
-46-

A NEW METHODOLOGY FOR GENERATING TEST CASES FOR A
PROGRAMMING LANGUAGE COMPILER

by

Daniel M. Berry

Computer Science Department
University of California

Los Angeles, California 90024

THE PROBLEM

A compiler writer writes a compiler for a programming language L. He/she wants to
test the compiler thoroughly before releasing it to the market, so that no customer of
the compiler will find any bugs.

The goal of testing is to find all bugs that exist in the compiler. However, finding all
bugs is an extremely hard thing to do if not impossible. Therefore, the compiler writer
will be satisfied if testing finds all bugs that will be found by customers. In other words,
if a bug that is not found by testing is never found by a customer, then the testing is
considered satisfactory.

The point is that the only errors that will cause any problems are those that get caught
by a customer after delivery of a supposedly debugged product, If there is an error in a
combination of features that is never used, then this error will never be found. Since
the resources, human, time, and money, to find errors are limited, these resources
should be spent to find errors that will be found by a customer if they are not found
during testing before release.

A bug or an error in a compiler is either

1. an incorrect handling of a correctprogram either at compile time or at run time
o r ,

2. a failure to detect an illegal program as illegal either at compile time or at run
time as the case may be for the illegality.

Thus, an error in a compiler may be observable during its execution or during the exe-
cution of the code it generates.

Testing is done with a collection of test programs. A tes t program for a compiler for L
is a possibly incorrect program of L, for which the correct response of the compiler and
generated code is known and which is to exhibit at least one possib!e error of the com-
piler. An error is said robe e.\hibited by a test program if the test program causes the
compiler to behave in the erroneous manner defined by the e r ro r .

The collection of test programs must be at least large enough to exhibit all the errors

SIGPLAN Notices, Vi8 #2, FebruaiT, 1983

-47-

that any user will find. On the other hand, too large a collection is not satisfactory ei-
ther. For each test program, the compiler's and generated code's response must be
determined be/ore the test runs, and the results of the test run must be compared with
the expected results, The larger the collection, the more such work is involved.

The ideal is to have exactly those test programs which serve to exhibit all errors of the
compiler that will be found. Each error should be exhibited by no more than one pro-
gram.

The coverage of a test program is the set of uses and misuses of features that are in-
cluded in the program. Thus, one desires as small a set of test programs which
nevertheless has sufficient coverage to exhibit all the errors of the compiler that will
ever be found by a customer.

Since it is impossible to know ahead of time what are the errors of the compiler and
what of these will be found by a customer, this ideal is impossible to achieve. In addi-
tion, it is extremely difficult to avoid having more than one test program exhibit the
same error. Therefore, the usual strategy is to have a collection of test programs which
thoroughly exercises the language, one which uses every feature of the language in all
of its variations in the hopes that all of the errors or at least those that will be found are
found by the programs of the collection.

THE CURRENT APPROACH TO TEST CASE GENERATION

Although there is a modest amount of literature on program testing, e.g, [Mye 79,
Yeh77, IEEE 80, ACM 82], there appears to be a dearth of information on compiler
testing. The most complete survey I have found [SC 80] does not go into too much de-
tail about the generation of test cases. Thus the discussion below represents my best
guess as to what seems r.o be done now.

The usual approach to generating a set of test programs begins by first identifying the
individual features . f l fn in the language L . O n e then identifies for each such
feature .f,,

1. typical cases,

2. boundary cases, and

3. misuses of the feature.

For example for the feature "integer variable',, the typical case might be that

the variable has the value 75893.

The boundary cases might be that

the variable has the value O,
the variable has the value maxim.
the variable has the value minint.
the variable has the value 1, and
the variable has the value -1.

-48-

The misuses might be that

the variable is not initialized.
the variable has overflowed, and
the variable has underflowed.

Thus for each feature f,. one identifies some number m, of cases, c,l c,,,. Typi-

cally m, will not be larger than lO.

One then generates a set of programs with coverage of all of the cases of all of the
features. For each program, it is necessary to predict the compiler's response and the
result of running the generated code if any. Care must be taken that cases involving
fatal errors in the compiler or the generated code, i.e., for which the response is termi-
nation, are the last to be executed in their respective programs.

In order to predict the response of the compiler or generated code to a program, it is
very nice if an existing stable compiler for the language L can be used. Then genera-
tion of responses is automatic and is not subject to human error.

THE DRAWBACKS OF THE CURRENT METHOD

This method produces a large number of test programs containing a large number of
test cases. However, this number is not unmanageable for the typical language with at
most 100 features and 10 cases per feature. Such a language requires a collection of
programs covering at most 10,000 cases.

Unfortunately, these test cases are not thorough enough. One should also test combi-
nations of features. At this point, the number of test cases gets out o f hand. Even if
only the pairs of features are tested, for the above described language, there are at most
100,000,000 additional cases to deal with, i.e., to determine their effect on the com-
piler, to determine the results of their generated code, and to compare these effects and
results with those of the actual tests. Even with all these additional cases, the tests may
not be thorough enough, One should consider triples, quadruples, etc.

Thus, the problem with the current approach to compiler testing is that in order to have
sufficient coverage to exhibit all errors that will be found, the number of test cases to
consider gets out of hand in a combinatorial explosion.

A PROPOSED NEWMETHOD

This paper offers a new approach to test case generation. The approach has the goal of
generating cases with sufficient coverage to.exhibit all errors that will ever be found
while at the same time keeping the number of cases manageable. The approach borrows
an old idea in the desigt3 of architectures for the interpretation of high level languages.
As one is designing an interpreter for a high level language, one is trying to optimize
the run time performance of the interpreter for those programs that do get presented to
the interpreter. It does not matter how poor the architecture is for those programs that
no one writes. Therefore. one collects statistics on the way the programming language
is used. The usual kinds of statistics are frequencies of occurrences of each of the cases
of each of the features in the language. Here. the frequencies help to identify the

-49-

cases. For example, if the integer 1 occurs frequently (as it does) then the integer 1 is
a case of the integers. One collects both static and dynamic frequencies, The static fre-
quencies tell holy often each case appears in program texts and suggest which operation
codes should be made shorter. The dynamic frequencies tell how often each case gets
executed and suggest ~vhich instructions should be optimized for speed.*

It is also useful to identify sequences of instructions that appear together in the same
sequence very often. Such a sequence is a candidate for merging into a single instruc-
tion that does the effect of the entire sequence with no more than one instruction fetch.
For example, one very frequent sequence is that for the statement

. ' ; :=x+l.

This suggests that an increment-variable-by-1 instruction might be a useful instruction
to have. Thus it is useful to collect data on frequencies of pairs, triples, quadruples,
etc. of cases of features.

The proposed method for generating test cases is as follows:

1. Identify the features of the language and their cases as in the traditional
method.

2. Form test programs from these cases in the traditional manner.

3. Collect statistics showing the frequencies of pairs and triples of the cases.

4. Take the pairs that constitute 99% of the occurrences among the pairs and take
the triples that constitute 99% of the occurrences among the triples.

5. Form test programs from the taken pairs and triples of cases.

6. Determine the expected results for these test programs and run them through
the compiler being tested.

WHY THE NEW METHOD SHOULD BE VIABLE

In order for the proposed method to be viable it must be that

1~ it generates a set of test cases with sufficient coverage to exhibit all errors that
will be found by a customer, and

2. it does not cause a combinatorial explosion in the number of test cases generat-
ed.

There is ample evidence that using statistics about the way the language L is used to
generate test cases produces test cases that have these properties.

* Experience shows that the ranking of cases in the static and dynamic frequencies tend
to be the same [Bry 80]. That is the code inside loops looks the same as that outside
loops. Thus it usually suffices to collect the static data, which are also much cheaper
and easter to obtain.

- 50-

It has been obser;ced by a number of authors [Bry 80, Erl 79, Mis 80] that language-use
statistics are remarkably insensitive to variations in:

. language. Measurements have been taken for ALGOL 60, PL/I, FORTRAN,
SPL, SAL, XPL, and SIMULA 67 (See below for references).

. expertise of programmer. Measured populations include beginning program-
ming students, advanced computer science students, professional programmers
both with and without training in structured programming, and physicists using
the computer as a tool.

. application of the program. Measured applications include educational comput-
er science programming projects, commercial systems, and scientific research
calculations.

Figures 1 through 6 reproduce tables given in [Erl 79] reflecting data from [Knu 71, Els
77, Wor 72, Wic 73, Tan 78, AW 75, Akk 67]. These data are over various languages,
different programmer expertise, and different application areas. Some of these show
static frequencies, others show dynamic frequencies, and others show both. The FOR-
TRAN data by Knuth include professional scientific programmers as well as computer
science students and faculty. Elshoff's PL/I data include professional commercial pro-
grammers before and after training in structured programming. Wortman's data are
comprised of beginning programming students doing nonnumerical problems.
Wichmann's ALGOL 60 data concern physicists doing scientific calculations.
Tanenbaum's SAL data have advanced computer science students doing system pro-
gramming. Alexander and Wortman's XPL data are about professional system program-
mers, and Akka's Atlas Autocoder data concern programs written by himself, a com-
puter scientist.

In all of these samples, the approximately 10 most frequent statement types or instruc-
tions constitute more than 85% of the occurrences both statically and dynamically. In
addition, one notes that the most common statement type or set of instructions is the
assignment or the set of instructions needed for the assignment. This statement or set
of instructions constitutes about half of the portion of each sample statically or dynami-
cally. An examination of the portion of each sample which constitutes the 85% most
frequent of the occurrences statically or dynamically shows nearly the same set o f state-
ments and instructions.

In addition, Misherghi [Mis 80] has found that SIMULA 67 usage falls into the same
patterns despite the fact that SIMULA 67 has some features, i.e., classes and quasi-
parallelism, that appear in none of the above described languages. Amazingly, this is
true even though Misherghi's Sample includes many programs for a class in SIMULA
67 in which the students were required to use these features to solve problems designed
to illustrate the use of these features. In other words, it may very well be that in an al-
gorithmic language with special purpose features, the use of special features may be
completely overshadowed by the use of the basic algorithmic.language feature.

Thus, it seems clear that the coverage of the set of features generated by the proposed
method should be sufficient to exhibit all those bugs that will be found by any custo-
mer, no matter his/her language; expertise, and application area.

All of thc data of the previous section may be characterized by the fact that the same

- 5 1 -

few features or instructions form the vast majority of the features or instructions used.
This fact is not surprising given ZipFs Law of Linguistics [Zip 49]. ZipFs Law suggests
that in any human language, the frequency of an atom is inversely proportional to its
frequency rank, as shown in figure 7.

In the language of letters appearing in a written text, the atoms are letters. In the
language of words appearing in spoken or written text, the atoms are words. Thus, in a
high level language, the atoms are the syntactic tokens, and in a machine language, the
atoms are the op-codes and operands of instructions. With these latter interpretations
of the concept of atom, the data of the above paragraphs clearly shows that algorithmic
high level, intermediate, and machine languages follow Zipffs law. In addition the data
of [Wor 72] shows that the language of consecutive pairs of instructions follows Zipffs
law. Out of the approximately 1600 possible pairs of instructions, about 40, i.e., 2.5%,
constitute 90% of the pairs that were actually used.

Thus there is ample reason to believe that a selection of test cases constituting 99% of
the cases occurring in programs will yield a test case collection that is small enough to
be manageable.

TESTING THE PROPOSAL

It is necessary to verify that the proposed methodology is feasible and effective, that is
that the method of generating test cases yields a manageable set of test cases with
sufficient coverage . It is desirable that the verification be done without risking a real
on-going compiler development project. It is proposed to take a compiler construction
project that was done in the past and for which accurate records of the nature of bugs
found during testing and after delivery were kept. Statistics on the way the language is
used must be collected. These statistics are then used to construct test cases in the pro-
posed manner. The size of this set of test cases is compared with that of the test case
set used in the actual compiler development. In addition, each error that was found
during and after the actual compiler development is examined to determine if it would
be exhibited in the statistically generated test case set. It is then possible to evaluate
the effectiveness of the proposed methodology in producing manageable but covering
test case sets.

REFERENCES

[ACM 821

[Akk 691

[AW 75]

[Bry 801

Computing Surveys 14:2 (Junn 1982).

Akka, D.S., A Quantitative Comparison of Efficiencies of Compilers,
Master of Science Thesis, Department of Computer Science. Victoria
University of Manchester (October 1967).

Anderson, W.G. and DB. Wortman, "Static and Dynamic Charac-
teristics of XPL Programs", Computer 8:11 (November 1975).

Berry. D.M. "'High Level Language Computer Architecture: An
Overview and Some Principles", Proceedings 0/" International Seminar
otl ([omputer Science, Santiago Chile (A ugust 1980).

-52-

[Els 77] Elshoff, J.L., "The Influence of Structured Programming on PL/I
Program Profiles", IEE£ Transactions on So/?ware Engineering SE-3:5
(September 1977).

[Erl 79] Erlinger, M.A. "Design and Measurement of Implementation
Schemes for Retention Storage Management as Utilized in Block
Structured Languages", Report UCLA-ENG-7972, Computer Science
Dept., UCLA (1979).

[IEEE 80] Transactions on Software Engineering SE-6:3 (M ay 1980).

[Knu 71] Knuth, D.E., "An Empirical Study of FORTRAN Programs",
Software Practice and Experience 1:2 (April-June 1971).

[Mye79] Myers, G.J., The Art Of Software Testing, Wiley, New York (1979).

[Mis 80] Misherghi, S.H., "An Investigation of the Architectural Require-
ments of SIMULA 67", Ph.D. Dissertation, Computer Science Dept.,
UCLA (1980).

[sc 801 Scowen, R.S. and Z.J. Ciechanowicz, "Compiler Validation -- A Sur-
vey", National Physics Laboratory, UK (September 1980).

[Tan 78] Tanenbaum, A.S., "Implications of Structured Programming for
Machine Architecture", Communications of the ACM 21:3 (March
1978).

[Wic 73]

[Wor 72]

Wichmann, B.A., ALGOL 60 Compilation and Assessment, Academic
Press, New York (1973).

Wortman, D.B., "A Study of Language Directed Computer Design",
Computer Systems Research Group, University of Toronto (De-
cember 1972).

[Yeh771 Yeh, R.T. (Ed.), Current Trends in Programming Methodology, Volume
II, Program Validation, Prentice-Hall, Englewood Cliffs (1977).

[Zip 491 Zipf, G.K., Human Behavior and the Principle of Least Effort, Addison
Wesley, Reading, MA (1949).

OF PROGRAMS
STMTS PER PGM

LANGUAGE

-53 -

440 25 120
479.5 380 853

FORTRAN FORTRAN PL/1
LOCKHEED STANFORD NSP

STATEMENT

ASSIGNMENT 41.0 51.0 41.2

IF 14.5 8.5 17.8

GOTO 13.0 8.0 11.7

LOOP 4.0 5.0 7.2

CALL 8.0 4.0 2.0

PROC/SUBRTNE 1.0 1.0 .2

RETURN 2.0 2.0 .1

BEGIN/BLOCK .1

END 1.0 1.0 7.5

WRITE 4.0 5.0 2.6

FORMAT 4.0 4.0

DATA 2.0 .3

COMMON 1.5 3.0

CONTINUE 5.0 3.0

DECLARATION 2.5 1.9 6.3

SUMMARY % OF
STMTS SHOWN 103.5 97.7 96.7

% OF STMTS USED
IN AVERAGES 80.5 76.5 79.2

STATIC SOURCE STATEMENT STATISTICS
Figure 1

34
593

PL/1
SP

33.7

15.6

2.8

9.5

8.2

1.7

.1

.3

11.6

1.1

7.1

91.7

69.8

959
43.6

SPL
WORTMAN

63.9

10.0

.3

14.8

2.7

1.4

.3

.2

4.9

98.5

91.7

-54-

L A N G U A G E - WORTMAN = SPL

LANGUAGE - WICHMAN = ALGOL 60

STATEMENT WORTMAN WlCHMAN

NAME 28.3 20.8
EVAL 23.7 25.4
LINE 8.7
SUBS 6.2 6.3
CALL 4.3 3.9
SWAP 4.1
POP 2.7
BIT 2.5 1.5
STORE 2.3 4.9
CRET 1.7
PARAM 1.6 3.1
DOTEST 1.4 1.5
ADD 1.2 3.1
DOINCR 1.2
DOSTORE .2 .2

COMPARISON OF WORTMAN AND WICHMAN
DYNAMIC

MACHINE LEVEL FRAGMENT PERCENTAGES

Figure 2

LANGUAGE = ATLAS AUTOCODER

OF PGMS 66 52 44 38
OF STMTS/PGM < I K > I K >10K >100K

<10K <100K

STATEMENT GROUP 1 GROUP 2 GROUP 3 GROUP 4
WEIGHTED
AVERAGE

ASSIGNMENT 38.5 50.8 45.8 49.8 45.4
CONDITIONAL 14.9 17.0 20.3 21.7 17.9
GOTO 9.5 8.9 10.2 6.7 8.9
CALL 3.6 3.3 3.3 2.0 3.1
LOOP 3.1 1.9 2.2 1.9 2.3
DECLARE 1.9 3.3 I 6 2.2 2.0
BEGIN 3.3 .06 .01 .001 .12
OF EXPR 133 140 139 120 133.6

AKKA'S DYNAMIC SOURCE STATEMENT STATISTICS [AKKA67]

Figure 3

-55-

INSTRUCTION STATIC DYNAMIC SEMANTICS

NAME
EVAL
LINE
SWAP
POP
PARAM
STORE
CALL
CAT
SUBS
ENTER
LFUNC
SCOPEID
ADD
CRET
CYCLE
BIT
DOSTORE
DOTEST
DOINCR
SUB
EQ
END
UNDEF
DIV
ALLOC
NE
GT
MUL
HALT
NEG
LT
PWR
LE
AND
GE
OR
GOTO
NOT
FREE

30.3 28.3
20.7 23.7
10.0 8.7
4.8 4.1
4.8 2.7
3 ~8 1.6
3.4 2.3
3.1 4.3
2.9 .8
2.8 6.2
2.3 1.0
1.4 .2
1.0 1.0
1.0 1.2

.9 1.7

.9 1.5

.7 2.5

.7 .2

.6 1.4

.6 1.2

.5 .5

.3 1.4

.3 .2

.3 .2

.3 .0

.2 .0

.2 .6

.2 .5

.2 .1

.2 .0

.1 .3

.1 .4

.1 .0

.1 .2

.1 .4

.1 .3

.1 .3

.0 .1

.0 .0

.0 .0

Creates indirect address
Fetches value to ds
Source program line number
Interchange top 2 ds entries
Delete top ds entry
Check procedure parameter
Assign value to variables
Execute program segment
String concatenation
Subscript array variable
Enter block/procedure
Pseudo-variable assignment
Provide block/procedure number
Addition
Conditional return from segment
Loop through segment
Force to type bit (IF statement)
Initialize DO loop variable
Test for DO loop termination
Increment DO loop variable
Subtraction
Test for equality
End block/procedure execution
Create undefined value on ds
Divide
Allocate array variable
Test for not equal
Test for greater than
Multiplication
End program execution
Arithmetic negation
Test for less than
Exponentiation
Test for less than/equal
Logical and
Test for greater than/equal
Logical or
Branch to label
Logical not
Free array storage

WORTMAN MEASUREMENTS FOR SPL

Figure 4

-56-

L A N G U A G E = FORTRAN

STATEMENT STATIC DYNAMIC

ASSIGNMENT
IF
GOTO
DO
CALL
WRITE
CONTINUE
RETURN
READ
STOP

51 67
10 11
9 9
9 3
5 3
5 1
4 7
4 3
2 0
1 0

PERCENT DISTRIBUTION OF SOURCE STATEMENTS
FROM

KNUTH'S FORTRAN STUDY [KNUTTI]

Figure 5

High

FREQUENCY

LANGUAGE m SAL

STATEMENT STATIC DYNAMIC

ASSIGNMENT
CALL
IF
RETURN
FOR
EXITLOOP
WHILE
REPEAT
DO FOREVER
CASE
PRINT

46.5 41.9
24.6 12.4
17.2 36.0
4.2 2.6
3.4 2.1
1.4 1.6
1.1 1.5
0.5 0.1
0.5 0.8
0.3 1.2
0.3 <0.05

STATIC AND DYNAMIC STATEMENT PERCENTAGES
FROM

TANENBAUM [TANET8]

Figure 6

Low

Most
Frequent

RANK

Figure 7

Least
Frequent

