ON THE TIME REQUIRED FOR RETENTION#

D. M. Berryt L. Chiricat

1,1 INTRODUCTION

In block structured languages, upon entry to
a block or procedure, storage is allocated for the
identifiers declared in the block or procedure.
There are two choices as to’when to deallocate this
storage: '

1) upon exit from the block or procedure,

2) when the storage becomes inaccessible.

The former is referred to as the deletion
strategy because storage for a block or procedure
is deleted (deallocated) automatically upon exit.
The latter is referred to as the retention strate
because it is possible for storage for a block or
procedure to be retained after exit. These two
strategies are not equivalent, as there exist
numerous example programs making use of pointer,
label, and procedure values, which show the dif-
ference between these two strategies. For ex-
amples, see Bry7lb, CDMPS 73, Fis72, Org73, and
Weg7l. The difference shows up in the form of a
dangling reference in the deletion strategy which
does not appear in the retention strategy.

In the deletion strategy, storage for blocks
and procedures is allocated and deallocated in a
last-in-first-out order. Therefore, storage for
blocks and procedures can be managed efficiently
on a pushdown stack. However, deletion gives rise
to dangling references in the use of pointer, la-
bel, and procedure values. This is dealt with in
one of two ways which compromiseseither security
or generality:

1) There is no attempt to prevent or detect
dangling references, and errors, which
are hard for the programmer to detect,
can occur. This is the case in PL/I-F
in which a pure stack model with no run
time check can be used [W1k69].

There are restrictions on the use of
peinter, label, and procedure values
which require the addition of some run
time checks to the basic stack model.
This is the case with ALGOL 68, in which
the run time checks are to prevent
#This work was supported by the National Science
Foundation, Grant Nos. GJ 809 and GJ 28074.

tComputer Science Department, University of
California, Los Angeles, Los Angeles, Ca. 90024,

2)

§Computer Science Department, New Mexico State
University, Las Cruces, N. M. 88003.

J. B. Johnston$

165

~general use.

p. F. Martint A. Sorkint

dangling references, and with Deletion
Parallel Euler, in which the run time
checks are to detect dangling references
[vwn 69, cDMPS 73].

Retention is both more secure and more general
in that it eliminates all possibility of dangling
references, and it therefore removes all restric-
tions on the use of pointer, label, and procedure
values. This is the case with GEDANKEN, PAL,
Oregano, and Retention Parallel Euler [WE 70, Rey
70, Bry 73, CDMPS 73). However, retention is con-
sidered to be less efficient than deletion, as it
requires more sophisticated storage management
techniques, including the use of a free list, re-
ference count management, and/or garbage collection.

While retention is clearly nicer, its ineffi-
ciency appears to be the major obstacle to its
Most programs that are written are
single task programs which use integer, real,
Boolean, and character string values almost exclu-
sively. They use pointers only for passing para-
meters by reference, and they use labels and
procedures only as constants. Furthermore, these
procedures return only integer, real, Boolean, and
character string values. These programs do not re-
quire retention and run correctly on an implementa-
tion using the deletion strategy. We call such
programs which run correctly on a deletion imple-
mentation, e.g. the stack model, well-stacked (WS).
It is only the rare program doing list manipulation
or demonstrating a principle of computer science,
etc., which requires retention. It seems unfair to
penalize the vast majority of programs which are
well-stacked with the overhead required for reten-
tion,

This paper develops an implementation of gen-
eralized (single task)® block structured languages
with compile time type determinability, which is
capable of handling full retention but which keeps
the run time cost of many well-stacked programs
near that of the same program on a typical ALGOL 68
style implementation.

This implementation can be regarded as the
architectural basis for a block structured machine,
Indeed the implementation is described in terms of
microcode for an abstract machine.

#Although the implementation appears to be easily
extendable to handle multi-tasking.

Other similar and independent work with the
same goals has been done by Bobrow and Wegbreit
[BW73]. They propose an implementation which dif-
fers from ours, primarily in two places:

1) The heavy copying overhead of their model
occurs with some of the block exits and
procedure returns, whereas ours places
the heavy copying overhead on the label
bindings and gotos.

Their model is general enough to handle
LISP as well as ALGOL identifier binding
and assumes run time type checking. Ours
is restricted to languages with ALGOL
binding and compile time type checking.
These restrictions permit certain opti-
mizations.

2)

This paper assumes familiarity with the
following topics:

" 1) Retention vs. deletion and danglin
references [Bry7la, CDMPS73, Weg7l
Stack model [RR64]

Contour model [Joh71, CDMPS73]
ALGOL 68 and its implementation [vwne9,
Bry70, BL70, Pck70, Weg71].

2)
3)
§)

1.2 STRATEGY OF THIS PAPER

A generalized block structured language is
defined to have only the "interesting" features
with the usual block-structured and compile-time-
type-checking semantics. First, its concrete syn-
tax is given followed by an abstract syntax repre-
senting a partially translated and pruned parse
tree, in which it is assumed that all type compati-
bility and other context conditions have been
checked.

Two machines are defined which have identical
instruction repertoires. One of these is the Life-
time Stack Machine (LSM) which is a variant of a
typical abstract machine used for ALGOL 68 [BL70,
Bry70, Weg7l]. The machine is a stack machine
coupled with run-time lefetime checks on the as-
signment of pointer, label, and procedure values
which prevents potential dangling references. The
run time overhead incurred for the lifetime checks
appears to be an acceptable cost for preventing
dangling references while getting some of the
general use of pointer label and procedure values.

The second machine is our proposed implemen-
tation of retention, the Partial Reference Count
Contour Machine (PRCCM) which. is a variant of the
contour model .as defined by Johnston [Joh71] and
as extended by Chirica, Dreisbach, Martin, Peetz,
and Sorkin [cDMPS73].

The definition of each machine consists of a
description of a machine state and microcode de-
scribing the execution of each instruction in the
execution of each instruction in the common ma-
chine language.

This is followed by a scheme for translating
pruned parse trees of programs into machine lan-
guage programs. This translation effectively de-
fines the semantics of the various language fea-
tures in each machine,

166

By knowing how much time is required for each
instruction by each machine, and knowing which in-
structions implement each source language feature,
it is possible to obtain comparative time estimates
for the two machines, as a function of the features
appearing in a program.

It is proved that a large subset of the well-
stacked programs (which is to be defined precisely)
will run on PRCCM in almost the same time as on the
LSM. The main idea is to take the run time over-
head required for LSM's lifetime checks (which pre-
vent potential dangling references in the context
of deletion) and use this time to do some reference
count management in PRCCM¥,

SPECIAL NOTE: Due to space limitations, it
will not be possible to give the machine instruc-
tions, their microcode definitions, the translation
of GBSL programs to machine language, and the
proofs of the theorems in this version of the paper.
For a complete copy of the paper, the interested
reader should write to the first co-author.

2. GBSL

GBSL, the generalized block structured language
is a powerful but simple language capturing all of
the "interesting" features and ignoring those not
thought to be relevant to the results.

2.1 FEATURES

GBSL has five types of values (modes), integer,
Boolean, pointer, label and procedure values. All
of these values may be assigned freely to any vari-
able of the same mode. The basic value returning
entities are constants, nils, and identifiers. The
operations of the language include binary and unary
arithmetic and Boolean operators, assignment, poin-
ter computation (PL/I ADDR), pointer indirection
(ALGOL 68 dereferencing), procedure calls, and gotos.
The statement grouping facilities include condi-
tionals, blocks, and procedure bodies, the last of
which may be assigned to procedure valued variables.

Blocks contain declarations declaring identi-
fiers to be variables of any mode. Statements may
optionally be labeled by label constant identifiers
vhich are assumed to be declared in the inner most
containing block. Procedure bodies contain declar-
ations of formal parameters of any mode. Actual

arameters are passed by value in the ALGOL 60
fNausa] sense so that formal parameters are assign-
able variables.

2.2 SYNTAX

The following is a context-free grammar giving
the concrete syntax of GBSL. Lower-case hyphenated
words are non-terminals, and upper case words, di-
gits, and punctuation except for "+" and "|" are
terminals:

program+block

block*BEGIN declaration-part statement-part END

declaration-part+€ | declaration-sequence

EThis way of describing the idea of the proof is
due to Henry Bowlden EBow?l].

declaration-sequence*declaration ; |
declaration ; declaration-sequence

declaration®mode identifier

mode+basic mode | pointer-mode | procedure-mode

basic-mode»INT | BOOL | LABEL

pointer-mode+PTR mode

procedure-mode+*PROC (mode-list) mode

mode-listmode | mode , mode-list

statement-part+optionally-labeled expression
optionally-labeled statement ;
statement-part

optionally-labeled*identifier : | €

statement*goto | expression

goto*GOTO expression

expressiontbinary | unary | assignment |
address-of | indirection | call |
conditional | block | procedure-
bedy | constant | nil | identifier |

(expression)
binary*expression binary-operator expression
unary-»unary-operator expression
binary-operator->+ | = Jees
unary-operator>-1 ...
assignment->left-part + expression
left-part+*identifier | indirection
address-of+ADDR identifier
indirection#expression IND _
call¥expression (expression-list)
expression-list¥expression | expression ,

expression-list
conditional~+IF expression THEN expression
ELSE expression FI
procedure-body+PROC declaration-part
expression CORP
constant*integer | boolean
integer+0 | 1 | 2 | oee
boolean»TRUE | FALSE
nil+NIL mode
identifiers+... (the usual set of identifiers)

The grammar is ambiguous; however, following
Scott and Strachey {ss72] we observe that by suf-
ficient use of parentheses it is possible to dis-
ambiguate any program.

2,3 CONTEXT CONDITIONS

In any block a procedure a given identifier
may appear in at most one declaration of any kind.

The usual block-structured scope rules hold.
The scope of a declaration of an identifier is the
entire block or procedure in which the declaration
occurs minus any internal blocks or procedures in
which the same identifier is redeclared. A use of
an identifier identifies the declaration of the
same identifier in whose scope it lies. Every use
of an identifier must identify some declaration.

The declaration of an identifier associates a
mode with the identifier. This mode is either INT,
BOOL, LABEL, a pointer-mode or a procedure-mcde.

A pointer-mode specifies the mode of the object
pointed to, and a procedure-mode specifies the or-
dered list of parameter modes and the mode of the
returned result.

All expressions return some value whose mode
is computable at compile time from the mode of the
immediate constituents. Sometimes there are re-
strictions on the mode of the constituent. The
mode computation and restrictions are described in
the table below. To the left of the arrow is the

167

expression form with allowable modes in place of
the operands and to the right of the arrow is the
result mode,

binary + INT + INT = INT
= m = m = BOOL, for any mode m

unary - - INT = INT

assignment m<+m 3 m, for any mode m

address of ADDR m=>m, for any mode m

indirection m IND = n, if m = PTR n for any
mode n

call P(mg, vuu,y m]) = m, if p = PROC
(Mg, veny mj)m, for any modes
Myy onny ,» m with j21

conditional 1P B00L, THER 'm ELSE m FI=m, for
any mode m

block BEGIN ...; m END or BEGIN ...;

id: m END = m for any mode m
PROC mq idg; .43]ld 3 m CORP-
=? PROC(mq, ... m)m for any

modes m4, ceely, My with j21

procedure body

integer INT

boolean BOOL

nil NIL m = m for any mode m
identifier the mode m of the declaration

identified by the identifier

A goto is in a class all by itself. Its argu-
ment must be an expression of mode LABEL, but the
goto itself does not return a value and it has no
mode.

To make the mode of all expressions computable
at compile time, a goto has been excluded from
appearing as an arm of a conditional, as the last
statement of a block, and as the expression of a
procedure body. A goto can, however, appear as a
non-last statement of a block which is,or is in, any
of these constructs.

2.4 ABSTRACT SYNTAX

The following abstract syntax [Lweg] defines
the set of partially pruned parse trees of concrete
GBSL programs in which all context conditions are
satisfied and in which

1) gotos to labels within the same block are

converted to hopto's

2) label constants not referred to or re-

ferred to only by hopto's are eliminated

3) the remaining label constants are con-

verted into implicitly declared label
variables which are initialized to full-
fledged label values on entry to the de-
claring block.

1. is-program=is-block

2. *is-block=(<s-decl-part:is-decl-list>,<s-st-
part:is-st-list~<is-expr>>)

3. is-decl=(<s-id:is-id>,<s-mode:is-mode>

by, ls-mode 1s-ba51c-modevls -ptr-modeVvis-proc-mode

5. is-basic-mode={INT,LABEL,BOOL}

6. is-ptr-mode= (<s-ptr is-mode>)

7. is-proc-mode=(<s-params:is-mode-list>,<s-ret:
is-mode>)

8. is-st=zis-gotovis-hoptovis-expr

9. is-goto={(<s-goto:is-expr>)

*(is—p;list“<is—q>)(t)éd is-p-list(t) 3
o is- q(elem(length(t).t)) &

i§7qeis—p

10. is-hopto=(<s-hopto:is-int>)

11, is-exprzis-binaryvis-unaryvis-assignvis-addr-
ofvis-indirectionvis-callvis-condvis-
blockvis-proc-bodyvis-constvis-nilvis-
label-const

12, is-binary=(<s-rdi:is-expr>,<s-rd2;is-expr>,

<s-op: is-bop>)

13, 1sf;bp={+,=,...}

1s. istggary=(<s-rd:is-expr>,<s-op:is-uop>)

15, is-<uop={-,...}

16. is-assign=(<s-1lp:is-idvis-indirection>,

<s-rp:is-expr>)

17. is-addr-of=(<s-addr:is-id>)

18. is-indirection=(<s-ind:is-expr>)

19, is-call=(<s-proc:is-expr>,<s-params:is-expr-
list>)

20. is-cond=(<s-cond:is-expr>,<s-then:is-expr>,
<is-else:is-expr>)

21, is-proc-body=(<s-params:is-decl-list>,

<s-ret:is-mode>,<s-body:is-expr>)

22, 1is-const=is-intvis-bool

23, is-int=...

24, is-bool={TRUE,FALSE}

25. is-nil=(<s-nil:is-mode>)

26, is-label-const=(<s-label:is-int>)

27. is-id=...)

2.5 ASSUMPTIONS

The partial translation inherent in the ab-
stract syntax includes:

1) Ascertaining that the scope rules have
been obeyed,

2) Ascertaining that all expressions are
used consistently with their modes,

3) Each goto, g, whose argument is a label
constant declared in the block, b, in
which g appears is replaced by the hopto

no(<s-hopto:j>

where j is the index of the statement

part of b.

4) For each block, b, the following is done:
Let 24, «+.y %,, with n20, be all of the
label constants in b which are still re-
ferred to (after (3) has been done).

a) The declaration-list
<ug(<s-id:%4>,<s-mode:LABEL>)>
~<Hg(<s-id:&y>,<s-mode:LABEL>)>
is concatenated to the declaration
part of b.

b) The statement-list
<uo(<s-lp:11>,<s~rp:uo(<s—label:
jitn>)>)>

n s o

~<Yg(<s-1p:&y>,<s-rp:up(<s-label:
jptn>)>)>
where jj is the index within the
statement part of b of the statement
labeled %;, is concatenated to the be-
ginning of the statement part of b.

c¢) The argument of all hopto's in the
statement part of b is incremented by
n.

-SECTIONS 3 and 4

The following two sections which define the
two machines are given in parallel with the defi-
nition of the LSM in the left column and the defi-
nition of the PRCCM in the right column. This or-
ganization is both to take advantage of similar-
ities and to point out the differences. When the
two machines agree completely, the description runs
across both columns. When they differ, the des-
cription is split into two columns.

~Continue reading at the top of the right-hand
column

3. THE LIFETIME STACK MACHINE

The Lifetime Stack Machine (LSM) is an exten-
sion of the basic stack model for block structured
languages [Rr64]. The additional overhead in the
LSM is to implement the lifetime checks (scope
checks) suggested by the ALGOL 68 Report {vwnea].

3.1 WORDS

4, THE PARTIAL REFERENCE COUNT CONTOUR MACHINE

The Partial Reference Count Contour Machine
(PRCCM) is a variant of the basic contour model as
defined by Johnston [Joh71] and as modified by
Chirica et al [CDMPS73]. The variations include
facilities for maintenance of reference counts and
partial reclamation of contours whose reference
counts indicate that they are inaccessible.

4.1 WORDS

The basic unit of storage in both machines is the word, whose length is left unmspecified. Subfields of

the word are specified as follows:

Tag Hi

Mid Lo

B e e S

Figure 1
There are four disjoint fields called tag, hi, mid and lo. Their sizes are unspecified. The relative sizes
given in the diagram above are intended to be suggestive, as tag and mid will have to hold values in a
smaller range than those held by hi and lo. Hi and lo will have to hold addresses of other words. The hi,
mid, and lo fields may be selected as a contiguous group by use of the field name val.

Each value is assumed to occupy 1 or 2 words.

The word's tag field indicates what type and what part

of a value is stored in the word. The tag of a word is maintained but not checked during a computation;
that is, an assignment of a value to a word sets the tag of the word to the tag associated with the value
regardless. of the tag that was there before. There is no need to check tags during the execution of in-

structions because of the assumption of compile-time mode checking.

age management system and the garbage collector.

3.2 COMPONENTS

The major components of the model are the algorithm

3.2.1 Algorithm

The algorithm consists of a fixed reentrant program
The polish style code goes hand-in-hand with the

later.
machine.

3.2.2 Record of Execution The record of execution
consists of a single pushdown stack and a processor.

3.2,2,1 Pushdown Stack The pushdown stack con-
tains interleaved activation records (AR's) and
mini-expression stacks (mes's).

3.2,2,1.1 Activation Record An AR is pushed into
the stack upon entry to a block or procedure. The
AR is said to be a descendent of the block or pro-
cedure, and the block or procedure is said the AR's

antecedent. The same AR is popped on exit from the

bIock or procedure.

An AR is organized as shown in Figure 3. The
word of an AR, A, is an AR control word with
ARC. 1Its components are:

In the hi field is the static link, sl, point-
ing to an AR which is a descendent of the

block or procedure nested about A's antecedent.
If A's antecedent is a procedure then the sl

is a copy of the ep of the called procedure
value.

In the lo field is the dynamic link, dl, point-
ing to the AR immediately below A on the stack.
In the mid field is the nesting height, nh, giv-
ing the static nesting height of A's antecedent.
The outermost block is at nesting height 0 and
each successive inner block or procedure is of
height one greater.

Oth

tag
1.

2,

If A's antecedent is a procedure then the word
1 contains a return label with tag RTL whose com-
ponents are:

i. In the lo field, an instruction pointer, ip,
pointing to the instruction to be resumed with
upon return from the procedure.

2. In the mid field, a nesting height, nh, which
is one more than that of the AR pointed by A's

dynamic link.

The remaining words of the AR, i.e,, words 1
through n if the antecedent is a block, and words 2
through n in the antecedent is a procedure, contain
the subcells for the identifiers declared in the
antecedent.

In Figure 2 the stack has three AR's of nest-
ing heights 1, 1, and 0 (from top to bottom). The
top AR's antecedent is a procedure because it has a
return label. The other two have blocks as ante-
cedents.

3.2.2.1.2 Mes's Above each AR is a mini-expression
Stack. FEach mes serves as an expression evaluation
stack for the expressions of the antecedent of the
AR just below it. Each mes represents the status
of the expression stack at the time the antecedent
of the AR just below it. Each mes represents the
status of the expression stack at the time the an-
tecedent of the AR just above it was entered or

169

‘of the contour.

However, the tag is needed by the stor-

4.2 COMPONENTS

and the record of execution.
4.2,1 Algorithm

See Figures 2 and 6.

composed of polish style instructions to be defined
pushdown stack expression evaluation used in the

4,2,2 Record of Execution The record of execution
consists of a contour segment, an expression stack,
a stack segment, and a processor.
4,2,2,1 Contour Segment The contour segment con-
sists of two doubly linked lists:

1. One is a list of allocated contours.

2. The other is a list of free blocks of memory.
Both lists are ordered by address. The first two
words of the segment contain the list heads for
these two lists. “Both list heads have LH tags and
each consists of:

1. in the hi field, a forward link, fl, and

2. in the lo field, a backward link, bl, which

points to its first and last elements respect-

ively.
4,2.2,1,1 Contour A contour is allocated upon en-
try to a block or procedure. The contour is said
to be a descendent of the block or procedure and
the block or procedure is said to be the antecedent
The contour is deallocated only
after it has become inaccessible.

The general form of a contour is shown in Fi-
gure 7. The -1th yord of a contour, C, has a tag
of LNK and consists of storage management informa-
tion including:

1. in the hi field, a forward link, fl, and

2. in the lo field, backward link, bl, for linking
the contour into the doubly linked list of con-~
tours,

3, in the mid field, a length, len, which gives
the total length or the contour in words.

Word 0 has a CT tag indicating that it is the base
word of a contour., It consists of: :

1. in the hi field, a static link, sl, which

points to a contour which is a descendent of
the block or procedure nested about C's ante-
cedent, Specifically, if C's antecedent is a
block, then the sl points to the contour poin-
ted to by the processor's ep just before entry
to C's antecedent, If C's antecedent is a pro-
cedure, then the sl is a copy of the called
procedure value's ep,

in the mid field, a nesting height, nh, giving
the static nesting height of C's antecedent.
The outermost block is at nesting height 0

and each successive inner block or procedure
is of height one greater.

in the lo field, a reference count, rc, count-
ing the number of ep's and static links point-
ing to the countour except for those that re-
side in the countour itself.

If the contour's antecedent is a procedure, then
word 1 contains a return label which has a tag of
RTL and which consists of three components:

1. In the lo field is an ip pointing to the in-
struction to be resumed with upon return from
the procedure.

2. In the hi field is an ep pointing to the con-
tour pointed to by the processor's ep just

3.

2 24nbyy

9 34nbiy
INIWIIS HNOLNOD LN3W93S HIVLS
19 14 1M wagyss 19 ¢ WY [
1
L9 4 Hl (] ~2071v — 14 [H1
_H_l Lqjuag [14 AN t_ ml tajuat |14 SN
N
2 0 || LD 24 (5]
YNOLINOD 533
pire ([ust]is NI by o z_.E_c _5:
3344 3343
L {q[uol]13 INT P PNAAAAAAANAN
N
4 { Pm —1_ 13 /
“4—— NOILNJ3XI 40 QU0ITY
UNOLNOD \
. ST TR IV AN o
L NOYLS WHLINO09TY
al 11 19 fe— NOISS3YdX3
a1 Jde RIE]
em
YNOLNDD
2_5:_: [ECN ae A¥1dSIO
L] |
" [
EELT] .
VNALAAAANAANN
Xew
1NIW9IS WNOLNOD
ds453
e Cy _ — a7 NN
2=4u
¥0553204d
NAN

> HM... [o] %ﬁ... Ty fep—y umﬁuww% WHLI¥09Y
iy
sau
= _ 1 _ Ti
L1 AV4SI0
0
saul
L
1 t ol 1 — xeuw
L Rit:]
oy
sau
ds+s3
T _
() |—|_| Y ~w
2=yu
AN
AWLS ¥05S3204d
y aanbr4
(0)dsIa s1ia
(L)dsIa sIa
(2)ds1a sSIa
1 d % Y &
{L-xew)dsIa SIa] | d4s1a
{xew)dsIa msA
de | yu de | 187
$ N ECR

170

called. If there is no AR above a mes, it is the
current one (see Figure 2). Since most block en-
tries and procedure calls occur at statement boun-
daries, most mes's are empty. Only those mes's
just below an AR whose antecedent was entered or
called as part of an expression evaluation will be
non-empty, e.g., the block and procedure call be-
low:

..;a*1+BEGIN INT a; a+1 END+p(2)+3;...

RTL nh ip
0 }JARC s1 nh dl

Figure 3
rt————- val
| I
! tag: hi !mid | 1o :
]]]
integer [INT] value including sign]

Boolean (B0 ——=——xo" 1]

label part 1 [LBI1 ep nh ip
part 2 |LB2 sp ts

procedure [PRC] ep [nh [ip |

pointer [PTR] ep [—T ptr__|
Figure 5

RTL ep nh ip
0 |CT sl nh rc
-1 | LNK fl | len b1

Figure 7
3.2.2.,2 Processor

before the call of the antecedent.
3. In the mid field is a nh which is one more than
that of the contour pointed to by the ep.

The remainder of the contour, i.e., words 1 through
n if the antecedent is a block, and words 2 through
n if the antecedent is a procedure, contain the sub-
cells for the identifiers declared in the antece-
dent.
4.2.2.,1.2 Free Block A free block is a block of n
contiguous words which are free to be allocated.
The first word of a free block has a tag of LNK and
consists of three components.
1. In the hi field, a forward 1link, f1, and
2. In the lo field, a backward link, bl, for link-
ing the free block into the doubly linked list
of free blocks a length, len, giving the length
of the free block including this word.
4,2,2,2 Expression Stack

The expression stack ES serves as the expres-
sion evaluation stack of the entire computation,
(i.e., it can be thought of as the mes's merged to-
gether).
4.,2.2.3 Stack Segment The stack segment consists
of two doubly linked lists, both ordered by address:

1. One of copies of the ES (ces's);

2. The other of free blocks of memory.
The first two words of the stack segment are the
heads of the two lists which are organized exactly
as the heads of the contour segment lists.
4.2.2.3.1 Ces A ces forms the stack part of a la-
bel value [CDMPS73]. Rather than storing the stack
with the label value, the stack is stored in the
stack segment as a ces, and the sp of the label
value points to the ces. The ces is a copy of the
active portion of the ES at the time the label
value is created; that is, if the copied ES has a
height of n (ts=n), then the ces would be n+2 words.
Word 1 is tagged LNK and is arranged exactly as the
first word of a contour; Word 2 is tagged CES and
it consists only of a reference count, rc, occupy-
ing the lo field. The rc counts the number of sp's
pointing to the ces. The remaining words of the
ces contain the valid part of the copied ES.

Once initialized, a ces is newer modified.
When a goto is done using a particular label value,
the entire ces of the label is copied into the ES
and the ts of the processor is set to the height of
the ces,
4,2,2.3.2 Free Block The free blocks of the stack
segment are arranged exactly as the free blocks of
the contour segment.

4,2.2.4 Processor

The processor consists of a site of activity (label) and a display (see Figure 4).

3.2.2.2.1 Site of Activity

4.2.2.4,1 Site of Activity

The site of active (soa) occupies the last two words of the processor which are tagged LB1 and LB2.

The word tagged LB1 consists of

1. in the lo field, an instruction pointer, ip, pointing to the next instruction to be executed

2, in the hi field, an environment pointer, ep,
pointing to the topmost AR on the stack

2. In the hi field, an environment pointer, ep,
pointing to a. contour which is a descendent of
the currently executed block or procedure.

3. in the mid field, a nesting height, nh, which is one more than that of the AR or contour pointed by the

ep.

The word tagged LB2 consists of

4, in the hi field, a stack pointer, sp, pointing
to the base of the stack

171

The word tagged LB2 consists of
4. In the hi field, a stack pointer, sp, pointing
to the base of the ES.

5. in the lo field, a top of stack index, ts,
which gives the displacement, in words, of the
first free word on top of the mes on top of the
topmost AR, i.e., the current height of the
stack measured in words, i.e., tst+sp points to
the first free word on top of the topmost mes
(see Figure 2).

3.2,2.2.2 Display

%, In the lo field, a top of stack index, ts,
which gives the displacement of the first free
word on top of the ES (see Figure 6).

4,2.2,4.2 Display

The processor's accessing environment is the ordered list of ARs or contours, AE’ «sey AL, with n20, such
that the processor's ep points to An,and for each i such that n2i21, the static link of A; points to A;-1.
Necesarily the nesting height of each Aj is i, and the nesting height of the processor is n+i.

The display is a vector of pointers to the ARs or contours of the processor'senviromnment such that DISP
[i] points to Aj. Each element of the display is tagged DIS and the pointer occupies the lo field. The
display is of some convenient size, max,which is thereby the maximum nesting height allowed for any program.
The display cfn be]constructed at any time from the processor's ep and nh according to the following axioms:

1) DISP[nh-1] = e

2) for i from nh-2pb -1 to 0, DISP[i] = the static link of the AR pointed to by DISP[iti].
In practice, the display is reconstructed, possibly only partially, only when the environment of the proc-
essor changes.

3.3 VALUE REPRESENTATIONS 4,3 VALUE REPRESENTATIONS

The individual subcells of the AR's, mes's, contours, ES, and ces's contain values.which may be one of
the following types: integer, boolean, pointer, label, or procedure. Each value occupies one or two words.
Figure 5 shows all of the value formats.

3.3,1 Integer Value 4.3.1 Integer Value

An integer value has an INT tag and occupies the entire val field. It is assumed that the representablt
values are the signed integers in some large convenient range.

3.3.2 Boolean Value 4.,3.2 Boolean Value

A boolean value has a tag of BOO and is treated as though it occupies the entire val field (even though
only cne bit is really needed). The range of representable values is TRUE and FALSE.

3.3.3 Pointer Value 4,3.3 Pointer Value

A pointer value, which is tagged by PTR consists of two parts:

1. in the lo field is the pointer proper, ptr, which points directly to the pointed-to subcell;

2. in the hi field is the environment pointer ep, which points to the AR or contour containing the pointed-
to subcell. .

3.3.4 Label Value A label value is a copy of an
soa of the processor and consists of two words

4.3.4 Label Value A label value is a partial copy
of an soa of the processor and consists of two

tagged LB1 and LB2., The word tagged LB1 has
1. in the lo field, an ip pointing to the first
instruction of the labeled statement,
2. in the hi field, an ep all copies of
3. in the mid field, an nh the same com-
and the word tagged LB2 has ponents of the
4, in the hi field, an sp processor at
- the time the

label value is

created
5. in the lo field, a its which is one less than
the ts of the processor at the time the label
value is created.

3.3.5 Procedure Value

words tagged LB1 and LB2. The word tagged LB1 has

1. in the lo field, an ip pointing to the first
instruction of the labeled statement,
2. in the hi field, an ep } oth copies of the
3. in the mid field, an nh same component of
- processor at the
time the label value
is created

and the word tagged LB2 has

4, in the hi field an sp pointing to a ces which
is a copy of the active portion of the ES minus
the top word at the time the label value is
created, .

5. in the lo field, a ts, which is one less than
the ts of the processor at the time the label
value is created.

4.3.5 Procedure Value

A procedure value which is tagged PRC, has but three parts:
1. in the lo field, an ip pointing to the entry point of the procedure,

2, in the hi field, an ep computed as follows: Let nhp be the nesting height of the innermost block or pro-
cedure surrounding the procedure body which contains the identified declaration of a non-local of the
body. If nhp is defined, then the ep is a copy of DISP [nhp] of the processor at the time the pro-
cedure value is created. If nhp is not defined then the ep is NIL.

3. In the mid field, an ph which equals nhp+1 if nhp (described in (2) above) is defined and is zero

otherwise.

The ep of the procedure value will be recognized as the necessary environment pointer of the procedure [Bry
70].

3.4 IDENTIFIER ACCESSING 4.4 IDENTIFIER ACCESSING

In the LSM and the PRCCM, identifier accessing is done by the traditional (i,j) pair method. At com-
pile time each identifier is converted into an (i,j) pair, where i is the nesting height of the block or pro
cedure containing the declaration of the identifier, and j is the relative displacement of the subcell for
the identifier within the AR or contour for the declaring block or procedure.

Assume that the declaration part of the block or procedure, bp, declaring the identifier idy is
<Hg(<s-id:id 1>,<s-mode:m1>)>
“eeee " Yg(<s~idi id,>,<s-mode:m,>)>
where 1sf<n, the id;i's are identifiers and the m;'s are modes.

Associated with each mode, m, is & size S(m) as follows
s(m) = {2 if m = LABEL
1 otherwise .
Then the j for idy is computed by

2-1
j=1+p+Z;s(mk)
where
_ {1 if bp is a procedure body
P= {0 if bp is =a block.
3.5 LIFETIME CHECK 4,5 REFERENCE COUNTS AND STORAGE MANAGEMENT
Each assignment of a pointer, label or pro- Each copying and/or erasing of a reference
cedure value 1s accompanied by a lifetime check countable value is accompanied by an update of
which ascertains that the ep of the assigned value the referred-to-cell. A reference countable value
points to an AR no higher on the stack than the AR is either
containing the subcell to which the value is being 1, a pointer value
assigned. This insures that the AR pointed to by 2. a label value
the ep of the assigned value will be on the stack, 3. a return label
and therefore, the assigned value will be valid, at 4, a procedure value
least as long as the AR to which the value is being 5. a site of activity of the processor, or
assigned, 6. a static link of a contour.
A referred-to cell is the contour pointed to by
Upon exit from a block or procedure, if a 1. the ep of a pointer value,
pointer, label, or procedure value is returned, a 2, the ep of a label value,
lifetime check must be performed. This check as- 3. the ep of a return label,
certains that the ep of the value being returned 4. the ep of a procedure value,
points to an AR no higher on the stack than the AR 5% the ep of a site of activity, or
pointed to by the dynamic link of the popped AR. 6. the static link of a contour,
This insures that the ep of the returned value does or the ces pointed to by
not point to the AR being popped from the stack. 2. the sp of a label value.
The time overhead for the lifetime checks is In particular, if a reference countable value
as follows: is copied, pushed, or created, then the reference
1. Each assignment of a pointer, label, or pro- count of each referred-to cell is incremented by
cedure value requires a constant time for the one unless the value resides in the referred-to
lifetime check, cell.
2. Each exit of a block or procedure in which a
pointer, label, or procedure value is being re- If a reference countable value is erased,
turned requires a constant time for the life- overwritten, or popped, then the reference count of
time check. each referred-to cell is decremented by one unless
the value resides in the referred-to cell, If the
3.6 MACHINE INSTRUCTIONS value is a label, then if the reference count of
. the ces pointed to by its sp has gone to zero, it
: is necessary to ripple. Rippling consists in decre-
Section omitted. menting the reference counts of all cells referred
to by any reference countable value in the ces. If
any of the values in the ces are labels, then there
3.7 DEFINITIONS is a recursion of rippling. Thus erasing a label
Definition 1: A program peGBSL is said to be value can result in an arbitrary amount of refer-
lifetIme well-stacked (LWS) if it can be run on LSM ence count decrementation.
without incurring a lifetime error. The net result of this reference count mainten-
ance scheme is that at any time, the reference
It may be{;?;eizegw;?igs{p[p is WS}. count of_eacK contour counts the number of ep's and
The inclusion is obviqus since the LSM is a dele- static links that point to it, except for those

173

tion machine,
the program
1 BEGIN PTR INT p;
BEGIN INT b;
p+ADDR b
END;
p+NIL INT

The inequality is demonstrated by

DN EWN

END

The assignment in line 3 causes a lifetime error;
however, the program is well-stacked because it
never uses the dangling pointer.

SPECIAL NOTE:
To save space, Sections 5, 6, and 7 are
given from here on in the left-hand column of the

page.

5. TRANSLATION OF GBSL PROGRAMS INTQO MACHINE
LANGUAGE PROGRAMS

Section omitted.

6. EXAMPLE PROGRAM

Section omitted.

7. RESULTS

In this abbreviated version of Section 7 the
theorems are stated and only an outline of their
proofs are given. The complete proofs depend on
the microcode for the instructions which has not
been given.

The first theorem states that PRCCM, when
executing a lifetime will stacked program that does
not generate isolated knots, behaves essentially
like a stack implementation.

Theorem 1: Let peGBSL be LWS. Suppose that p
does not generate isolated knots.
Then,

Let S; be a snapshot in PRCCM (p). Suppose
that Cyy...,Cp is the complete address ordered list
of contours in the contour segment of S;. Then,
the following may be said: (See Figure 8)

i, C4, «..,Cp are adjacent to each other and are
at the bottom of the contour segment

2. The free list consists of exactly one element
F sitting above and adjacent to C,, and com-
prises all of the segment not included in
C4s +++y Cp and the list heads.

3. The processor's ep points to C,.

4, The list C,, ..., Cq gives the order that the
contours will be exited if the normal block
exit and procedure return chain were followed.

§. The list C4, ..., Cy gives the order in which
the contours were aglocated.

Proof:
tion.

By induction on the length of the computa-

The initial snapshot clearly satisfies the
conditions since no contours have been allocated
and the free list consists of a single free block
containing the entire segment except for the list
heads.

Assume that conditions 1-5 hold at snapshot 84
Show that they hold in snapshot Sj41. There are two
major kinds of instructions to consider:1) the en-

174

that reside in the contour itself., Also at any
time, the reference count of each ces counts the
number of sp's that point to it (no sp can ever
reside in the ces that it points to).

The normal method of storage management con-~
sists in the following:

1. Both the free list and the allocated list of
the contours and stack segments are ordered by
address.

2, Allocation of a contour or a ces is done on a
first bit basis from the beginning of the
appropriate free list, i.e., the first free
block in the list large enough to hold the new
contour or ces is taken. Any left over space
in the block is left on the free list. The
allocated block is linked to the appropriate
allocated list by searching for its place from
the end of the list..

3. Reclamation of inaccessible contours and stacks
is done ultimately by garbage collection. This
must be because the reference count of an in-
accessible cell is not always zero. This situ-
ation happens if there is an isolated knot of
cells. An isolated knot of cells is a set of
cells (not including the processor) pointing
only to each other and pointed to by no other
cells outside the set. Note that because
pointers pointing to the cells in which they
reside are not counted in reference counts,
knots consisting of one cell do not bother the
implementation.

The reference counts of contours and ces's are
used merely to help reclaim inaccesible contours
and ces's sooner than they would be by the garbage
collector, thereby postponing and hopefully obvi-
ating the need for garbage collection.

It has already been seen how erasure of a la-
bel value may lead to deallocation of the ces that
its sp points to and to deallocation of other ces's
pointed to by sp's in the first deallocated ces,
etc,

As for contours, there are only three times at
which it is possible for a contour to be reclaimed
by virtue of a zero reference count: block exit,
procedure exit, and goto. At each of these times
there is an attempt to reclaim all those contours
that would normally be deallocated in a deletion
model. If the appropriate contours do not have a
reference count of zero at this time, they are left
in the allocated list to be picked up later by the
garbage collector.

Upon exit from a block or procedure, the ex~
ited contour's reference count is decremented by 1,
reflecting the change in the processor's ep. If at.
this point, the reference count is not zero, no-
thing further is done. If, however, the reference
count of the exited contour is zero, it can be re-
turned to the free list. Before this is done, it
is necessary to decrement the reference counts of
all cells referred to by any pointers, labels, and
procedure values and any return label in the con-
tour, and to initiate rippling for the sp's of any
lobel values in the contour. It is possible to
generate code which goes directly to the cells con-
taining reference countable values, since the modes
of the identifier declared in the exited block or
procedure are known at compile time. Therefore, if

vironment changing instructions, i.e., block entry,
block exit, procedure call, procedure return, and
goto, 2) all other instructions....

Corollary 2: Let peGBSL be LWS.
Suppose p does not generate any isolated knots.
Then,

1. Allocation of a contour (finding a free block
big enough and linking the contour in the
allocated list) takes a constant amount of
time,

Freeing a contour (removing it from the allo-
cated list and finding its place in the free
list with possible merging) takes a constant
amount of time.

If allocation fails, it is becuase there is not
enough room at all in the segment and is not
due to failure to have a big enough free block
due to fragmentation.

Garbage collection will never occur (i.e., if
allocation fails there is no space to reclaim).

2.

L.

Proof:
These all follow striaght forwardly from the proof
of Theorem 1.

Theorem 3: Let peGBSL be LWS and suppose that p
does not generate isolated knots.
Suppose p does not have labels (after compiling
away hoptos), ‘pointers, and procedures).
Then, #
1. T(LSM(p)) $ Q + hx(be)
2. T(PRCCM(p)) < Q + h'x(be)
3. |T(LSM(p)) - T(PRCCM(p))| = O(be)
Where: be is the number of block entries that occur
in the computation.
h and h' are constant per block entry.
Q is time for everything else which is iden-
tical in both models.

Proof:

The conditions restrict the code that is generated
to a subset of all the instructions. The result
follows by inspection of this subset. In particu-
lar, there will be no scanning of contours about

to be freed for reference countable value; This is
because it can be determined at compile time that
there are no reference countable values in any con-
tour.

Note that (3) says essentially that hx(be) and
h'x(be) balance each other off. The actual con-
stants h and h' depend on the specific machine im-
lementations.

Theorem 4: Let peGBSL be LWS and suppose that p
does not generate isolated knots.,
Suppose p does not have any labels (after compil-
ing away hopto's and pointers.
Suppose that all computations of procedure values
are accompanied by assignments or calls.
Then,
T(LSM(p)) < Q + hx(be) + ix(proca) + jx(procc)
T(PRCCM(p)) < Q + (h'+mxi')x(be) + i'x(proca)
+ (j'mxit')x(proce)
Where: be is the number of block entries in the
computation.
proca is the number of procedure assign-
ments in the computation.

rocc is the number of procedure calls in
#T(LSM(p)) means "Time for LSM to execute p".

175

there are no reference countable cells in the con-
tour there is no scanning overhead at exit time.
When the exited contour is finally freed, the free
list of the contour segment is searched from the
beginning to find the proper place for the contour
in the address ordered free list., If the freed
contour is physically adjacent to any of its neigh-
bors on the list, it and its neighbors are merged
into one free block.

Upon a goto the processor's ep is reset to a
copy of the ep of the label used in the goto. In
general the new ep bears no relation whatsoever to
the old ep of the processor before the goto. How-
ever, if the program is well-stacked, the ep of the
label points to a contour somewhere on the chain of
normal returns (i.e., the dynamic chain) from the
contour pointed to by the old ep. Therefore, in
the hopes that the program is well-stacked, there
is an attempt to deallocate all of the contours on
this chain:

1. Let C be the contour pointed to by the old ep.
2, The reference count of C is decremented by 1

- reflecting the resetting of the processor's ep
or the deallocation of the previous contour on
the chain.
If C's reference count is not zero, the looping
stops and control continues at the labeled
statement.,
If C's reference count is zero, then the con-
tour must be freed. Before it can be freed,
each word of the contour must be scanned for
the presence of a reference countable value.
The reference counts of all cells referred to
by any of these reference countable values must
be decremented and the rippling of sp's must be
initiated if necessary. (Because it is not pos-
sible at compile time, to tell which contours
will be on the return chain, it is not possible
for the code to go directly to the cells con-
taining reference countable values; instead
some interpretive scheme, such as scanning must
be used.)
C is freed by searching the free list from the
beginning to find its place and merging C with
its neighbors if possible.
If C has a return label, the next contour is
that pointed to by the return label's ep. If
not, the next contour is that pointed to by the
static link of C. If there is no next contour
(the return label ep or the static link is NIL)
the looping stops, and control continues at the
labeled statement. -
If there is a next contour, it is taken as C
and control branches back to step 2.

7.

The overhead required for reference count

maintenance and storage management is as follows:

1. Each pushing or popping of a pointer or pro-
cedure value requires a constant time for refer-
ence count incrementation or decrementation.
Each assignment of a pointer or procedure value
requires a constant time for decrementing the
reference count of the cell referred to by the
overwritten value and for incrementing the re-
ference count of the cell referred to by the
assigned value, R
Each pushing of a label value requires a con-
stant time for incrementing the reference
counts of the contour and the ces referred to
by the label value.

2,

the computation.

h and h' are constant per block entry.

i and i' are constant per procedure assign-
ment.

j and j' are constant per procedure call.

m is the maximum number of procedures de-
clared in any block or procedure of p.

Q is the time for all the rest which is the
same in both models.

Corollary 5: In Theorem 4, h'+mi' can be replaced
by H' which is constant per block entry per pro-
gram and j'+mi' can be replaced by J' which is
constant per procedure call per program. Conse-
quently for a given peGBSL satisfying the condi-
tions of Theorem 4,

| T(LSM(p))-T(PRCCM(p))| = &(be + proca + procc).

Theorem 6: Let peGBSL be LWS and suppose that p
does not generate isclated knots.
Suppose p does not have any labels (after compiling
away hopto's).
Suppose that all computations of pointer and pro-
cedure values are accompanied by assignments, in-
directions or calls.
Then,
T(LSM(p)) < Q + hx(be) + ix(proca) + jx(procc)
+ ix(ptra)
T(PRCCM(p)) < Q + (h'+mxi')x(be) + i'x(proca)
+ (j'mxi')x(procc) + i'x(ptra) + k'x(ptri)
Where: be, proca, procc are as in Theorem S.
ptra is the number of pointer assignments in
the computation,
ptri is the number of pointer indirections
in the computation.,
h and h' are constant per block entry.
i and i' are constant per pointer or pro-
cedure assignment.
j and j' are constant per procedure call.,
k' is constant per pointer indirection.
m is the maximum number of procedures and
pointers declared in any block or procedure
of p.
Q is the time for all the rest which is iden-
tical in both models,
Note here that k', the time per pointer indirection
in PRCCM, cannot be balanced off to anything in LSM,
but k' is constant,

Corollary 7 to Theorem 6 is as Corollary 5 is to
Theorem 4.
For a given peGBSL satisfying the conditions
of Theorem 6,
|T(LSM(p)) - T(PRCCM(p))| - k'x(ptri) =
©(be + proca tprocc + ptra)

Observation on labels:

If labels and gotos are added, then

1. In LSM, the added time is constant per label
assignment and per goto.

But in PRCCM, the added time per label assign-
ment and goto is not constant. The time does
not even have a compile time computable bound
per program. The essential reason is that
erasing of the entire expression stack occurs
in these operations. In order to maintain
stack-like behavior as per Theorem 11.1, a po-
tentially unbounded rippling reference count
decrementation may be required.
Hopto's and branches that occur during execution of
control structures like conditionals, loops, while-
do's etc. do not incur this cost since no environ-

2,

176

4, Each popping of a label value requires a con-
stant time for decrementing the reference
counts of .he contour and ces referred to by
the label value, plus a potentially unbounded
time if the ces's reference count goes to zero.
The potentially unbounded time is both to de-
crement the reference counts of the cells re-
ferred to by the arbitrary number of reference
countable values in the ces and to ripple if
any of the reference countable values is a
label.

Each assignment of a label value requires a
potentially unbounded time for the reference
count decrementation and possible rippling
associated with overwriting of a label value
(as in popping) and a constant time for incre-
menting the reference .ounts of the contour
and ces referred to b the assigned label
value.

Each indirection requires a constant time for
decrementing the reference count of the cell
referred to by the overwritten pointer value.
Each block or procedure entry requires a con-
stant time for setting the reference count of
the new contour and a potentially unbounded
time for searching for a free block large
enough.

Each block or procedure exit requires a con-
stant time for decrementing the reference count
of the exited contour, and if its count goes to
zero, a potentially unbounded time proporticnal
to the number of pointers and procedures in the
contour to decrement the reference counts of
the cells referred to by them. (For a given
program with a maximum number of pointers and
procedures in a block or procedure this time
can be bounded), a potentially unbounded time
to decrement the reference counts of the cells
referred to by the label values in the contours
and to ripple if necessary, and a potentially
unbounded time to search for the freed contour's
place in the free list.

Each goto requires potentially unbounded time
to decrement the reference counts of cells re-
ferred to by the arbitrary number of reference
countable values in the ES, potentially un-
bounded time to ripple the sp's of the labels
in the ES, potentially unbounded time to incre-
ment the reference counts of the cells referred
to by the arbitrary number of reference count-
able values in the copied ces and potentially
unbounded time to chase through the arbitrary
deep chain of returns, spending a potentially
unbounded time at each contour in the chain.

5.

o]
.

The key observation to be made is that if the
program happens to be lifetime well stacked Tcf.
Section 3.7) and no isolated knots of more than one
cell are formed to foul up the reference counts,
then all contours will have a zero reference count
upon exit, and will thus be returned to the free
list immediately. By exit in this context, we mean
exit by way of a goto as well as by block or pro-
cedure exit.

Given:

1. The ordering of the free and allocated lists by
address,

2. The first bit allocation scheme, and

3. The merging of freed contours to their adjacent
neighbors on the free list,

the observation implies that for lifetime well-

ment change occurs in these cases.
Moral: Retention can be made fairly cheap for
structured programs [Dij72].

8., . CONCLUSIONS

This paper has presented two implementations
of generalized block structured languages, one
which implements the deletion strategy with life-
time checks and the other which implements the re-
tention strategy.

The two implementations have been expressed
as machines executing from the same code so that
their times for given program features may be com-
pared.

The results show that for lifetime well-
stacked programs which generate no isolated knots
and which are structured in the sense of struc-
tured programming, retention can be made to run in
approximately the same order of magnitude of time
as the Lifetime Stack Machines.

It is the authors'belief that most programs
meet these conditions (or should), Programs not
meeting the first two conditions either need reten-
tion or are doing some list manipulation in which
retention might be useful. Presumably the users
of these programs would be willing to pay for the
full cost of retention. Programs not meeting the
third condition (i.e., which have gotos) bear the
brunt of the expense. However this is a desirable
deterrent to using something which should be used
but sparingly. (One co-author dissents from this
last opinion.)

9. BIBLIOGRAPHY

Note: DSIPL (pronounced "disciple") is Pro-
ceedings of ACM Symposium on Data Structures in
Programming Languages, SIGPLAN Notices, February
1971,

Bry70 Berry, D. M.,"Necessary envfz SIGPLAN

Notices (September 1970).
Bry7ia Berry, D. M., "Introduction to Oregano,"
DSIPL (1971).
Bry71b Berry, D. M., "Block Structure: Retention
vs. Deletion," SIGACT Proceedings, (1971).

BW72 Bobrow, D. B. and Wegbreit, B. A Model and

Stack Implementation of Multiple Environ-

ments, Harvard University Center for Re-
search in Computing Technology, Report
7-72, (1972).
Bow71 Bowlden, H., Private Communication,
September 1971,
BL70 Branquart, P. and Lewi, J., "A Scheme of
Storage Allocation and Garbage Collection
for ALGOL 68," in Pck (1970).

Chirica, L. M., Dreisbach, T. A. Martin,
b. F., Peetz, J. G., Sorkin, A., Two
PARALLEL EULER Run Time Models: The
Dangling Reference Imposter Environment,

CDMSP73

177

stacked programs not generating isolated knots of

more than one cell, the contour segment will look

as shown in Figure 8 at all times.

The allocated contours will be adjacent to each
other and will all be in the "bottom" of the contour
segment in the order of their activation. The pro-
cessor's ep will point to the "top most" contour.

In addition, the free list will consist of exactly

one block which sits immediately on top of the "top
most" allocated contour; this free block comprises

the entire unallocated portion of the contour seg-

ment.

Therefore, upon entry to a block or procedure,
allocation of a contour will always find sufficient
space in the first element of the free list (or
else the segment itself is exhausted). The new con-
tour will be carved out of this free block, thus
preserving the situation. Similarly, upon exit,
the top most contour's reference count will be zero.
The contour will be returned to the free list and
will be merged with the free block, thus again pre-
serving the situation.

FREE
p——
ALLOCATED
——
] —
ALLOCATED J
. .
ALLOCATED]
o — _k
_l:—:— ALLOCATED v:]
FREE E;:

Figure 8

Note that under these conditions, because the
free list is searched from the beginning on both
allocation and deallocation, and the allocated list
is searched from the end to put a newly allocated
contour in its place, allocation and deallocation
of contours will take a constant amount of time.
4,6 MACHINE INSTRUCTIONS

Section omitted.
4,7 DEFINITIONS

Definition 2: A cell, C, in the record of ex-
ecution (i.e., a contour, the ES, or a ces) is said
to be accessible if and only if one of the follow-
ing holds:

1. C is pointed to by the ep or sp of the proces-
sor.

2, C is pointed to by an ep, sp, sl, or dl stored
in some cell D which is accessible.

It is not necessary to take display elements
and pointers-proper into account in determining

Fis72

Joh71

LW69

Nau62

Org73

Pck70

RR64

Rey70

§572

vWn69

W1lk6$9

Weg71

WE70

and Label Problems, This Proceedings,

(1973).

Dijkstra, E. W., "Notes on Structured
Programming," in Dahl, Dijkstra, and
Hoare, Structured Programming, Academic
Press: London, (13872).

]
Fischer M, J. "Lambda Calculus Schemata,"
Proceedings of ACM Conference on Provin;
Assertions about Programs, SIGPLAN Notices
7:1, January 1972.

Johnsfon, J. B., "The Contour Model of
Block Structured Processes," DSIPL, (1971).

Lucas, P. and Walk, K, "On the Formal
Description of PL/I," Annual Review of
Automatic Programming, 6:3, (1969).

Naur, P., "Revised Report on the Algo-
rithmic Language ALGOL 60," CACM, 6:1,
(January 1963).

Organick, E. I., Computer Systems Organi-
zation, Academic Press: New York, (1973).

Peck J., E. L. (Ed.), ALGOL 68 Implemen-
tation, North Holland: Amsterdam (1970).

Randal, B. and Russell, L. J., ALGOL 60
Implementation, Academic Press: New York,
(1964).

Reynolds, J. C., "GEDANKEN - A simple
Typeless Language Based on the Principle
of Completeness and the Reference Concept)
CACM 13:5 (May 1970).

Scott, D., and Strachey, C., "Toward a
Mathematical Semantics for Computer
Languages," Proceedings of the Symposium
on Computers and Automata, Polytechnic
Institute of Brooklyn, (April 1971).

van Wijngaarden, A., et al., "Report on
the Algorithmic Language ALGOL 68," Num.
Math. 14, 79-218, (1969).

Walk, K, et al., Formal Definition of PL/I,
ULD Version III IBM Vienna, (1969).

Wegner, P., '"Data Structure Models for
Programming Languages," DSIPL, (1971).

Wozencraft, J. M. and Evans, A., Notes on

Programming Linguisties, E.E. Dept., MIT,
(1970).

178

accessibility because cells pointed to by these
pointers are necessarily pointed at by other poin-
ters which are taken into account.

Definition 3: A program peGBSL is said not to
generate isolated knots if at no time during its

execution does a set of more than one cell pointing
only to one another become inaccessible.

The concept of generation of isolated knots is
important because reference count maintenance
ceases to identify all inaccessible cells if there
are isolated knots. Our handling of reference
counts does not count pointers pointing to the cell
in which they reside so knots of ocne cell do not
bother the implementation.

