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THE PROBLEM 

A compiler writer writes a compiler for a programming language L. He/she wants to 
test the compiler thoroughly before releasing it to the market, so that no customer of 
the compiler will find any bugs. 

The goal of testing is to find all bugs that exist in the compiler. However, finding all 
bugs is an extremely hard thing to do if not impossible. Therefore, the compiler writer 
will be satisfied if testing finds all bugs that will be found by customers. In other words, 
if a bug that is not found by testing is never found by a customer, then the testing is 
considered satisfactory. 

The point is that the only errors that will cause any problems are those that get caught 
by a customer after delivery of a supposedly debugged product, If there is an error in a 
combination of features that is never used, then this error will never be found. Since 
the resources, human, time, and money, to find errors are limited, these resources 
should be spent to find errors that will be found by a customer if they are not found 
during testing before release. 

A bug or an error in a compiler is either 

1. an incorrect handling of a correctprogram either at compile time or at run time 
o r  , 

2. a failure to detect an illegal program as illegal either at compile time or at run 
time as the case may be for the illegality. 

Thus, an error in a compiler may be observable during its execution or during the exe- 
cution of the code it generates. 

Testing is done with a collection of test programs. A tes t  program for a compiler for L 
is a possibly incorrect program of L,  for which the correct response of the compiler and 
generated code is known and which is to exhibit at least one possib!e error of the com- 
piler. An error is said robe  e.\hibited by a test program if the test program causes the 
compiler to behave in the erroneous manner defined by the e r ro r .  

The collection of test programs must be at least large enough to exhibit all the errors 
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that any user will find. On the other hand, too large a collection is not satisfactory ei- 
ther. For each test program, the compiler's and generated code's response must be 
determined be/ore the test runs, and the results of the test run must be compared with 
the expected results, The larger the collection, the more such work is involved. 

The ideal is to have exactly those test programs which serve to exhibit all errors of the 
compiler that will be found. Each error should be exhibited by no more than one pro- 
gram. 

The coverage of a test program is the set of uses and misuses of features that are in- 
cluded in the program. Thus, one desires as small a set of test programs which 
nevertheless has sufficient coverage to exhibit all the errors of the compiler that will 
ever be found by a customer. 

Since it is impossible to know ahead of time what are the errors of the compiler and 
what of these will be found by a customer, this ideal is impossible to achieve. In addi- 
tion, it is extremely difficult to avoid having more than one test program exhibit the 
same error. Therefore, the usual strategy is to have a collection of test programs which 
thoroughly exercises the language, one which uses every feature of the language in all 
of  its variations in the hopes that all of the errors or at least those that will be found are 
found by the programs of the collection. 

THE CURRENT APPROACH TO TEST CASE GENERATION 

Although there is a modest amount  of literature on program testing, e.g, [Mye 79, 
Yeh77, IEEE 80, ACM 82], there appears to be a dearth of information on compiler 
testing. The most complete survey I have found [SC 80] does not go into too much de- 
tail about the generation of test cases. Thus the discussion below represents my best 
guess as to what seems r.o be done now. 

The usual approach to generating a set of test programs begins by first identifying the 
individual features . f l  . . . . . .  fn in the language L . O n e  then identifies for each such 
feature .f,, 

1. typical cases, 

2. boundary cases, and 

3. misuses of the feature. 

For example for the feature "integer variable',, the typical case might be that 

the variable has the value 75893. 

The boundary cases might be that 

the variable has the value O, 
the variable has the value maxim. 
the variable has the value minint. 
the variable has the value 1, and 
the variable has the value -1. 
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The misuses might be that 

the variable is not initialized. 
the variable has overflowed, and 
the variable has underflowed. 

Thus for each feature f,. one identifies some number m, of cases, c,l . . . . .  c,,,. Typi- 

cally m, will not be larger than lO. 

One then generates a set of programs with coverage of all of the cases of all of the 
features. For each program, it is necessary to predict the compiler's response and the 
result of running the generated code if any. Care must be taken that cases involving 
fatal errors in the compiler or the generated code, i.e., for which the response is termi- 
nation, are the last to be executed in their respective programs. 

In order to predict the response of the compiler or generated code to a program, it is 
very nice if an existing stable compiler for the language L can be used. Then genera- 
tion of responses is automatic and is not subject to human error. 

THE DRAWBACKS OF THE CURRENT METHOD 

This method produces a large number of test programs containing a large number of 
test cases. However, this number is not unmanageable for the typical language with at 
most 100 features and 10 cases per feature. Such a language requires a collection of 
programs covering at most 10,000 cases. 

Unfortunately, these test cases are not thorough enough. One should also test combi- 
nations of features. At this point, the number of test cases gets out o f  hand. Even if 
only the pairs of features are tested, for the above described language, there are at most 
100,000,000 additional cases to deal with, i.e., to determine their effect on the com- 
piler, to determine the results of their generated code, and to compare these effects and 
results with those of the actual tests. Even with all these additional cases, the tests may 
not be thorough enough, One should consider triples, quadruples, etc. 

Thus, the problem with the current approach to compiler testing is that in order to have 
sufficient coverage to exhibit all errors that will be found, the number of test cases to 
consider gets out of hand in a combinatorial explosion. 

A PROPOSED NEWMETHOD 

This paper offers a new approach to test case generation. The approach has the goal of 
generating cases with sufficient coverage to.exhibit all errors that will ever be found 
while at the same time keeping the number of cases manageable. The approach borrows 
an old idea in the desigt3 of architectures for the interpretation of high level languages. 
As one is designing an interpreter for a high level language, one is trying to optimize 
the run time performance of the interpreter for those programs that do get presented to 
the interpreter. It does not matter how poor the architecture is for those programs that 
no one writes. Therefore. one collects statistics on the way the programming language 
is used. The usual kinds of statistics are frequencies of occurrences of each of the cases 
of each of the features in the language. Here. the frequencies help to identify the 
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cases. For example, if the integer 1 occurs frequently (as it does) then the integer 1 is 
a case of the integers. One collects both static and dynamic frequencies, The static fre- 
quencies tell holy often each case appears in program texts and suggest which operation 
codes should be made shorter. The dynamic frequencies tell how often each case gets 
executed and suggest ~vhich instructions should be optimized for speed.* 

It is also useful to identify sequences of instructions that appear together in the same 
sequence very often. Such a sequence is a candidate for merging into a single instruc- 
tion that does the effect of the entire sequence with no more than one instruction fetch. 
For example, one very frequent sequence is that for the statement 

. ' ; :=x+l.  

This suggests that an increment-variable-by-1 instruction might be a useful instruction 
to have. Thus it is useful to collect data on frequencies of pairs, triples, quadruples, 
etc. of cases of features. 

The proposed method for generating test cases is as follows: 

1. Identify the features of the language and their cases as in the traditional 
method. 

2. Form test programs from these cases in the traditional manner. 

3. Collect statistics showing the frequencies of pairs and triples of the cases. 

4. Take the pairs that constitute 99% of the occurrences among the pairs and take 
the triples that constitute 99% of the occurrences among the triples. 

5. Form test programs from the taken pairs and triples of cases. 

6. Determine the expected results for these test programs and run them through 
the compiler being tested. 

WHY THE NEW METHOD SHOULD BE VIABLE 

In order for the proposed method to be viable it must be that 

1~ it generates a set of test cases with sufficient coverage to exhibit all errors that 
will be found by a customer, and 

2. it does not cause a combinatorial explosion in the number of test cases generat- 
ed. 

There is ample evidence that using statistics about the way the language L is used to 
generate test cases produces test cases that have these properties. 

* Experience shows that the ranking of cases in the static and dynamic frequencies tend 
to be the same [Bry 80]. That is the code inside loops looks the same as that outside 
loops. Thus it usually suffices to collect the static data, which are also much cheaper 
and easter to obtain. 
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It has been obser;ced by a number of authors [Bry 80, Erl 79, Mis 80] that language-use 
statistics are remarkably insensitive to variations in: 

. language. Measurements have been taken for ALGOL 60, PL/I, FORTRAN, 
SPL, SAL, XPL, and SIMULA 67 (See below for references). 

. expertise of programmer. Measured populations include beginning program- 
ming students, advanced computer science students, professional programmers 
both with and without training in structured programming, and physicists using 
the computer as a tool. 

. application of the program. Measured applications include educational comput- 
er science programming projects, commercial systems, and scientific research 
calculations. 

Figures 1 through 6 reproduce tables given in [Erl 79] reflecting data from [Knu 71, Els 
77, Wor 72, Wic 73, Tan 78, AW 75, Akk 67]. These data are over various languages, 
different programmer expertise, and different application areas. Some of these show 
static frequencies, others show dynamic frequencies, and others show both. The FOR- 
TRAN data by Knuth include professional scientific programmers as well as computer 
science students and faculty. Elshoff's PL/I data include professional commercial pro- 
grammers before and after training in structured programming. Wortman's  data are 
comprised of beginning programming students doing nonnumerical problems. 
Wichmann's ALGOL 60 data concern physicists doing scientific calculations. 
Tanenbaum's SAL data have advanced computer science students doing system pro- 
gramming. Alexander and Wortman's XPL data are about professional system program- 
mers, and Akka's Atlas Autocoder data concern programs written by himself, a com- 
puter scientist. 

In all of these samples, the approximately 10 most frequent statement types or instruc- 
tions constitute more than 85% of the occurrences both statically and dynamically. In 
addition, one notes that the most common statement type or set of instructions is the 
assignment or the set of instructions needed for the assignment. This statement or set 
of instructions constitutes about half of the portion of each sample statically or dynami- 
cally. An examination of the portion of each sample which constitutes the 85% most 
frequent of  the occurrences statically or dynamically shows nearly the same set o f  state- 
ments and instructions. 

In addition, Misherghi [Mis 80] has found that SIMULA 67 usage falls into the same 
patterns despite the fact that SIMULA 67 has some features, i.e., classes and quasi- 
parallelism, that appear in none of the above described languages. Amazingly, this is 
true even though Misherghi's Sample includes many programs for a class in SIMULA 
67 in which the students were required to use these features to solve problems designed 
to illustrate the use of these features. In other words, it may very well be that in an al- 
gorithmic language with special purpose features, the use of special features may be 
completely overshadowed by the use of the basic algorithmic.language feature. 

Thus, it seems clear that the coverage of the set of features generated by the proposed 
method should be sufficient to exhibit all those bugs that will be found by any custo- 
mer, no matter his/her language; expertise, and application area. 

All of thc data of the previous section may be characterized by the fact that the same 
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few features or instructions form the vast majority of the features or instructions used. 
This fact is not surprising given ZipFs Law of Linguistics [Zip 49]. ZipFs Law suggests 
that in any human language, the frequency of an atom is inversely proportional to its 
frequency rank, as shown in figure 7. 

In the language of letters appearing in a written text, the atoms are letters. In the 
language of words appearing in spoken or written text, the atoms are words. Thus, in a 
high level language, the atoms are the syntactic tokens, and in a machine language, the 
atoms are the op-codes and operands of instructions. With these latter interpretations 
of the concept of atom, the data of the above paragraphs clearly shows that algorithmic 
high level, intermediate, and machine languages follow Zipffs law. In addition the data 
of  [Wor 72] shows that the language of consecutive pairs of instructions follows Zipffs 
law. Out of the approximately 1600 possible pairs of instructions, about 40, i.e., 2.5%, 
constitute 90% of the pairs that were actually used. 

Thus there is ample reason to believe that a selection of test cases constituting 99% of 
the cases occurring in programs will yield a test case collection that is small enough to 
be manageable. 

TESTING THE PROPOSAL 

It is necessary to verify that the proposed methodology is feasible and effective, that is 
that the method of generating test cases yields a manageable set of test cases with 
sufficient coverage .  It is desirable that the verification be done without risking a real 
on-going compiler development project. It is proposed to take a compiler construction 
project that was done in the past and for which accurate records of the nature of bugs 
found during testing and after delivery were kept. Statistics on the way the language is 
used must be collected. These statistics are then used to construct test cases in the pro- 
posed manner. The size of this set of  test cases is compared with that of the test case 
set used in the actual compiler development. In addition, each error that was found 
during and after the actual compiler development is examined to determine if it would 
be exhibited in the statistically generated test case set. It is then possible to evaluate 
the effectiveness of the proposed methodology in producing manageable but covering 
test case sets. 
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440 25 120 
479.5 380 853 

FORTRAN FORTRAN PL/1 
LOCKHEED STANFORD NSP 

STATEMENT 

ASSIGNMENT 41.0 51.0 41.2 

IF 14.5 8.5 17.8 

GOTO 13.0 8.0 11.7 

LOOP 4.0 5.0 7.2 

CALL 8.0 4.0 2.0 

PROC/SUBRTNE 1.0 1.0 .2 

RETURN 2.0 2.0 .1 

BEGIN/BLOCK .1 

END 1.0 1.0 7.5 

WRITE 4.0 5.0 2.6 

FORMAT 4.0 4.0 

DATA 2.0 .3 

COMMON 1.5 3.0 

CONTINUE 5.0 3.0 

DECLARATION 2.5 1.9 6.3 

SUMMARY % OF 
STMTS SHOWN 103.5 97.7 96.7 

% OF STMTS USED 
IN AVERAGES 80.5 76.5 79.2 

STATIC SOURCE STATEMENT STATISTICS 
Figure 1 

34 
593 

PL/1 
SP 

33.7 

15.6 

2.8 

9.5 

8.2 

1.7 

.1 

.3 

11.6 

1.1 

7.1 

91.7 

69.8 

959 
43.6 

SPL 
WORTMAN 

63.9 

10.0 

.3 

14.8 

2.7 

1.4 

.3 

.2 

4.9 

98.5 

91.7 
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L A N G U A G E -  WORTMAN = SPL 

LANGUAGE - WICHMAN = ALGOL 60 

STATEMENT WORTMAN WlCHMAN 

NAME 28.3 20.8 
EVAL 23.7 25.4 
LINE 8.7 
SUBS 6.2 6.3 
CALL 4.3 3.9 
SWAP 4.1 
POP 2.7 
BIT 2.5 1.5 
STORE 2.3 4.9 
CRET 1.7 
PARAM 1.6 3.1 
DOTEST 1.4 1.5 
ADD 1.2 3.1 
DOINCR 1.2 
DOSTORE .2 .2 

COMPARISON OF WORTMAN AND WICHMAN 
DYNAMIC 

MACHINE LEVEL FRAGMENT PERCENTAGES 

Figure 2 

LANGUAGE = ATLAS AUTOCODER 

# OF PGMS 66 52 44 38 
# OF STMTS/PGM < I K  > I K  >10K >100K 

<10K <100K 

STATEMENT GROUP 1 GROUP 2 GROUP 3 GROUP 4 
WEIGHTED 
AVERAGE 

ASSIGNMENT 38.5 50.8 45.8 49.8 45.4 
CONDITIONAL 14.9 17.0 20.3 21.7 17.9 
GOTO 9.5 8.9 10.2 6.7 8.9 
CALL 3.6 3.3 3.3 2.0 3.1 
LOOP 3.1 1.9 2.2 1.9 2.3 
DECLARE 1.9 3.3 I 6  2.2 2.0 
BEGIN 3.3 .06 .01 .001 .12 
# OF EXPR 133 140 139 120 133.6 

AKKA'S DYNAMIC SOURCE STATEMENT STATISTICS [AKKA67] 

Figure 3 
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INSTRUCTION STATIC DYNAMIC SEMANTICS 

NAME 
EVAL 
LINE 
SWAP 
POP 
PARAM 
STORE 
CALL 
CAT 
SUBS 
ENTER 
LFUNC 
SCOPEID 
ADD 
CRET 
CYCLE 
BIT 
DOSTORE 
DOTEST 
DOINCR 
SUB 
EQ 
END 
UNDEF 
DIV 
ALLOC 
NE 
GT 
MUL 
HALT 
NEG 
LT 
PWR 
LE 
AND 
GE 
OR 
GOTO 
NOT 
FREE 

30.3 28.3 
20.7 23.7 
10.0 8.7 
4.8 4.1 
4.8 2.7 
3 ~8 1.6 
3.4 2.3 
3.1 4.3 
2.9 .8 
2.8 6.2 
2.3 1.0 
1.4 .2 
1.0 1.0 
1.0 1.2 

.9 1.7 

.9 1.5 

.7 2.5 

.7 .2 

.6 1.4 

.6 1.2 

.5 .5 

.3 1.4 

.3 .2 

.3 .2 

.3 .0 

.2 .0 

.2 .6 

.2 .5 

.2 .1 

.2 .0 

.1 .3 

.1 .4 

.1 .0 

.1 .2 

.1 .4 

.1 .3 

.1 .3 

.0 .1 

.0 .0 

.0 .0 

Creates indirect address 
Fetches value to ds 
Source program line number 
Interchange top 2 ds entries 
Delete top ds entry 
Check procedure parameter 
Assign value to variables 
Execute program segment 
String concatenation 
Subscript array variable 
Enter block/procedure 
Pseudo-variable assignment 
Provide block/procedure number 
Addition 
Conditional return from segment 
Loop through segment 
Force to type bit (IF statement) 
Initialize DO loop variable 
Test for DO loop termination 
Increment DO loop variable 
Subtraction 
Test for equality 
End block/procedure execution 
Create undefined value on ds 
Divide 
Allocate array variable 
Test for not equal 
Test for greater than 
Multiplication 
End program execution 
Arithmetic negation 
Test for less than 
Exponentiation 
Test for less than/equal 
Logical and 
Test for greater than/equal 
Logical or 
Branch to label 
Logical not 
Free array storage 

WORTMAN MEASUREMENTS FOR SPL 

Figure 4 
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L A N G U A G E =  FORTRAN 

STATEMENT STATIC DYNAMIC 

ASSIGNMENT 
IF 
GOTO 
DO 
CALL 
WRITE 
CONTINUE 
RETURN 
READ 
STOP 

51 67 
10 11 
9 9 
9 3 
5 3 
5 1 
4 7 
4 3 
2 0 
1 0 

PERCENT DISTRIBUTION OF SOURCE STATEMENTS 
FROM 

KNUTH'S FORTRAN STUDY [KNUTTI] 

Figure 5 

High 

FREQUENCY 

LANGUAGE m SAL 

STATEMENT STATIC DYNAMIC 

ASSIGNMENT 
CALL 
IF 
RETURN 
FOR 
EXITLOOP 
WHILE 
REPEAT 
DO FOREVER 
CASE 
PRINT 

46.5 41.9 
24.6 12.4 
17.2 36.0 
4.2 2.6 
3.4 2.1 
1.4 1.6 
1.1 1.5 
0.5 0.1 
0.5 0.8 
0.3 1.2 
0.3 <0.05 

STATIC AND DYNAMIC STATEMENT PERCENTAGES 
FROM 

TANENBAUM [TANET8] 

Figure 6 

Low 

Most 
Frequent 

RANK 

Figure 7 

Least 
Frequent 


