referred-to eel1. If the 
value is a label, then if the reference count of 
the cos pointed to by its sp has gone to zero, it 
is necessary to ripple. Rippling consists in decre- 
menting the reference counts of all cells referred 
t o  by any reference countable value in the ces. If 
any of the values in the ces are labels, then there 
is a recursion of rippling. Thus erasing a label 
value can result in an arbitrary amount of refer- 
ence count decrementatlon. 

The net result ofthis reference count mainten- 
ance scheme is that at any time, the reference 
count of each contour counts the number of ep's and 
static l~nks that point to it, except for those 
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tion machine. The inequality is demons~ated by 
the program 

I BEGIN PTR INT p; 
2 BEGIN INT b; 
3 pd-ADDR b 
4 END; 
5 p~NIL INT 
6 END 

The assignment in line 3 causes a lifetime e r r o r ;  
however, the program is well-stacked because it 
never uses the dangling pointer. 

SPECIAL NOTE: 
To save space, Sections 5, 6, and 7 are 

given from here on in the left-hand column of the 
page. 

5. TRANSLATION OF GBSL PROGRAMS INTO MACHINE 

6. 

LANGUAGE PROGRAMS 

Section omitted. 

EXAMPLE PROGRAM 

Section omitted. 

7. RESULTS 

In this abbreviated version of Section 7 the 
theorems ape stated and only an outline of their 
proofs ape given. The complete proofs depend on 
the microcode for the instructions which has not 
been given. 

The first theorem states that PRCCM, when 
executing a lifetime will stacked program that does 
not generate isolated knots, behaves essentially 
like a stack implementation. 

Theorem 1: Let pcGBSL be LWS. Suppose that p 
does not'generate isolated knots. 
Then, 

Let S i be a snapshot in PRCCM (p). Suppose 
that CI~...~C n is the complete addmess ordered llst 
of contours in the contoum segment of S~. Then, 
the following may be said: (See Figure ~) 
I. CI, ...,C n ape adjacent to each other and are 

at the bottom of the contour seKment 
2. The free list consists of exactly one element 

F sitting above and adjacent to Cn, and com- 
prises all of the segment not included in 
CI, ..., C n and the list heads. 

3. The processor's ep points to C n. 
W. The list C~, ..., C$ gives the order that the 

contours will be exited if the normal block 
exit and procedure return chain were followed. 

5. The list C1, ..., C_ gives the order in which 
the contours were a~located. 

Proof: By induction on the length of the computa- 
tion. 

The initial snapshot clearly satisfies the 
conditions since no contours have been allocated 
and the free list consists of a single free block 
containing the entire segment except for the list 
heads. 

Assume that conditions 1-5 hold at snapshot S i. 
Show that they hold in snapshot St÷ 1. There are two 
ma~or kinds of ins~.uctions to conslder:l) the en- 

that reside in the contour itself. Also at any 
time, the reference count of each cos counts the 
number of sp's that point to it (no sp can ever 
reside in the cos that it points to). 

The normal method of storage management con- 
sists in the following: 
I. Both the free list and the allocated llst of 

the contours and stack segments ape ordered by 
address. 

2. Allocation of a contour or aces is done on a 
first bit basis from the beginning of the 
appropriate free list, i.e., the first free 
block in the list large enough to hold the new 
contour or ces is taken. Any left over space 
in the block is left on the free list. The 
allocated block is linked to the appropriate 
allocated list by searching for its place from 
the end of the list. 

3. Recl~tion of inaccessible contours and stacks 
is done ultimately by garbage collection. This 
must be because the reference count of an in- 
accessible cell is not alwayszero. This situ- 
ation happens if there is an isolated knot of 
cells. An isolated knot of cells is a set of 
cells (not including the processor) pointing 
only to each other and pointed to by no other 
cells outside the set. Note that because 
pointers pointing to the cells in which they 
reside are not counted in reference counts, 
knots consisting of one cell do not bother the 
implementation. 

The reference counts of contours and ces's are 
used merely to help reclaim inaccesible contours 
and ces's sooner than they would be by the garbage 
collector, thereby postponing and hopefully obvi- 
ating the need for garbage collection. 

It has already been seen how erasure of a la- 
bel value may lead to deallocation of the cos that 
its sp points to and to deallocatlon of other ces's 
pointed to by sp's in the first deallocated ces, 
etc0 

As for contours, there are only three times at 
which it is possible for a contour to be reclaimed 
by virtue of a zero mefemence count: block exit, 
procedure exit, and goto. At each of these times 
there is an attempt to meclaim all those contours 
that would nommally be deallocated in a deletion 
model. If the appropriate contoums do not have a 
reference count of zero at this time, they are left 
in the allocated list to be picked up later by the 
garbage collector. 

Upon exit from a block or procedure, the ex- 
ited contour's reference count is decremented by 1, 
reflecting the change in the processor's ep. If at 
this point, the reference count is not zero, no- 
thing further is done. If, however, the reference 
count of the exited contour is zero, it can be re- 
turned to the free list. Before this is done, it 
is necessary to decrement the reference counts of 
all cells referred to by any pointers, labels, and 
procedure values and any return label in the con- 
tour, and to initiate rippling for the sp's of any 
lobel values in the contour. It is possible to 
generate code which goes directly to the cells con- 
taining reference countable values, since the modes 
of the identifier declared in the exited block or 
procedure ape known at compile time, Therefore, if 

174 



vironment changing instructions, i.e., block entry, 
block exit, procedure call, procedure return, and 
goto, 2) all other instructions .... 

Corollary 2: Let pcGBSL be LWS. 
Suppose p does not generate any isolated knots. 
Then, 

I. Allocation of a contour (finding a free block 
big enough and linking the contour in the 
allocated list) takes a constant amount of 
time. 

2. Freeing a contour (removing it from the allo- 
cated list and finding its place in the free 
list with possible merglng) takes a constant 
amount of time. 

3. If allocation fails, it is becuase there is not 
enough room at all in the segment and is not 
due to failure to have a big enough free block 
due to fragmentation. 

~. Garbage collection will never occur (i.e., if 
allocation fails there is no space to reclaim). 

Proof: 
These all follow striaght for~ardly frem the proof 
of Theorem I. 

Theorem 3: Let pcGBSL be LWS and suppose that p 
does not generate isolated knots. 
Suppose p does not have labels (after compiling 
away hoptos),polnters, and procedures). 
Then, ~ 
1. T(LSM(p)) $ Q + hx(be) 
2. T(PRCCM(p)) ~ Q + h'x(be) 
3. IT(LSM(p)) - T(PRCCM(p)) I = @(be) 

Where: be is the number of block entries that occur 
in the computation. 
h and h' are constant per block entry. 
Q is time for everything else which is iden- 
tical in both models. 

Proof: 
The conditions restrict the code that is generated 
to a subset of all the instructions. The result 
follows by inspection of this subset. In particu- 
lar, there will be no scanning of contours about 
to be freed for reference countable value; This is 
because it can be determined at compile time that 
there are no reference countable values in any con- 
tOUr. 

Note that (3) says essentially that hx(be) and 
h'x(be) balance each other off. The actual con- 
stants h and h' depend on the specific machine im- 
lementations. 

Theorem ~: Let pEGBSL be LWS and suppose that p 
does not generate isolated knots. 
Suppose p does not have any labels (after compil- 
ing away hopto's and pointers. 
Suppose that all computations of procedure values 
are accompanied by assignments or calls. 
Then, 

T(LSM(p)) ~ Q + h×(be) + i×(proca) + jx(procc) 
T(PRCCM(p)) ~ Q + (h'+mxi')x(be) + i'x(proca) 
+ (j'm×i')×(procc) 

Where: be is the number of block entries in ~he 
computation. 
proca is the numbem of procedure assign- 
ments in the computation. 
procc is the number of procedure calls in 

eT(LSM(p)) means "Time for LSM to execute ~". 

there ape no reference countable cells in the con- 
tour there is no scanning overhead at exit time. 
When the exited cDntour is finally freed, the free 
list of the contour segment is searched from the 
beginning to find the proper place for the contour 
in the address ordered free list. If the freed 
contour is physically adjacent to any of its neigh- 
bors on the list, it and its neighbors are merged 
into one free block. 

Upon a goto the processor's ep is reset to a 
copy of the ep of the label used in the goto. In 
general the new ep bears no relation whatsoever to 
the old ep of the processor before the goto. How- 
ever, if the program is well-stacked, the ep of the 
label ~ints to a contour somewhere on the chain of 
normal returns (i.e., the dynamic chain) from the 
contour pointed to by the old ep. Therefore, in 
the hopes that the program is well-stacked, there 
is an attempt to deallocate all of the contours on 
this chain: 
I. Let C be the contour pointed to by the old ep. 
2. The reference count of C is decremented by 1 

reflecting the resetting of the pPocessor's ep 
or the deallocation of the previous contour on 
the chain. 

3. If C's reference count is not zero, the looping 
stops and control continues at the labeled 
statement. 

~. If C's reference count is zero, then the con- 
tour must be freed. Before it can be freed, 
each word of the contour must be scanned for 
the presence of a reference countable value. 
The reference counts of all cells referred to 
by any of these reference countable values must 
be decremented and the rippling of sp's must be 
initiated if necessary. (Because it is not pos- 
sible at compile time, to tell which contours 
will be on the return chain, it is not possible 
for the code to go directly to the cells con- 
taining reference countable values; instead 
some interpretive scheme, such as scanning must 
be used.) 

5. C is freed by searching the free list from the 
beginning to find its place and merging C with 
its neighbors if possible. 

6. If C has a return label, the next contour is 
that pointed to by the return label's ep. If 
not, the next contour is that pointed to by the 
static link of C. If there is no next contour 
(the return label ep or the static link is NIL) 
the looping stops, and control continues at the 
labeled statement. 

7. If there is a next contour, it is taken as C 
and control branches back to step 2. 

The overhead required for reference count 
maintenance and storage management is as follows: 
1. Each pushing or popping of a pointer or pro- 

cedure value requires a constant time for refer- 
ence count inceementation or decrementation. 

2. Each assignment of a pointer or procedure value 
mequires a constant time for decrementing the 
reference count of the cell refezTed to by the 
overwritten value and for incrementing the re- 
ference count of the cell refezTed to by the 
assigned value. 

3. Each pushing of a label value mequlres a con- 
stant time for incmementlng the reference 
counts of the contour and the ces referred to 
by the label value. 
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the computation. 
h and h' all constant per block entry. 
i and i' are constant per procedure assign- 
ment. 

and J' are constant per procedure call. 
m is the maximum number of procedures de- 
clared in any block or procedure of p. 
Q is the time for all the rest which is the 
same in both models. 

Corollary 5: In Theorem ~, h'+mi' can be replaced 
by H' which is constant per block entmy per pro- 
gram and j'+mi' can be replaced by J' which is 
constant per procedure call per program. Conse- 
quently for a given pEGBSL satisfying the condi- 
tions of Theollm ~, 
IT(LSM(p))-T(PRCCM(p))I = @(be ÷ proca ÷ procc). 

Theorem 6: Let pEGBSL be LWS and suppose that p 
does not generate isolated knots. 
Suppose p does not have any labels (after compiling 
away hopto's). 
Suppose that all computations of pointer and pro- 
cedure values all accompanied by assignments, in- 
directions or calls. 
Then, 

T(LSM(p)) ~ Q + h×(be) ÷ ix(proca) ÷ jx(procc) 
÷ i×(ptra) 
T(PRCCM(p)) ~ Q ÷ (h'+m×i')×(be) + i'×(proca) 
÷ (j'mxi')X(procc) + i'X(ptra) + k'X(ptTi) 

Where: be, proca, procc are as in Theorem 5. 
ptTa is the number of pointer assignments in 
the computation. 
ptri is the number of pointer indirections 
in the computation. 
h and h' are constant per block entry. 
i and i' are constant per pointer or pro- 
oedure assignment. 
j and j' are constant per procedure call. 
k' is constant per pointer indirection. 
m is the maximum number of procedures and 
pointers declared in any block or procedure 
of p. 
Q is the time for all the rest which is iden- 
tical in both models. 

Note here that k', the time per pointer indirection 
in PRCCM, cannot be balanced off to anything in LSM, 
but k' is constant. 

Corollar~r 7 to Theorem 6 is as Corollary 5 is to 
Theorem 4. 

For a given pEGBSL satisfying the conditions 
of Theorem 6, 
IT(LSM(p)) - T(PRCCM(p)) I - k'x(ptri) = 
~(be + proca +procc + ptra) 

Observation on labels: 
If labels and gotos are added, then 
1. In LSM, the added time is constant per label 

assignment and per goto. 
2. But in PRCCM, the added time per label assign- 

ment and goto is not constant. The time does 
not even have a compile time computable bound 
per program. The essential reason is that 
erasing of the entire expression stack occurs 
in these operations. In order to maintain 
stack-like behavior as per Theorem 11.1, a po- 
tentially unbounded rippling rsfersnce count 
decrementation may be required. 

Hop,o's and branches that occur during execution of 
con%Tol structures like conditionals, loops, while- 
do's etc. do not incur this cost since no environ- 

~. Each popping of a label value requires a con- 
stant time for decrementing the reference 
counts of .he contour and ces referred to by 
the label value, plus a potentially unbounded 
time if the ces's refellnce count goes to zero. 
The potentially unbounded time is both to de- 
crsment the reference counts of the cells re- 
ferred to by the arbitrary number of reference 
countable values in the ces and to ripple if 
any of the reference countable values is a 
label. 

5. Each assignment of a label value requires a 
potentially unbounded time for the rsference 
count decrementatlon and possible rippling 
associated with crediting of a label value 
(as in popping) and a constant time for incre- 
menting the reference .cunts of the contour 
and ces referred to b the assigned label 
value. 

6. Each indirection requires a constant time for 
decrementing the reference count of the cell 
refelTed to by the overwritten pointer value. 

7. Each block or procedure entry requires a con- 
stant time for setting the reference count of 
the new contour and a potentially unbounded 
time for searching for a free block large 
enough. 

8. Each block or procedure exit requires a con- 
stant time for decrementing the reference count 
of the exited contour, and if its count goes to 
zero, a potentially unbounded time proportional 
to the number of pointers and procedures in the 
contour to decrement the reference counts of 
the cells referred to by them. (For a given 
program with a maximum number of pointers and 
procedures in a block or procedure this time 
can be boundecL), a potentially unbounded time 
to decrement the reference counts of the cells 
referTed to by the label values in the contours 
and to ripple if necessary, and a potentially 
unbounded time to search for the freed contoum's 
place in the free llst. 

g. Each goto requires potentially unbounded time 
to decrement the reference counts of cells re- 
ferred to by the arbitrary number of reference 
countable values in the ES, potentially un- 
bounded time to ripple the sp's of the labels 
in the ES, potentially unbounded time to incre- 
ment the llfellnce counts of the cells referred 
to by the arbitrary number of reference count- 
able values in the copied ces and potentially 
unbounded time to chase through the arbitrary 
deep chain of returns, spending a potentially 
unbounded time at each contour in the chain. 

The key observation to be made is that if the 
program happens to be lifetime well stacked~f. 
Section 3.7) and no isolated knots of moll than one 
cell are formed to foul up the reference counts, 
then all contours will have a zero llference count 
upon exit, and will thus be returned to the free 
list immediately. By exit in this context, we mean 
exit by way of a goto as well as by block or pro- 
cedull exit. 

Given: 
1. The ordering of the free and allocated lists by 

address, 
2. The first bit allocation scheme t and 
3. The merging of fmeed contours to their adjacent 

neighbors on the free list, 
the observation implies that for lifetime well- 
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ment change occurs in these cases. 
Moral: Retention can be made fairly cheap for 
structured programs [Dij72]. 

8. CONCLUSIONS 

This paper has presented two implementations 
of generalized block structured languages, one 
which implements the deletion strategy with life- 
time checks and the other which implements the re- 
tention strategy. 

The two implementations have been expressed 
as machines executing from the same code so that 
their times for given program features may be com- 
pared. 

The results show that for lifetime well- 
stacked programs which generate no isolated knots 
and which are structured in the sense of struc- 
tured programming, retention can be made to run in 
approximately the same order of magnitude of time 
as the Lifetime Stack Machines. 

It is the authors' belief that most programs 
meet these conditions (om should). Programs not 
meeting the first two conditions either need reten- 
tion or are doing some list manipulation in which 
retention might be useful. Presumably the users 
of these programs would be willing to pay for the 
full cost of retention. Programs not meeting the 
third condition (i.e., which have gotos) bear the 
brunt of the expense. However this is a desirable 
deter,cent to using something which should be used 
but sparingly. (One co-author dissents from this 
last opinion.) 
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stacked programs not generating isola£ed knots of 
more than one cell, the contour segment will look 
as shown in Figure 8 at all times. 

The allocated contours will be adjacent to each 
other and will all be in the "bottom" of the contour 
segment in the order of their activation. The pro- 
cessor's ep will point to the "top most" contour. 
In addition, the free list will consist of exactly 
one block which sits immediately on top of the "top 
most" allocated contour~ this free block comprises 
the entire unallocated portion of the contour seg- 
ment. 

Therefore, upon entry to a block or procedure, 
allocation of a contour will always find sufficient 
space in the first element of the free list (or 
else the segment itself is exhausted). The new con- 
tour will be carved out of this free block, thu~ 
preserving the situation. Similarly, upon exit, 
the top most contour's reference count will be zere. 
The contour will be returned to the free list and 
will be merged with the free block, thus again pre- 
serving the situation. 
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ALLOCATED 

ALLOCATED 

ALLOCATED 

ALLOCATED 

FREE 

Figure 8 

Note that under these conditions, because the 
free list is searched from the beginning on both 
allocation and deallocation, and the allocated llst 
is searched from the end to put a newly allocated 
contour in its place, allocation and deallocation 
of contours will take a constant amount of time. 
~.S MACHINE INSTRUCTIONS 

Section omitted. 
~.7 DEFINITIONS 

Definition 2: A cell, C, in the record of ex. 
ecution (i.e., a contour, the ES, or aces) is said 
to be accessible if and only if one of the follow- 
ing holds: 
1. C is pointed to by the ep or sp of the proces- 

sor. 
2. C is pointed to by an ep, sp, sl, or dl stored 

in some cell D which is accessible. 

It is not necessary to take display elements 
and pointers-proper into account in determining 
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accessibillty because cells pointed to by these 
pointers are necessarily pointed at  by other poin- 
ters which are taken into account. 

Definition 3: A program peGBSL is said not to 
generate isolated knots if at no time during its 
execution does a set of more than one cell pointing 
only to one another become inaccessible. 

The concept of generation of isolated knots is 
important because reference count maintenance 
ceases to identify all inaccessible cells if there 
are isolated knots. Our handling of reference 
counts does not count pointers pointing to the cell 
in which they reside so knots of one cell do not 
bother the implementation. 
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