
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 2, FEBRUARY 1987

Towards a Formal Basis for the Formal Development
Method and the na Jo Specification Language

DANIEL M. BERRY

Abstract-In carrying out SDC's Formal Development Method, one
writes a specification of a system under design in the Ina Jo' specifi-
cation language and proves that the specification meets the require-
ments of the system. This paper develops an abstract machine model
of what is specified by a level specification in an Ina Jo specification.
It describes the state as defined by the front matter, computations as
defined by initial states and transforms, and invariants, criteria, and
constraints as properties of computations. The paper then describes a
number of formal design methods and the kinds of abstractions that
they require. For each of these kinds of abstractions, there is a char-
acteristic relationship between refinements that should be proved as
one is carrying out the method.

Index Terms-Abstract machine, correctness, formal specification,
invariants, refinement methods, simulation, verification.

I. INTRODUCTION
THE purposes of this paper are to describe the Formal

Development Method, the methodological framework
of the Ina Jo specification language [10], the Ina Jo spec-
ification language, what is specified by an Ina Jo specifi-
cation, what properties are provable of an Ina Jo specifi-
cation, how these properties are proved, and that what is
proved to assure these properties do in fact assure these
properties.
The Ina Jo language is the formal specification lan-

guage for the Formal Development Method (FDM). The
FDM is a method for designing systems by a sequence of
refinements that starts from informally stated require-
ments, proceeds through formally stated requirements,
and arrives finally at the specification of an implementa-
tion, from which code can be written to meet the require-
ments. The requirements for the system and the descrip-
tion of the behavior of the various pieces of the system
are given formally in the Ina Jo language. The advantage
of using the Ina Jo language for stating the requirements
and behavior of the system is that with the help of the
Interactive Theorem Prover (ITP) [11], the behavior de-
scription can be proved to meet the requirements. If the
theorem prover fails to prove that the behavior meets the

Manuscript received April 15, 1986; revised August 1, 1986. This work
was extracted from a report written at SDC for a project on Enhancements
to the Formal Development Methodology performed for the National Com-
puter Security Center under Contract MDA904-84-C-7158.

The author is with SDC, A Burroughs Company, Santa Monica, CA.
90405, and the Department of Computer Science, University of California,
Los Angeles, CA 90024.

IEEE Log Number 8611566.
TMIna Jo is a trademark of SDC, A Burroughs Company.

requirements, the human designer can use the failure in
order to pinpoint flaws in the requirements and behavior
specifications.
From the point of view of the FDM, the real work is

the process of obtaining the design of the system to be
implemented. The formal specification in the Ina Jo lan-
guage is a by-product, albeit a necessary one, of the de-
sign. The by-product states in unambiguous terms the re-
quirements of the system and the behavior of the pieces.
It is a contract for the implementor. It is intended to give
the confidence that if the pieces are implemented to cor-
rectly provide their specified behaviors, then the whole
system meets its specified requirements.

Section II defines the notion of a machine and shows
how a machine can be specified using a one-level Ina Jo
specification. It describes the elements that make up an
Ina Jo specification of a machine. It explains formally
what each of these elements means in terms of the defined
behavior of the machine, and it indicates certain basic
consistency properties the specification of a machine must
satisfy. Section III introduces the concept of a mapping
between two specifications and briefly describes how they
may be used to capture the notion of one specified ma-
chine simulating another. Section IV deals with the gen-
eral problem of designing a system while formally spec-
ifying it and proving that it satisfies certain desired
properties. It first describes one refinement method in
which implementation detail is added; then, it describes
another refinement method in which function is added.
These methods can be fit into a space of methods in which
both kinds of refinement can be carried out while proving
desired relationships between the refinements. Finally, it
explains the nature of the mappings between levels that
are needed for carrying out the desired proofs. The details
of Section IV's discussion are couched in Ina Jo termi-
nology using the concept of state machine specification.
However, the discussion is general enough that it applies
to any specification language in which a computation is
described as a sequence of states.
The Ina Jo language is in the process of being gener-

alized. These generalizations include adding some fea-
tures that are known to be missing and that complete it
functionally, adding temporal logic [8], and modularity
[2]. It turns out that inclusion of some of these general-
izations, especially in the first class mentioned above,
makes the present formal treatment cleaner. A number of
special cases can be treated via a simpler treatment of a

0098-5589/87/0200-0184$01.00 © 1987 IEEE

184

BERRY: FORMAL DEVELOPMENT METHOD AND THE INA JO SPECIFICATION LANGUAGE

generalization. In the text, references to the future Ina Jo
language are clearly described as such; in the absence of
a statement to the contrary, the paper is talking about the
current Ina Jo language.

It is assumed that the reader has the "Ina Jo Specifi-
cation Language Reference Manual" [10] close by for
reference purposes, particularly on syntactic issues. There
are a number of good surveys about the Ina Jo language
and about its use in specific problem areas [5], [1], [4].
The reader is urged to consult them for more information.
More detail on formal issues not covered in this paper,
especially on the meaning of types and constants, can be
found in the "Ina Jo Definition" [9].

This paper is derived from a much larger paper [3] that
discusses also multilevel specifications, mappings be-
tween levels, and proving relations between levels.

II. INA JO SPECIFICATIONS

A. Machines

An Ina Jo specification treats a system and its data as a
state machine with the data making up the state. A ma-
chine is a set of variables each capable of holding a value
of some type. A type is a set of values. A machine may
be described by a specification.; An identifier in a speci-
fication may name a variable, a value, or a type. Such an
identifier is called a variable identifier, a constant identi-
fier, or a type identifier, respectively. The value of a vari-
able identifier is the value stored in the variable named by
the identifier, and the value of a constant identifier is the
value named by the identifier. The type of a variable iden-
tifier is the type of the variable named by the identifier
which is, in turn, the type of the variable's value. The
type of a constant identifier is the type of the value named
by the identifier. Variables are often called "locations"
and values are often called "constants." The state of the
machine at any time is the association of its variables to
their current values. This formulation of a machine is pat-
terned after that used by many programming language def-
initions, e.g., those written in the Vienna Definition Lan-
guage [7] and those written using the denotational
framework [6].
More formally:
Assumption 1: There is a set VAR of variables, a set

ID of identifiers, and a set VAL of values. El
Definition 2: A type T is a set. The elements of T are

said to be the values of type T. LI
Definition 3: A machine M is a set of variables, each

of which is named by a unique identifier. These variable-
naming identifiers are considered the variable identifiers
of M. . L]
Assumption 4: For a machine M, there is a function

typeof on M to types such that for all var E M,
typeof (var) is a type. In addition, typeof is extended to
identifiers in a natural way; i.e., if id names var, then
typeof (id) = typeof (var). LI

Definition 5: A state S of a machine M is a function
on M such that for all var E M, S(var) etypeof (var).

S is also extended to identifiers which name variables in
the obvious way; S(id) = S(var) if id names var. C:

Definition 6: For any state S of a machine M, for any
var E M, the value of var in S is S(var). For any state S
of a machine M, for any id naming a variable of M, the
value of id in S is S(id), which equals S(var) if id names
var. LI
A computation of a state machine is a sequence of states

SO, , Si, . The properties of the states of a com-
putation are described later.

Various parts of an Ina Jo specification of a system re-
quire the use of one- and two-state assertions to describe
properties of all or individual states and of all or individ-
ual pairs of consecutive states of a computation.

Definition 7: A one-state assertion A about a machine
M is an old-test (a nonterminal from the Ina Jo gram-
mar), at least one of whose identifiers is an element of M.
The identifiers in A that do not name variables of M must
be named constants (to be described later) or bound
variables. L

Recall that an old-test is basically a sentence in first
order predicate calculus. The data of these sentences are
values of the basic types, i.e., Boolean, integer, enu-
merated types, and values of the constructed types, i.e.,
sets, lists, and structures consisting of values of basic or
constructed types. The operators of these sentences are
the usual quantification, logical operators, arithmetic op-
erators, comparison operators, equality and not-equality
over all types, set operators, and list and structure con-
struction and selection operators.

Definition 8: Let A be a one-state assertion about a ma-
chine M. Let S be a state of M. Then, A (S) is defined
as

A (idd) for each id naming a variable of M),

that is A, with S(id) replacing each free occurrence of each
id naming a variable of M.1 LI

Definition 9: A one-state assertion A about a machine
M is said to be true in a state S ofM if and only if in the
usual interpretation of a term, A(S) is true. F-I

Definition 10: A two-state assertion, AA, about a ma-
chine M is a test (a nonterminal from the Ina Jo gram-
mar) at least one of whose identifiers is an element of M;
at least one of these identifiers from M is preceded by the
notation N" (which, as is explained later, means "new
value of"). -I

Definition 11: Let AA be a two-state assertion about a
machine M. Let SO and Sn be states of M.2 Then, AA (SO,
Sn) is defined as

AA ((id)N (lid) for each id naming a variable of M),

'The notation Ey means "E with x replacing each and every free oc-
currence of y in E; if the replacement would cause conflicts with bound
occurrences of x in E, then before the replacement is done, the bound oc-
currences of x in E must be uniformly changed to another nonconflicting
identifier.

2The subscripts are "o" and "n" for "old" and "new," respectively.

185

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 2, FEBRUARY 1987

that is AA with So(id) replacing each free occurrence of
id and S,(id) replacing each (necessarily free) occurrence
of N" id for each id naming a variable of M. p

Thus, N"id means the "new value of id," i.e., its value
in the second state.

Definition 12: A two-state assertion AA about a ma-
chine M is said to be true in the states SO and S, of M if
and only if in the usual interpretation of a term, AA (SOl
S,) is true. F-i

B. One Level Specification
A one-level specification LS consists of a number of

sections, front matter, initial-conditions specification,
transforms specifications, and assertions specifications.
The front matter, the initial-conditions specification,

and the transforms specifications are sufficient to describe
the machine and the set of possible computations of the
machine. The assertions specifications state properties
about the machine that should be provable given the spec-
ification of the machine and its set of possible computa-
tions. An important purpose of giving both the machine
specification and the assertions is to obtain redundancy.
It is less likely to overlook a facet of one's system in both
than it is to do so in only -one. One gains a great deal of
confidence in the ultimate correctness of the machine's
description if both parts of that description provably rec-
oncile to each other.3

1) Machine and Computations:
a) Front Matter: The front matter describes the ma-

chine of the LS and comprises
1) type declarations, which define identifiers to name

at least the types of all variables of the machine,
2) constant declarations, which define identifiers to

name some of the distinguished values that some of the
variables of the machine can have,

3) distinct constant declarations, which specify which
of the unspecified constants are in fact different,

4) axioms, which specify properties that some of the
constants satisfy,

5) variable declarations, which define identifiers to
name the variables of the machine and state what type
values they have, and

6) defined variable specifications, which define other
variables not as machine variables, but as functions of
machine variables.
Due to space limitations, these are not described any

further in this paper. These are adequately described in
any of the above cited references on the Ina Jo language.
The initial-conditions specification is a collection of

one-state assertions, each of which describes properties
of some of the variables of the machine in any allowable
initial state.

3Note that proving that the implementation does what the client wants
is an impossible goal. The most that can be done is to prove consistency
between two statements of what the client wants, that is, between the spec-
ifications and the code. There is no guarantee that specifications specify
what the client ordered. Thus, the most that can be expected is the redun-
dancy obtained by having two different statements of exactly the same thing.

The initial condition IC of a machine is the conjunction
of all the individual initial condition specifications in the
machine's specification.

b) Transforms: Transform specifications-specify the
possible state transitions of the machine. Each possibly
parameterized transform specification consists of a refer-
ence condition and an effect, each of which may use the
parameters as well as built-in constants and the identifiers
declared in the front matter. In addition, the effect may
use other transforms. The reference condition is a one-
state assertion describing the set of states in which it is
legitimate to invoke the transform. That is, it describes
all the properties of the state that must be true in order to
safely invoke the transform and thus that may be assumed
by the implementation of the transform at the start of an
invocation of the transform. The effect is a two-state as-
sertion which describes all possible relations between the
state at the start of an invocation of the transform and the
state at the end of the same invocation of the transform
under the assumptions that the reference condition holds
at the start and that the execution of the implementation
of the transform is atomic and does in fact halt. If either
the reference condition does not hold or the implementa-
tion is not atomic or does not halt, nothing may be de-
duced about the invocation of the transform. If the refer-
ence condition of a transform is identically true, then it
may be omitted entirely from the transform specification.
If the relation described in the effect is a function, i.e.,
for each start state, there is a unique ending state, then
the transform is said to be deterministic. Otherwise, the
transform is said to be nondeterministic. An example of
a deterministic transform with a reference condition is

transform push stack (v: elem)
refcond HEIGHT (stack) < size
effect N" stack= PUSH (stack, v),

and an example of a nondeterministic transform with no
reference condition is

transform tick
effect N"time> time.

For a transform specification, t, the reference condition
of t is denoted Rt and the effect of t is denoted Et.
A shorthand in writing the effect of a transforn is al-

lowed. Any variable x which is not mentioned anywhere
in the transform declaration except in an NC" clause, i.e.,
NC" (* *, x, * * *), in the effect or in an assertion having
the same meaning, i.e., N "x =x, may be omitted entirely
from the written effect. That is, when writing the effect
of a transform declaration, any variable not mentioned at
all in the declaration is assumed by the Ina Jo processor
not to be changed by the effect. Internally, each effect is
augmented so that it mentions all state variables explic-
itly, possibly as not changed. In the remainder of this re-
port, all formal mentions of effects of transforms are as-
sumed to be fully augmented. This is the case even though
examples may be taking advantage of the shorthand and
not mentioning any nonchanged variables.

186

BERRY: FORMAL DEVELOPMENT METHOD AND THE INA JO SPECIFICATION LANGUAGE

When considering a machine which itself is not an im-
plementation, it is assumed that the implementation of
each transform does, in fact, halt for all starting states
which satisfy its reference condition. Thus, at the code
level, it must be verified that the implementing code for
a transform halts when it is invoked in a state satisfying
the reference condition.

c) Internal versus External: Sometimes in the defi-
nition LS of a machine M, it is convenient to distinguish
between external and internal declarations. An external
declaration is one which is visible to and is of concern to
the users of M, while an internal declaration is invisible
to these users. A user ofM is allowed to invoke only the
external types, constants, variables, defined variables, and
transforms of the LS. In the present Ina Jo language, all
types, constants, variables, and defined variables are, by
default, external; in a future modularized Ina Jo language,
they may be either. The internal declarations are for use

only inside the LS to help build up other declarations. For
example, if two external transforms tl and t2 both need
to increment x by 1, then it might be convenient to declare
an internal transform increment_x by 1,

transform increment x_by_1
effect N"x=x+1

and to invoke this transform in the effects of the declara-
tions of tl and t2. If it is desired not to let the users of
M be able to directly increment x by 1, then the transform
incrementtx by 1 is not made external.-
Note that it is not necessary that internal transforms

meet any of the user's requirements for M. All that is
necessary is that the internal transforms be combined with
other activities in such a manner that all external trans-
forms meet the user's requirements.

It is, however, required that when a transform t is used
inside the declaration of another transform T, the refer-
ence condition of t be satisfied at the point of invocation
of t in the effect of T. For example, the internal transform
change array element specified by

transform change array element
(1: integer,e: element)

refcond 1 <=i & i<=size
effect A" k: integer (N" array (k)

(k-i => e
< > 1 <=k & k<=size => array(k)))

has the reference condition

1< =i & i< =size

giving the requirement that the value of i lie within
the bounds [1 . .size] of the array. The effect of
change array element, which makes array (i) have
the value of e, is defined only if the reference condition
is satisfied upon invocation of change array ele-
ment. The external transform change last ele-
ment, defined by

transform change last element
(e: element) external

refcond 0 <= last
effect

(last<=size =>
change array element (last,e)

< >NC" (last,array))

makes use of change array element in its effect.
At the point of invocation of change array ele-
ment, it is known that the reference condition of
change last element,

0 <= last

holds and that

last <= size.

The latter assertion comes from the condition that must
be true in order to arrive at the point at which
change array element is invoked. In any case, it is
clear that what holds at the point of invocation of
change array_element is sufficient to guarantee that
the reference condition of change array element
holds.

Later, this concept of the reference condition of a trans-
form holding at the point of the transform's invocation
will be precisely defined.

In the present version of the Ina Jo language, only
transforms have the possibility of being external or inter-
nal. For the purposes of the subsequent discussion and
deciding what is to be used, all other declarations of the
current Ina Jo language are assumed to be external and
thus available to the user. Any rules given here about ex-
ternal declarations then apply to all of these other kinds
of declarations.

d) Invocation: The use of an identifier id defined in
a declaration dl in another declaration d2 is called an
invocation of id in d2. Of course, dl must be visible to
d2 by the usual scope rules. These are that a declared
identifier is globally visible except when within the scope
of other introductions of the same identifier. The other
introductions are formal's, which are used as formal pa-
rameters of functions or transforms or after quantifiers
(e.g., A" and E"). The scope of a formal parameter iden-
tifier is the body of the function or transform containing
the formal parameter. The scope of a quantified identifier
is the quantified expression, that is, the text contained in-
side the pair of parentheses following the quantified for-
mal.

If the declaration of id provides formal parameters, then
an invocation of id must supply actual parameters of the
types given with the corresponding formal parameters. In
the case that id is a function, the invocation is considered
to be of the return type of the declaration of id.
The meaning of an invocation of id is simply that of the

definiens of the declaration of id with the actual parame-
ters of the invocation uniformly substituted for the free
occurrences of their corresponding formal parameters as
is shown in Table I. In this table, all fr's are formal pa-
rameters, a,'s are actual parameters, t,'s are types, E's

187

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 2, FEBRUARY 1987

TABLE I

Declaration Invocation Meaning
1. constant c(aa, . a Ea, an

c(tf :t1. .Ifn:tn)
tn., E

2. define v(f :t . .fn:tn) v(a1 , a,) E., .'s
tn, -E

3. tranafonim T(a, an) (R." , &
T(f1: t . fn: tn) E

refoond R offact E

and R's are well-formed formulas, and c's, v's, and T's
are identifiers.

In Table I, one finds the notion of the reference con-

dition holding at the point of invocation effectively de-
fined. In the case of the transform t(f1 tl, * * * f,: tn)
with reference condition R and effect E, the meaning of
the invocation t(f1 t1,l * *, f,: tn) is false if

Dfl ... fn
nal ...an

does not hold.
These rules are understood to be recursively applicable

so that if an

Eflfnal* an

itself contains applications, their meanings. must be ob-
tained in the same manner.4

In the sequel, given a transform specification

transform t(f1, *l, fn: tn)
refcond Rt
effect Et,

the invocation of t with actual parameters a1, , an =

a is denoted

t(a),
the reference condition of the invocation,

fl . .. fn

al an

is denoted

St(a)
and the -effect of the invocation,

fl .. .fn

al an

is denoted

Et(a)

Thus, the meaning of t(a) is

(R,(a) & Et(a)).

e) Computation: At this point, it is possible to for-
mally define the notion of a computation of a machine.

Definition 13: A computation of a machine M defined
by the level specification LS is a sequence of states of M

C = < S * Si * *

such that
1) IC(So),
2) for each S in C with i > 0, there exists an invoca-

tion ti(ai) of an external transform t, in LS such that
Rt,(ai) (Si -1) & Et(ai) (Si -1, S), and

3) C is not a proper initial subsequence of any other
sequence satisfying the above. D2

In the above, the sequence

* <t, (a,), @ , t,(a -), >

of transform invocations mentioned in 2) is called a trans-
form trace of C.

The sentence 3) is to ensure that a subcomputation of a
computation is not taken as a computation, i.e., all com-
putations are carried out completely; if a computation has
a last state, then there is no transform invocation whose
reference condition is satisfied in the state, or there is no
transform invocation and no next state such that the state
and the next state satisfy the transform's effect. That is,
a computation has a last state if and only if the machine
halts at that state (and not as a result of the transform
applier getting tired of applying transforms). This sen-
tence is necessary only if one is concerned about halting
computations, for without it, it is impossible to define the
notion of final state.
Note that there may be more than one transform trace

for a given computation.
Definition 14: Let T = < tl(al), * , t,(a,), ***>

be a sequence of transform applications in a machine M
defined by the level specification LS. Then T is a com-
putational transform trace if and only if there exists a
computation C in M such that T is a transform trace of
C.

It should be clear that not every sequence of transform
invocations is a computational transform trace.

In [3], the concept of an upper-level machine being im-
plemented by a lower-level machine is introduced., It is
necessary also to introduce the notion of an implementing
transform invocation. That is, a transform invocation of
the upper-level machine is implemented by particular
transform invocations of the lower-level machine. One
implements a computational transform trace in the upper-
level machine by the use of a sequence of transform in-
vocations in the lower-level machine. This sequence of
lower level machine transform invocations consists of the
invocations of the transforms of the lower-level machine
that implement the transforms of the upper-level machine.
The sequence of lower-level machine transform invoca-
tions should, of course, be a computational transform trace
of the lower-level machine.

2) Assertions: The assertions specifications of a level
specification LS are used to describe properties that the
machine M of LS is supposed to satisfy if it is imple-
mented properly. It is part of the FDM to prove that in
fact these properties are satisfied. These should be prov-
able given the front matter, the initial conditions specifi-4Thus it is helpful if such declarations are not recursively defined. Per-

haps'some means to deal with fixed points might be useful. cations, and the transforms specifications of LS. First, it

188

BERRY: FORMAL DEVELOPMENT METHOD AND THE INA JO SPECIFICATION LANGUAGE

is necessary to examine the assertions that may be speci-
fied. Later their proofs are considered.

Assertions come in two basic flavors, criteria and con-
straints.

a) Criteria and Constraints: A criterion is a one-
state assertion that is to be true in every state of all com-
putations of the machine. A constraint is a two-state as-
sertion which is to be true of every pair of consecutive
states in every computation. Formally,

Definition 15: A one-state assertion A about a machine
M is said to be a criterion of M if and only if for all
computations C of M, for all states S in C, A is true in
S. DO
Definition 16: A two-state assertion AA about a ma-

chine M is said to be a constraint of M if and only if for
all computations C of M, for all consecutive pairs of states
SO, and S, in C, AA is true in S,, and S, L

Syntactically, the assertion specifications of a level
specification are given as criterion specifications and con-
straint specifications. A criterion specification is the key-
word criterion followed by an old-test (which thus can-
not involve N"'s), and a constraint specification is the
keyword constraint followed by a test which must in-
volve at least one N".
The criterion, CRIT, of the level specification LS de-

scribing the machine M is the conjunction of the old-
test's of all of LS's individual criterion specifications.
The constraint, CONST, of LS is the conjunction of the
tests of all of LS's individual constraint specifications.

It is required that CRIT of LS be a criterion of M and
that CONST of LS be a constraint of M.5
Given the inductive nature of the definition (Definition

13) of a computation, it is straightforward to prove that
CRIT and CONST of LS are a criterion and a constraint
of M.

Theorem 17: (Not available.) Let LS specify a machine
M. Then CRIT of LS is a criterion of M if it can be shown
that

1) IC - > CRIT, and
2) for all external transforms t and all possible argu-

ment lists a, CRIT & Et(a) & Rt(a) - > N" CRIT. El
Theorem 18: (Not available.) Let LS specify a machine

M. Then CONST of LS is a constraint of M if it can be
shown that

1) CRIT of LS is a criterion of M, and
2) for all external transforms t and all possible argu-

ment lists a, CRIT & Et(a) & R,(a) -> CONST. LI
Because the antecedents of the sentences numbered 2)

in the previous two theorems are the same and the result

5Note the careful distinction between the criterion of a level specifica-
tion, a syntactic entity, and a criterion of a machine, a semantic entity.
The criterion of an LS is determined by conjoining assertions following the
criterion keyword. A machine has many properties that are a criterion.
The criterion of an LS may or may not be a criterion of the machine spec-
ified by the LS. Determining whether the criterion is a criterion is one of
the goals of carrying out proofs about the LS. The same syntax-semantic
distinction holds for "the constraint" and "a constraint."

of the first theorem is needed to obtain the result of the
second, one very often does a combined proof.
Theorem 19: Let LS specify a machine M. Then CRIT

of LS is a criterion of M, and CONST of LS is a con-
straint ofM if it can be shown that

1) /C -> CRIT, and
2) for all external transforms t and their arguments a,

CRIT & Et(a) & R,(a) -> CONST & N" CRIT. LI
The above theorems may be impractical for use in prov-

ing that CRIT and CONST are a criterion and a constraint
ofM because CRIT may be a conjunction of a large num-
ber of old-test's and/or CONST may be the conjunction
of a large number of test's. In such a circumstance the
consequence of the conjecture to be proved can be very
large.
One approach to reduce the size of the conjectures to

prove is to be able to attack each individual criterion spec-
ification and each individual constraint specification sep-
arately.
Theorem 20: (Not available.) Let LS specify a machine

M. Suppose that CRIT of LS is the conjunction of crite-
rion specifications CRIT1,TI , CRI T, i.e., CRIT is

CRIT1'& ... & CRITTn.
Suppose that CONST of LS is the conjunction of con-
straint specifications CONST1,I -, CONSTm i.e.,
CONST is

CONST1 & ... CONS Tm.

Then CRIT of LS is a criterion of M, and CONST of LS
is a constraint of M if it can be shown that

1) for all i, 1 < i < n
a) IC -> CRIT,,
b) for all external transforms t and their arguments

a,

CRIT & Et(a) & Rt(a)-> N"CRIT, and

2) for all j, 1 C j C m, for all external transforms t
and their arguments a,

CRIT & Et(a) & Rt(a) -> CONSTj. FlI

Observe that it is necessary that the entire CRIT be
available in the antecedents of 1)-b) and 2). In fact, for
any given N" CRlTi or any given CONSTj, only part of
CRIT will actually be used, namely those CRITk which
deal with the variables mentioned in or related to those
mentioned in N' CR1T7 or CONSTj.

Another approach to reducing the number of proofs that
have to be done is to observe that CONST must be a com-
mon implicant of all of the external transforms. If the
CONST has been written to be a sufficiently strong com-
mon implicant of the external transforms so that it implies
CRIT, then the following theorem can be used as the basis
of the proofs.

Theorem 21: (Not available.) Let LS specify a machine
M. ThenCRIT of LS is a criterion of M, and CONST of
LS is a constraint of M if it can be shown that

189

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 2, FEBRUARY 1987

1) /C -> CRIT,
2) for all externat transforms t and their arguments a,

CRIT & Et(a) & Rt(a) -> CONST, and
3) CONST-> N"CR/T. E
The antecedent of 2) includes CRIT so that any of its

facts may be used to carry out the proof of the holding of
CONST.

b) Criteria, Invariants, and Acceptability: Very
often, in attempting to prove a particular conjunct of
N" CRIT, it is useful to be able to assume some other
criterion assertions which in fact hold in every state of all
computations, but which are not explicitly included in or
implied by CRIT.
For example, if every transform includes the conjunct

N"time > time,

and there is a constraint specification

constraint N"time > time

and there is an initial conditions specification

initial time = 0

then it is clear that in every state, time 2 0. Without
stating time 2 0 as an assertion that is to hold in every
state and proving that it does by the inductive method, it
is not possible to deduce that time 2. 0. Thus, including
the assertion in the CRIT would have the desired effect of
demonstrating that the assertion holds in every state.
However, this assertion may not have been included in

the CRIT, because it is not of interest to the users of the
machine. It may be necessary in proving other properties
of the machine which are of interest to the users of the
machine. For example, one such property is that a priority
assignment based on the square root of the current time is
never undefined. Therefore two kinds of assertion that
hold in every state are needed.
The kind of assertion that is of interest to the users df

the machine is called a criterion. The kind of assertion
that is of little or no interest to the users of the machine
but is helpful for proving other assertions to be criterion
is called an invariant. An invariant is specified in an in-
variant specification which is the keyword invariant fol-
lowed by an old-test. The invariant, INV, of the level
specification LS of a machine M is the conjunction of the
old-test's of all of its invariant specifications.

Formally, invariants cannot be different from criteria.
In order to use an invariant in the inductive proof that the
criteria hold in every state, one must also be proving that
the invariant holds in every state. That is, an invariant
assertion cannot appear in the antecedent of line 2) of
Theorem 7 unless it also appears in the consequent of the
same line. Therefore, the Ina Jo processor simply con-
joins the invariant assertions into the criterion. The dis-
tinction is only psychological and is only for the purpose
of making what is critical clear to the human reader of the
specification. Therefore, from now on, unless otherwise
explicitly stated, the criterion, CRIT of a level specifica-
tion LS is the conjunction of the old-test's of all of LS's
individual criterion and invariant specifications.

This sort of distinction has not proved to be useful for
constraints. All constraint specifications are considered of
interest to the user.
The assertions that are of interest to the users can be

considered as stating some of the users' expectations of
the machines in terms of properties that are true in every
state and constraints on transforms. In fact, there are some
situations in which these properties are the only ones of
interest to the users. This is particularly the case in the
security community. In this community, that no transform
breaches security (a constraint) and that everybody al-
ways has only data to which he or she has rights (a cri-
terion) is much more critical than that a transform does
what it is supposed to do, e.g., give a copy of data to
another user.

Accordingly, the CRIT and CONST of LS are collec-
tively called the acceptability assertions of LS. An LS is
said to be acceptable if it satisfies its CRIT and CONST.

c) Level Consistency: In order to verify that a par-
ticular level specification LS is implementable, it is nec-
essary to demonstrate the existence of the objects whose
existence is presupposed in the axioms, initial-conditions
specifications, and transform specifications.

Basically, if there are unspecified types and unspecified
or axiom-defined constants, it must be shown that there
exist nonempty sets whose values satisfy the axioms about
the values of the types and that there exist values that
satisfy the remaining axioms. The initial conditions spec-
ifications give properties that all initial states must satisfy.
It must be shown that at least one state satisfying those
properties exists. Each transform specification describes
properties of new values for one or more variables. It must
be shown that values with those properties exist. In show-
ing that such values exist, one may use all properties that
must hold if a transform is invoked, i.e., CRIT and the
transform's reference condition.
Once these existences have been proved, the existence

of objects satisfying CRIT and CONST is assured. This
follows because

1) CRIT is implied by IC and the effects of properly
invoked external transforms, and

2) CONST is implied by CRIT and the effects of prop-
erly invoked external transforms.
Meta-Theorem 22: Let LS be a level specification. To

demonstrate the existence of an implementation of LS, it
is sufficient to show front-matter, initial-condition, and
transform consistency.

Front-Matter Consistency: First some notation is
needed. For any Ina Jo expression E, define

model(E) = E with all occurrences of unspecified types
replaced by integer.

For example,

model(A" s: elemstackval, v: elem(
IS EMPTY(PUSH(s,v))))=

A'f S: integer, v: integer(
- IS EMPTY(PUSH(s,v)))

assuming that elemstackval and elem are unspecified

190

BERRY: FORMA-L DEVELOPMENT METHOD AND THE INA JO SPECIFICATION LANGUAGE

types. This function is needed because an integer model
is being built of all unspecified types.

For any constant declaration c: T of LS, define

id(c: T) =

type(c: T) =

c, if c: T is not a function constant
declaration

the id part of c, otherwise.

T, if c: T is not a function constant
declaration

T1x .. x **- *T otherwise, where

Ti, * * *7,Tj is the list of
types appearing in the formals
part of c.

formals(c: T) = the formals part of c, assuming that
c: T is a function constant declaration.

For example,

id(CREATE: elemstackval) = CREATE,
type(CREATE: elemstackval) =

elemstackval,
id(PUSH (s: elemstackval, e: elem)

:elemstackval) = PUSH,
type(PUSH (s: elemstackval, e:elem)

:elemstackval) =

elemstackval x elem
elemstackval, and

formals(PUSH (s: elemstackval, e: elem)
:elemstackval) =

(s: elemstackval, e: elem)

For each c: T = id(f1: T1, * j* ,f1: Tj): T declaring a

function constant with T unspecified,

result_is right type(c: T) =

A" f1: model(T1), , fj: model(Tj)
(id(f1,l * * , fj) <: model(T))

Note that since T is unspecified, model(T) will always be
integer. For example,

result_is right type(
PUSH (elemstackval, elem)

:elemstackval)
A" s: integer, e: integer

PUSH (s, e) < :integer)

Let tl, * , tm be the unspecified types of LS.
Let cl: T1, * * , CM: TM be the unspecified constant

declarations of LS.
Without loss of generality, assume that
1) each constant function declaration has a formal pa-

rameter identifier explicitly given for each argument po-
sition,

2) of the T1, , TM, only T1, k*Tk, with 0 <

k < M, are unspecified types,

Let A be the conjunction of all of the axioms of LS.
Then, front-matter consistency is

E. id(c I: T1) type(c1: T1), * *
id(cM: TM) type(cM: TM),
tl, * ' *,tk: set of integer

(t(= empty & * & tkj- empty &
result_is right_type(c1: T1) & ... &
result_is right type(cI: T1) & model (A))

That is, the front matter is consistent if there exist integer
constants modeling the unspecified nonfunction con--
stants, integer functions modeling the function constants,
and sets of integers modeling the unspecified types such
that the sets are not empty, the modeling functions ap-
plied to the right number of integer arguments produce a
result of the'correct type and the model of the axioms
holds. The holding of the model of the axioms ensures
that the model behaves as specified by the axioms. It is
necessary to show that each of the produced sets of inte-
gers is nonempty in order to guard against vacuous sat-
isfaction of the axioms. There is no need to construct a
model for a specified type or constant because it is either
built-in or constructed from other types and constants. In
the former case, it is already known that the model exists,
and in the second, it is already known that the model ex-
ists if the component types and constants do.

Initial-Condition Consistency: Suppose that the ini-
tial condition, IC, has free logical variables /1, - * *, I,
of types tl, * - . , t, respectively. Then initial-condition
consistency is

Et/1/: tl,^***^I tn (IC)
That is, there exists some assignment of values to the free
variables of the initial condition that makes it true.

Transform Consistency: For each transform speci-
fied

transform t(f1 t1 * fn tn)
refcond R
effect E

if vl, v,V, of types T1, , Tm are the state variables
in E which textually follow N", then considering N" vl,

N' vm as free logical variables of E, transform con-
sistency is

A"al : tl, * ,an : tn

(CRIT&R ... n->

E"ol : l, * o* m: Tm
NEvN' ... N vm fl fn
01i Om al ..an

That is, for each assignment of values to the formal pa-
rameters of the transform, the criterion and the reference
condition are sufficient to imply the existence of an as-
signment of values to the N " 'ed variables of the effect that
makes the effect true. D
Appendix I of [3] contains the output for the Ina Jo

processor applied to a specification with two unspecified
types and a number of unspecified constants whose be-
havior is described with axioms. Among the generated
conjectures are various consistency theorems.
Whenever effects of transforms invoke other transforms

it is necessary to prove that the invoked transforms are
invoked at points at which their reference conditions hold.
The effect of an invoked transform is predicated on its

191

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 2, FEBRUARY 1987'

reference condition holding. The effect of the invoking
transform depends on the effect of the invoked transform.
Therefore, the effect of the invoking transform is predi-
cated on the reference conditions of invoked transforms
holding.

Theorem 23: (Not available.) Let LS be a level speci-
fication. Let transform t be declared

transform t(f1 t1, * * , fn: tn)
refcond R
effect E.

Suppose E contains transform invocations

tl(al) . . .tm(am)

with reference conditions

Rt, (ai)q ... Rtm(am)
respectively. Then all of these transforms are invoked at
points at which their reference conditions hold if when

CRIT & R -> E1t' (al) .tm(am)
CRIT& R -> E~Rt,(ao...Rma

is put in conjunctive normal form' and in that form, all
terms involving N" are removed, the resulting assertion
is provable. D

In other words, rewrite E so that each transform invo-
cation's reference condition replaces the transform invo-
cation and each term involving N" is ignored, and then
prove the rewritten E given CRIT and R.

III. MAPPINGS

The next section considers a number of formal design
methods based on the machine definitions described
above. These methods help the designer to move from
conceptions through specifications to implementations of
the machine. These methods are formal in the sense that,
as soon as possible, a formal description of at least part
of the machine under design is obtained, and all subse-
quent descriptions, be they specifications or implemen-
tation, are expected to be related to this first formal de-
scription in a verifiable manner. One common thread
running through all the methods is the notion of the state
of machine Mg representing the state of another machine
Md.6 All of the relationships between descriptions are
based on this notion of representation. One proves that
the manner in which the two machines' states are related
satisfies certain properties, which are different for each
relationship. An alternative formulation of this same no-
tion is that of reexpressing an assertion about the state of
machine Md as an assertion about the state of machine
Mg. It turns out that these two formulations are inverses
of each other.

In order to establish that the state of machine Mg rep-
resents the state of machine Md, it is necessary to produce
a function P which when applied to any state Sg of Mg
yields the corresponding state Sd of Md. The meaning of
the word "corresponding" depends on the purpose of the
representation and is described for each particular case
later in the paper. For example, if the purpose of the rep-

resenting machine is to simulate the represented compu-
tation step for step, then the ith state of a represented
computation corresponds to the ith state of its represent-
ing computation. In order to establish that assertions about
the state of the machine Mg reexpress assertions about the
state of the machine Md, it is necessary to produce a func-
tion Image on the assertions about the state of Md that
yield the corresponding assertion about the state of Mg.
Here again, the meaning of the word "corresponding"
depends on the purpose of the representation and is de-
scribed for each particular case later in the paper. As men-
tioned, these two notions are inverses of each other. It is
the case that for any assertion Assertd about the states of
Md and any state Sg of Mg, Assertd is -true of I(Sg) if
and only if Image(Assertd) is true of Sg.
The first formulation is used by many formal methods;

the second is used in the Ina Jo language. The first for-
mulation is described only by example. The second is built
up in detail.
As an example, consider an Md whose state is a single

variable, s, of type stack, whose elements are of type
integer. The value of s is an expression in the algebra of
stacks. Consider now an Mg whose state consists of two
variables, stk of type list of integer, and tp of type in-
teger. The first variable serves as an array of the elements
and the second serves as a top of stack index, and they
together are supposed to represent a particular abstract
stack. Thus for example stk = L'(1, 2, 3, 4, 5, 6) and
tp = 3 represent the abstract stack

s = PUSH (PUSH (PUSH (CREATE, 1), 2), 3).

Observe that the elements of the list whose index are
greater than tp are ignored. The function ' constructs the
value of s from the values of stk and tp and is defined
by

I (stk: list of elem, tp: integer) : stack=
(tp=Q =>
CREATE

PUSH (I (stk, tp-1), stk.tp))

The reader can see that applying I to

(L" (1,2, 3,4, 5, 6), 3)

yields

PUSH (PUSH (PUSH (CREATE, 1), 2), 3)

Now consider the alternate formulation as it is used in
the Ina Jo language. Given two consecutive level speci-
fications, LSd and LSg, such that LSg is specified to be
under LSd, one will find attached to the LSg a mapping
section which defines how the LSg machine Mg imple-
ments the LSd machine Md. The LSg is specified to be
under LSd by having LSg immediately follow LSd in a full
specification. This relation can be documented for the hu-
man reader by use of the under clause in the beginning
of the LSg specification:

level LSg under LSd*

192

BERRY: FORMAL DEVELOPMENT METHOD AND THE INA JO SPECIFICATION LANGUAGE

The purpose of the mapping is to establish the way in
which the state of LSd is represented in the LSg. To do
this, one gives a mapping showing how each type, con-
stant, variable, and transform of the LSd is represented in
the LSg. Then an assertion about the state of Md is reex-
pressed as an assertion about the state of Mg by substitut-
ing for each LSd term in them its representation in LSg as
established by the mapping. The resulting assertions are
proved true in the LSg.

A. Mapping Section of Specification
The mapping section of the LSg gives a mapping for

each LSd unspecified or enumerated type (not subtype),
unspecified constant, variable, and external or mapped-to
transform in LSd. Mapping specifications for specified
types, subtypes, specified constants, and enumeration
constants are deducible from the mappings applied to their
definitions and, in fact, must not be given in the specifi-
cation. (Were they given, the Ina Jo processor would be
obliged to generate conjectures asserting the consistency
between the given maps and the deducible maps.) Built-
in types and constants are presumed to map to themselves;
thus integer, 1, and empty map to integer, 1, and
empty, respectively. Any identifier for which a mapping
is defined, explicitly or via deduction is said to be mapped.

If an explicitly mapped identifier has parameters, then
it is necessary that the mapping specification for the iden-
tifier also have parameters. For these, the notion of a type-
less binding is provided to supply formal parameters that
may be used in the definiens of the mapping specification.
A type-less binding is simply a list of formal parameter
identifiers separated by commas and surrounded by a pair
of parentheses (i.e., a binding with types and colons re-
moved). If the declaration of id in LSd has n formal pa-
rameters of types tl, * * *, tn, then the type-less binding
of the mapping specification for id in LSg must have n
formal parameters, and they are assumed to be of types
tl,.. , tn, respectively. An identifier used in the defi-
niens of the mapping specification must either be built-in,
a formal parameter of the mapping specification, or de-
clared in LSg. In the definiens, the formal parameter iden-
tifiers are assumed to be of types Image(t1), . . . , Jm_
age(tn), respectively, i.e., the mapped-to types.
Therefore, it must be that all of the types tl, * , tn are
mapped in LSg (and in fact, the mapping specifications
for tl, * * *, tn or the ones on which the claim that they
are mapped is based must come textually prior to their
assumed use in the type-less binding). The consequence
of these rules is that the definiens is written in the lan-
guage of Lg.
Mapping specifications for the various kinds of identi-

fiers are of the forms:

In each case above in which a type-less binding occurs, it
is optional.

B. The Image
From the elements of the mapping section a function

Image on term's of the upper level to term's of the lower
level is obtained. Basically, for any term e of the upper
level, one works outside-in, replacing all the primitives
of e with their images and then applying the built-in op-
erators to the resulting term's. The process is carried out
recursively until the entire term is in the language of LSg.
First some auxiliary functions that help to define Image
are defined. For each identifier id declared in LSd with a
specified value, def(id) is to yield the Ina Jo utterance
defining its value and defformals(id) is to yield the list of
formal parameters of the declaration.

def(id) =
if id is declared in LSd as a specified type, specified

constant, or defined variable
then the right hand side of the declaration (with

a structure type converted to the tuple type
with the same component types)

else if id is declared in LSd as a transform
then the conjunction of the reference condition

and the augmented effect

defformals(id) =

if id is declared in LSd as a specified type, specified
constant, defined variable, or transform

then the list of formal parameter identifiers of the
declaration

For each LSd identifier id for which a mapping specifi-
cation is given in LSg, map(id) is to yield the definiens
of the mapping specification and mapformals(id) is to
yield the list of formal parameters of the specification.

map(id) =
if id is declared in LSd and has a mapping specifi-

cation for it in LSg
then the right hand side of the mapping specifi-

cation

mapformals(id) =
if id is declared in LSd and has a mapping specifi-

cation for it in LSg
then the list of formal parameter identifiers of the

specification

Note that for any identifier id declared in LSd, def(id) is
in the language of LSd, and map(id) is in the language of
LSg.

For types:
For constants and

variables:

For transforms:

map identifier==type_expression

map identifier type-less binding
== expression

map identifier type-less binding
== two-state assertion

193

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 2, FEBRUARY 1987

Definition 24: For each type identifier, t

Image(t) =
if t is built-in then t
else if t is unspecified then map(t)
else if t is enumerated then map(t)
else if t is specified (but not enumerated

then def(t)~1mage(idl). Image(idn)
where id1, , idn = defformals(t)

For all term's e,

Image(e) -
if e is a built-in constant (including arithmetic, log-

ical, set, and list operators considered as func-
tions)

then e
else if e is an unspecified constant then map(e)
else if e is a variable then map(e)
else if e is of the form N"e' where e' is a term

then N"Image(e')
else if e is an application of a function f(a1,

an) (including of a built-in infix operator)
then Image(f)(Image(a1), * - * , Image(a,))

else if e is a term using the basic constructs of the
language (such as conditionals, etc.) whose
components are the term's a1, , an
thneal ... an Fthen elmage(ai) .Image(an) C1

Note the recursive nature of the definition of Image.
Image can be extended in a natural way to vectors of

terms;

Image(<eI, ,en>)=
< Image(e1), I.., Image(en) >

For a mapping section defining the Image correspond-
ing to the example I constructed above, see Fig. 3 be-
low. Pay close attention to the definitions of

1) the function stack value,
2) the defined variable reped elemstackval, and
3) the map for elemstackval

all in the second level. In particular, the body of the func-
tion stack value is identical to the body of the defini-
tion of the function I.

IV. DESIGN METHODS
This section considers formal design methods based on

the machine definitions described above. These methods
help the designer to move from conceptions through spec-
ifications to implementations of the machine. In these
methods, as soon as possible a formal description of at
least part of the machine under design is obtained, and all
subsequent descriptions, be they specifications or imple-
mentation, are expected to be related to this first formal
description in a verifiable manner. This section describes
these relationships and what needs to be verified about
two formal descriptions in order to demonstrate that the

A. Design Problem
The problem is to go from an initial conception C of a

system S to an implementation I in a manner in which
what S is to do, i.e., its requirements, is formally stated
as specification R and the implementation I is a verifiably
correct realization of R. It is of course hoped that R is
some formal statement of C.
The specification R consists of two complementary

parts. One part describes the system state and the avail-
able facilities for changing and interrogating the state. The
state is a collection of variables. The facilities for chang-
ing the states are transforms and the facilities for inter-
rogating the states are variables themselves and defined
variables. Together the transforms, the variables, and the
defined variables comprise the function of the system. In
an implementation, the variables are usually implemented
as variables in the target programming language, the
transforms are usually implemented by procedures that
modify the state, and the defined variables are usually im-
plemented by value-returning functions. The second part
gives a criterion and a constraint that must be satisfied by
the states and the function of the system. A criterion is an
assertion that must be true in all states and a constraint is
an assertion that must be true in all pairs of successive
states. The second part is offered as redundancy prompt-
ing a check of the function part of the specification. Thus
it should be demonstrated that the state and function part
of a specification are satisfying the criterion and con-
straint. To demonstrate that the criterion is satisfied, it is
necessary to show that the initial state satisfies the crite-
rion and that each transform preserves satisfaction of the
criterion. To demonstrate that the constraint is satisfied,
it is necessary to show that each transform itself implies
the constraint. Observe that there is nothing to demon-
strate about the defined variables in this respect; since they
do not modify the state, they a priori preserve the crite-
rion and satisfy the constraint.
There appears in the literature a number of ways of car-

rying out this process, all of which can be described as
particular elements in a space of development methods.
This space is illustrated by describing two extreme meth-
ods. In both cases, the description is accompanied by a
running example, namely that of designing, specifying,
and implementing a stack abstraction.

B. One Method
One method is that which seems to be supported by a

number of different formal development methods. These
methods are formal in that one must produce a formal
specification of S and there is a means to prove that I is a
correct realization of S and/or that S satisfies certain de-
sirable properties. The method is described by the dia-
gram of Fig. 1. In the figure, an ellipse is supposed to
denote fuzzy conceptions, and a box is supposed to denote
an actual written document, specification, or program.
Each box is called a level of refinement. Each level except

194

relationship holds.

BERRY: FORMAL DEVELOPMENT METHOD AND THE INA JO SPECIFICATION LANGUAGE

Conception of System

Complete Module Skeleton with Pseudo-Code

Complete Formal Specification of System

More Detailed Complete Formal Specification of System

Most Detailed Complete Formal Specification of System

Implementation in Executable Programming Language

Fig. 1.

the top is considered a refinement of the level above and
each level except the bottom is considered an abstraction
of the level below it. In any two successive pairs of lev-
els, the upper one is called the abstraction and the lower
one is called the refinement of the pair. The meaning of
the term to abstract is "to ignore irrelevant details." The
meaning of the term to refine is the reverse, i.e., "to add
relevant details." The details that are being ignored or

added are those of how to implement a datum or a func-
tion.
Each level is functionally complete. That is, the level

describes all externally visible facilities, i.e., all the types,
constants, variables, functions, and procedures that are

available to the users of S. The first level describes the
entire system S but at the level of, say, a user's manual.
Fig. 2 contains such a user-level description of the stack
module given in the form of an Ada® package specifica-
tion part containing comments serving as natural language
descriptions of each of the procedures and functions. Note
that it gives all procedures and functions of the stack mod-

ule that is to be implemented and formally describes their
interface using proper Ada syntax.
Each successive refinement introduces more detail by

showing how at least one of the types, values, procedures,
or functions of the abstraction can be implemented by a

data structure, configuration of a data structure, or code
more closely akin to those found in an executable imple-

gAda is a registered trademark of the U.S. Department of Defense (Ada
Joint Program Office).

generic
size:in NATURAL;

-- maximum size of stack
type ELEM is private;

-- type of element of stack
package BOUNDED_ELEM_STACK_OBJECT is

procedure push_stack(v:in ELEM);
-- push v into stack

procedure pop stack;
-- pop top element from stack

function top_stack return ELEM;
-- return copy of top element
-- note that the stack does not change for this
-- and any function application

function is_empty_stack return BOOLEAN;
-- return whether or not the stack is empty

function height stack return INTEGER;
-- return the current numrber of elements in the stack
-- never less than 0 or greater than size

procedure empty stack;
-- clear stack to empty

and BOUNDED_ELEM_STACK_OBJECT;

Fig. 2.

mentation. Figs. 3 and 4 show successive refinements of
the conception shown in Fig. 2. The initial part of Fig.
3, specifically the part lying between the level tls and the
end tls, gives an Ina Jo specification of the intended con-
ception, namely stacks of integers. It defines an abstract
stack value, using an algebraic axiomatic specification and
then uses the functions defined there to build up trans-
forms and variable functions that specify the procedures
and functions of the conception. The rest of Fig. 3, that
is the part lying between level second and end second
gives an Ina Jo specification of an implementation of the
abstraction defined in the top level specification. It de-
scribes a stack as a pair consisting of an array and a top
of stack index'pointing to the array element that is con-
sidered to be the top of the stack. Finally, Fig. 4 gives a
complete Ada package'implementing the stack object. It
provides procedures and functions for each of the external
transforms and defined variables of the Ina Jo top level
specification. Note that its specification part lists the same
visible identifiers as are listed in the pseudocode expres-
sion of the conception of the system.

In providing these refinements, no new function is in-
troduced; that is, S continues to export the same set of
facilities to the user. The intention is that the lower level
description of the facility named by an exported identifier
id be a no less detailed description of the facility named
by id in the upper l'evel. It is-possible for a refinement to
have nonexported identifiers for providing a facility used
to help implement an exported facility. However, all ex-
ported identifiers of each level must be in the others. Thus,
from the highest level to'the implementation, the set of
exported facilities remains the same. The intent here is
that the facility named by an identifier id in the top level
is implemented by the portion of the code named by id in
the lowest level. Examination of Figs. 3, 4, and 2 shows
that this relationship holds between them.
The relationship between a level and its refinement is

that the refinement correctly implement the level. Thus,
the lowest level must correctly implement the top level.
In the running example, the code of Fig. 4 correctly im-
plements the specification of Fig. 3.

if

11

195

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 2, FEBRUARY 1987

specification bounded_elemnstack_object
level tls

type
elem,
elemstackval

constant
CREATE :elemstackval,
PUSH(s:elemstackval,e:elem) :elemstackval,
POP (s:elemstackval) :elemstackval,
TOP (s:elemstackval) elem,
IS_EMPTY(s:elemntackval(boolean,
HEIGHT(s:elemstackval) integer

axiom
IS_EMPTY(CREATE(

axiom
A"s:elemstackvalkv:elem(-IS_EMPTY(PUSH(s,v)))

axiom
A"s:elemstackval1(IS_EMPTY(s) -> PUSH(POP(s),TOP(s))=s)

axiom
A"s:elemstackval,v:elemi(POP(PUSH(s,v))=s)

axiom
A"s:elemstackval,v:elem(TOP (PUSH (s,v))=v)

axiom
A"s:elemstackval(HEIGHT(s)=0 <-> IS_EMPTY(s))

axiom
A"s:elemstackval,v:elem(HEIGHT(PUSH(s,v))=HEIGHT(s)+l)

constant

size: integer
axiom

size>0
variable

stack: elemstackval

define
height stack: inteder=cHEIGHT (stack)

initial
stack=CREATE

criterion
0 <= height_stack & height_stack <= size

constraint
N"height_stack-height_stack <= 1 & N"height stack-height_stack >= -1

transform push stack(v:elem) external
effect

(HEIGHT (stack) <size =>

stack=PUSH stack, v)

N"stack=stack)

transform pop-stack external
effect

(IS EMPTY(stack) ->

H"stack=POP (stack)

N"stack=stack)

define
top stack elem==TOP (stack)

define
is_empty_stack:boolean==IS_EMPTY(stack)

transform empty_stack external
effect

N" stack=CREATE

end tls

level second

type
elem

constant
size: integer

axiom
size>O

type
integer_range_0 size=T"i:integertO <= i & i <= size),
integer_range_1_size=T"i:integer)(<= i & i <= size),
vector=list of elem,
elemstackval-=tructure of(

tp=integer_range 0_size,
stk=vector)

variable
stack :elemstackval

initial
stack.tp-0

invariant
0 <- stack.tp & stack.tp <= size

transform push_stack (v elem) external
effect

)stack.tp<size =>

N"stack .tp-stack .tp+l &

A'j integer_range_1_size(
N"stack.stk.j=

(j=stack.tp+1 v>

<> stack. stk. j))

NHstack=stack)

transform pop-stack external
effect

(stack.tp>0 ->
Nrstack.tp-stack.tp-1 &
N'stack. stk-stack. stk

N'stack-stack)

define top_stack:elem=- (stack.tp>0 => stack.stk. (stack.tp))
define is empty_stack boolean==stack .tp=O
define height_stack: integer--stack. tp

transform empty stack external
effect

Nnstack .tp=0

/* to build up mapping a/

type
reped_elemstackval

constant
CREATE: reped elemstackval,
PUSH(s:reped_elemstackval,e:elem) reped_elemstackval,
POP (s :reped_elemstackval) :reped_elemstackval,
TOP (s reped elemstackval) :elem,
IS_EMPTY(s:reped_elemstackval) boolean,
HEIGHT (s reped_elemstackval) :integer

axiom

IS_EMPTY(CREATE)
axiom

A"s:reped_elemstackval,v:elem(-IS_EMPTY)PUSH(s,vf))
axiom

A"s:reped_elemstackval(lIS_EMPTY(s) -> PUSHlPOP(s), TOP (s))=s)
axiom

A"s:reped_elemstackval,v:elem(POP(PUSH(s,v))=s)
axiqm

A"s:repedeleemstackval,v:elemeTOP(PUSH(s,v))=v)
axiom

A"s:reped_elemstackval(HEIGHT(s)=0 <-> IS_EMPTY(s))
axioma

A"s:reped_elemstackval,v:elem(HEIGHT(PUSH(s,v))=HEIGHT(s)+l)

constant stack_value (tp:integer_range_0Ssize, stk:vector)
reped_elemstackval=

(tp=S =>

CREATE

PUSH(stack_value (tp-l,stk), stk.tp))

define

reped_stack:reped_elemstackval==stack_value(stack.tp,stack.stk)

map
elem==elem,
elemstackval-=reped_elemstackval,
CREATE--CREATE,
PUSH(s,v)-=PUSH(s,v),

POP (s) -=POP (s)
TOP (s) ==TOP (s),
IS_EMPTY(s)--IS EMPTY(s),
HEIGHT(s)--HEIGHT (s),
size-=size,
stack=-reped stack,

push_stack(v)==push_stack(v),
pop_stack--pop_stack,
top_stack==top stack,

/* These would be needed for proving correctness but are are not
needed for criterid prekervation and are in fact illegal in
current Ina Jo language

is-empty stack-=is empty stack,
height stack--height_stack,
empty stack==empty stack 0/

end second
end bounded elem stack object

Fig. 3.

C. Another Method plete functionality of a system is never understood fully.
Thus, the usual practice is to try one's best to get a good,

One problem with the above described method is that complete top level specification and to proceed from these
of how to get the top level specification to begin with. It specifications to an implementation. Invariably, as one is

seems to have just been created out of thin air. There is a carrying out this refinement, one discovers missing or in-
heavy requirement that this be functionally complete. Ob- appropriate function and thus one must change the set of

taining such functionally complete specifications is diffi- facilities offered by the top and every level. The method
cult, especially since in most cases in real life, the com- requires that the top level be rewritten and that the refine-

196

BERRY: FORMAL DEVELOPMENT METHOD AND THE INA JO SPECIFICATION LANGUAGE

generic
size:in NATURAL;
type ELEM is private;

package BOUNDED ELEM_STACK_OBJECT is
procedure push_stack(v:in ELEM);
procedure pqp_stack;
function top_stack return ELEM;
function is empty stack return BOOLEAN;
function height_stack return INTEGER;
procedure empty_stack;

end BOUNDED_ELEM_STACK_OBJECT;

package body BOUNDED_ELEM_STACK_OBJECT is

type VECTOR is array(INTEGER range 1. size)of ELEM;
type ELEMSTACKVAL is

record tp: INTEGER range O .size:-O;
stk: VECTOR;

end record;
s: ELEMSTACKVAL;

procedure push stack(v:in ELEM) is
begin

if s.tp<size then
s .tp:=s .tp+l;
s.stk(s.tp) :=v;

end if;
end;

procedure pop stack is
begin

if s.tp>O then
s.tp:-=.tp-1;

end if;
end;

function top stack return ELEM is
begin

if s.tp>O then
return s.stk(s.tp);

end if;
end;

function is empty_stack return BOOLEAN is
begin

return s.tp=O;
end;

function height-stack return INTEGER is
begin

return s.tp;
end;

procedure empty_stack is
begin

s .tp:=O;
end;

end BOUNDED_ELEM_STACK OBJECT;

Fig. 4.

ment process be carried out again in order to propagate
the changes systematically throughout the refinements.
While the refinement process is carried out again, it is
usual that some or much of the previous refinements can
be used in the new version.
What would be useful is a method that allowed graceful

addition and deletion of function. Such a method exists in
what is called the Formal Development Method (FDM).
In one form, the method is described by the diagram of
Fig. 5. In this case also, an ellipse is supposed to denote
fuzzy conceptions, and a box is supposed to denote an
actual written document, specification, or program. Each
box is called a level of refinement. Each level except the
top is considered a refinement of the level above and each
level except the bottom is considered an abstraction of
the level below it. In any pairs of successive levels, the
upper one is called the abstraction and the lower one is
called the refinement of the pair. The meaning of the term
to refine is "to add more function." The meaning of the

Conception of System

Formal Statement of Reqtirements

Formal Statement of Requirements and 1 Transform

Formal Statement of Requirements and 2 Transforms

Functionally Complete Formal Specification of System

I1 -

Implementation in Executable Programming Language

Fig. 5.

term to abstract is the reverse, i.e., "to ignore some of
the function."
The only level that is required to be functionally com-

plete is the bottom level, as it serves as a specification of
the implementation. The implementation is, of course, re-
quired to correctly realize the specification. The levels
above the bottom may be less than functionally complete,
although usually a level is no less complete than its ab-
straction. The top level may consist of nothing more than
some acceptability assertions and no transforms. In fact,
the diagram of Fig. 5 shows such a top level. Each suc-
cessive level shows the addition of one more transform.

Fig. 6 shows the first of a possible series of successive
refinements leading to the functionally complete specifi-
cation that was given as the top level of Fig. 3. The other
refinements, not shown here due to space limitations,
might be Fig. 6 with the initial of the top level added,
then that with the transform push added, then that with
the transform pop added. This last refinement with the
transform empty added is precisely the desired top
level.
Note that in this succession of levels, the componentry

of the state is unchanged. Thus, were mappings shown,
they would be the identity maps throughout. What must
be demnonstrated for e:ach level is that all transforms pre-
serve the holding of the criterion and imply the constraint.
In progressing from level to level, all that is changed is
to add an initial condition or a new transform. Thus all
that really needs to be done for each refinement is to dem-
onstrate that the addition implies or preserves the criterion
and that it implies the constraint if it is a transform.~Ob-

197

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 2, FEBRUARY 1987

specification bounded_elem_stack_object
level tls

type
elem,
elemstackval

constant
CREATE: elemstackval,
PUSH (s:elemstackval,e:elem):elemstackval,
POP(s:elemstackval) :elemstackval,
TOP (s :elemstackval) :elem,-
IS_EMPTY (s: e1emstackval) boolean,
HEIGHT (s :e1emstackval) integer

axiom
IS_EMPTY (CREATE)

axiom
A"s:elemstackval,v:elem(-IS_EMPTY(PUSH(s,v)))

axiom
A"s:e1emstackval(>IS_EMPTY(s) -> PUSH(POP(s),TOP(s))=s)

axiom
A"'s:elemstackval,v:elem(POP(PUSH(s,v))=s)

axiom
A"s:elemstackval,v:elem(TOP (PUSH (s,v))=v)

axiom
A"s:elemstackval(HEIGHT(s)=O <-> IS_EMPTY(s))

axiom
A"s:elemstackval,v:elem(HEIGHT(PUSH(s,v))=HEIGHT(s)+l)

constant
size.: integer

axiom
Size>O

variable
stack :elemstackval

define
height_stack:integer==HEIGHT (stack)

criterion
0 <= height_stack & height_stack <= size

constraint
N"height_stack-height_stack <= 1 & N"height_stack-height_stack >= -1

end tls
end bounded_elem stack object

Fig. 6.

serve that proving that a. level implements its abstraction
is not always possible and is not appropriate. It-is not
always possible because the level may not have a trans-
form to implement every transform of its abstraction; it
usually does, but the process of introducing transforms
under condition of satisfying acceptability assertions need
not and should not be constrained by having to implement
all previously introduced transforms. It is not appropriate
simply because the interest in this process is to design the
function of the system, albeit in a controlled manner, and
during design of function, concern for the correctness of
implementations of these functions is premature.
Now examine what is being proved about a refinement.

The acceptability assertions of a lower level come from
the upper level of which it is a refinement, because the
name of the game is to add new transforms that satisfy
previously determined acceptability assertions. If this ob-
servation is camred to its logical conclusion, then it is clear
that the acceptability assertions are coming from the top
level and that it is required that each refining level satisfy
the top level's acceptability assertions. The only time cor-
rectness of realization becomes an issue is in refining from
the bottom level specification to the code. The bottom
level specification is a functionally complete specification
and the code is to implement it exactly.

If this idea is carried out in the Ina Jo specification, then
the acceptability assertions appear only in the top level
and all subsequent levels have the acceptability assertions
brought in by the map. The subsequent levels may have

invariants to provide facts known only in that level that
can help in carrying out proofs. Recall the map serves to
define a function Image which reexpresses any assertion
about the state of one machine into one about the state of
the other. In the case of the running example, the maps
are all identity maps. Thus if maps were added to the fig-
ures above, they would merely map all the acceptability
assertions into themselves exactly. Then for any level, it
is necessary to prove that its initial state implies the
mapped criterion of the top level and that its transforms
preserve the mapped criterion and imply the mapped con-
straint.

D. Space of Methods
Fig. 7 illustrates both kinds of refinements and their

relation to each other. The vertical axis represents refine-
ment of implementation detail, while the horizontal axis
represents refinement of function. The label "Implement
Correctly" on a vertical arrow means that the arrow rep-
resents a refinement in which the specification or the code
at the head correctly implements all of the specification at
the tail. The label "? Add Transform" on a horizontal
arrow means that the arrow represents a refinement in
which transforms are possibly added to get the specifica-
tion or code at the head from the specification at the tail.
Down the far right-hand column lies the refinement from
the conception of the complete set of facilities through a
functionally complete specification using a very abstract
state, through functionally complete specifications using
more and more detailed states, to the code for the com-
plete set of facilities. At the top left, one sees a concep-
tion of the formal requirements. This is formalized into
two different formal-requirements-only specifications, one
using a more abstract state than the other. Across the top,
the more abstract formal-requirements-only specification
is refined into a functionally complete specification with
the same abstract state. Across the bottom, the more de-
tailed formal-requirements-only specification is refined
into a functionally complete specification with the same
detailed state. Note that two of the functionally complete
specifications happen to lie on more than one refinement
path. This is perfectly normal and illustrates that both
kinds of refinement are needed for the total lifecycle.
The mapped view of the proof of formal requirements

satisfaction presented above provides a way to generalize
the FDM. Specifically, it is permissible to allow refine-
ment of the state in the sense of adding more detail while
carrying out the refinement of adding function. In terms
of the diagram of Fig. 7, one proceeds in a slanted direc-
tion downward to the right. In refinements in which im-
plementation detail is added, the map captures how the
new detail implements the abstraction. However, until
such time as correctness of implementation is actually of
concern, only formal requirement satisfaction is proved.

E. Mappings and Proofs of Properties
Each of these kinds of refinement requires a slightly

different map. Recall that the map is written in a lower
level specification to map from identifiers of its abstract-

198

BERRY: FORMAL DEVELOPMENT METHOD AND THE INA JO SPECIFICATION LANGUAGE

Criteria &
Constraints-

Acceptability Asserfions
Increasing Function

Fig. 7.

ing level specification to their images in the language of
the lower level specification. The termed "mapped" is
used to describe a higher level identifier appearing in the
left hand side of a map declaration, the term "mapped
to" is used to describe a lower level identifier appearing
in the right hand side of at least one map declaration. For
both kinds of refinement, all of the types, constants, and
variables required by transforms subjected to property
verification must be mapped.

For functional (horizontal) refinement, it is necessary

neither that all external transforms of level i be mapped
nor that all external transforms of level i + 1 be mapped
to. Since the intehtion of this kind of refinement is to add
external transforms, it is inappropriate to require that all
external transforms of level i + 1 be mapped to; requiring
so means that no new transforms can be introduced. Since
it may be desired to eliminate some previously developed
transforms from further consideration, it is equally inap-
propriate to require that all external transforms of level i
be mapped; requiring so means that all previously defined
transforms be retained.

What is necessary is that all external transforms at any

level be shown to satisfy the top level formal require-
ments. If each level along the refinement path has been
'subjected to this proof, then it suffices to show that all
external transforms at the lower level satisfy the formal
requirements mapped down from the upper level. The
most general way of carrying out this demonstration is to
prove for each external transform of the lower level that
it satisfies the mapped formal requirements. This method
suffices for newly introduced nonmapped-to external
transforms, because it proves the transform directly
against the formal requirements. In fact, this method is
necessary for such transforms because there is no previ-
ously introduced information about this transform that can
be used to simplify proof. If, however, a lower level ex-

ternal transform is mapped to from a higher level trans-
form which has been demonstrated to satisfy the formal
requirements, then it may be possible to show that the
lower level transform satisfies the formal requirements by
proving that it implies the higher level transform under
the map.

-4 Complete Set
of Facilities

Conception

Increasing

Implementation

Detail

Code

199

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13, NO. 2, FEBRUARY 1987

For the use of the maps to deal with horizontal refine-
ment, it is clear that the definiens of a map of a transform
can be an arbitrary expression of type transform, i.e., a
Boolean expression with at least one application of N" to
at least one variable, e.g.,

map increment==increment x byl1
increment_x_by_2 N"x=x+3

map leave==(tenured => resign
< > be fired)

where it is assumed that increment x by_1,
increment x by_2, resign, and be fired are
transforms.

For implementational (vertical) refinement, it must be
that every external higher level transform be mapped, so
that each exported transform of the upper level is in fact
implemented at the lower level.

In addition, it is necessary that each external variable
and defined variable of the upper level be implemented in
the lower level. In order to do this verification, it is nec-
essary that each upper level variable or defined variable
be mapped to its representing variable or defined variable.
This map is not required for demonstrating formal re-
quirements satisfaction for functional refinement because
invocations of variables and defined variables do not cause
state changes.
To demonstrate that the lower level correctly imple-

ments the upper level, it is necessary to show that corre-
sponding transforms, variables, and defined variables
yield corresponding state changes or values.
The differences between the two properties that may be

proved about two specifications and between the two di-
rections of refinement may also be understood in other
terms. Demonstrating correctness is demonstrating that for
each computation Cj in M;, there exists C,+1 in Mj+ 1 such
that C, +1 implements C,. However, demonstrating formal
requirements preservation is demonstrating that for each
computation C, + 1 in Mj+ 1, there exists C, in Mj such that
Ci+1 implements C;. For horizontal refinement, in the
lowest level machine, the set of possible computations is
determined by indefinite-fold composition of transform
application. Thus, the lowest level machine is function-
ally complete in that transforms describe all possible state
changes. However, in all levels above, there may be state
changes caused by transforms that have not been intro-
duced into the specification. Therefore in these levels, the
set of possible computations is determined by an indefi-
nite-fold composition of applications of the constraint
considered a transform as delimited by the invariant.
As mentioned, in real applications of the FDM, a di-

agonal, slanting downward to the right, refinement is
used. This is, in each refinement step both new function
and new implementation details may be introduced. The
predominant axis here is horizontal so that only formal
requirements satisfaction is proved. Therefore, the map is

set up for horizontal refinement. In any case, since no
level except the last has to have full function, no correct-
ness proof can even be carried out.

Section 5 of [3] describes methods of proving the var-
ious relationships that can hold between two successive
levels along either kind of refinement path. Each method
consists of a collection of conjectures whose theoremhood
implies the desired relationship. Arguments are offered
that proving these conjectures does in fact suffice to prove
the holding of the relationship.

V. CONCLUSIONS
This paper has described how the Formal Development

Method is carried out with the help of Ina Jo specifica-
tions. It has attempted to define precisely what an Ina Jo
level specification specifies and to demonstrate how a
number of properties of these specifications may be
proved. The notion of a mapping between two levels of a
specification was introduced. A variety of refinement
methods and the corresponding formal design methods are
described. In each case, a refinement yields a new level
of specification. What needs to be proved about the map-
ping between these levels was described.

ACKNOWLEDGMENT
Thanks to A. Barton, D. Cooper, S. Eckmann, J.

Gingerich, S. Holtsberg, B. Martin, and J. Scheid for
reading and commenting on earlier drafts. Thanks espe-
cially to J. Scheid for all the great arguments that helped
to clarify issues.

REFERENCES
[1] D. M. Berry, "The application of the formal development method-

ology to data base design and integrity verification," System Devel-
opment Corp., Santa Monica, CA, 1981.

[2] -, "Adding modularity and separate subsystem specification sup-
port to the formal development methodology (FDM)," System De-
velopment Corp., Santa Monica, CA, Rep. SP-4361, Mar. 1986.

[3] -, "An informal justification of the formal development method-
ology (FDM)," SP-4359, System Development Corp., Santa Mon-
ica, CA, Rep. SP-4359, Mar. 1986.

[4] M. H. Cheheyl, M. Gasser, G. A. Huff, and J. K. Millen, "Verifying
security," Comput. Surveys, vol. 13, no. 3, pp. 279-340, Sept. 1981.

[5] P. R. Eggert, "Overview of the 'Ina Jo' specification language,"
System Development Corp., Santa Monica, CA, Tech. Rep. SP-4082,
1980.

[61 M. S. C. Gordon, The Denotational Description of Programming
Languages: An Introduction. Berlin: Springer-Verlag, 1979.

[7] P. Lucas and K. Walk, "On the formal description of PL/l," Annu.
Rev. Automat. Program., vol. 6, no. 3, 1969.

[8] M. Nixon and J. Wing, "Adding concurrent systems requirements
support to formal development methodology (FDM)," System De-
velopment Corp., Santa Monica, CA, Rep. SP-4360, Mar. 1986.

[9] J. Scheid and S. Holtsberg, "Enhancements to formal development
methodology (FDM): Ina Jo definition," System Development Corp.,
Santa Monica, CA, Rep. TM-7527/016/00, Mar. 1986.

[10] J. Scheid, S. Anderson, R. Martin, and S. Holtsberg, "The Ina Jo
specification language reference manual,"' System Development
Corp., Santa Monica, CA, Rep. TM-(L)-6021/001/02, Jan. 24, 1986.

[11] D. V. Schorre and J. Stein, "The interactive theorem prover (ITP)
user manual," System Development Corp., Santa Monica, CA, Tech.
Rep. TM-6889/000/04, 1984.

200

BERRY: FORMAL DEVELOPMENT METHOD AND THE INA JO SPECIFICATION LANGUAGE

.1zI10 II ;; Daniel M. Berry received the B.S. degree in
it§<9 gt igi mathematics from Rensselaer Polytechnic Insti-

tute, Troy, NY, in 1969. He went to graduate
school at Brown University, Providence, RI, dur-

ing which time he worked at General Electric

R & D Center in Schenectady, NY, and taught at
the Hebrew University in Jerusalem, Israel. He
joined Department of Computer Science at the

University of California, Los Angeles, as an Act-
ing Assistant Professor in September 1972. After
some delay, he completed his Ph.D. thesis in Sep-

tember 1973 for the Ph.D. degree in applied mathemathics/computer sci-
ence from Brown.

Shortly thereafter he was promoted to Assistant Professor at UCLA. He

worked his way through the ranks, becoming an Associate Professor in
1977 and a Professor in 1983. During the 1979-1980 academic year he
spent a sabbatical at the Hebrew University in Jerusalem, Israel, and at the
Weizmann Institute in Rehovot, Israel. He has spent extended research vis-
its at various places including Pontiffcia Universidade Cat6lica in Rio de
Janeiro, Brazil, and Politecnico di Milano in Milano, Italy. For several
years, he was an active member of the program committee of the annual
Conferencia Internacional de Ciencias de la Computacion in Santiago,
Chile. He has consulted at SDC, for whom this paper was written, since
1979. His research interests are in software engineering, especially in re-
quirements extraction, multilingual word-processing, and formal seman-
tics.

Dr. Berry is a member of the Association for Computing Machinery and
the IEEE Computer Society.

201

