
307
REPRINTED FROM (with entirely new fonts and thus different layout)(Original article occupied pages 307–321):
Methodologies for Computer Systems Design
W.K. Giloi and B.D. Shriver (Editors)
Elsevier Science Publishers B.V. (North-Holland)

 IFIP, 1985

On the Application of
Ada and its Tools to the

Information Hiding Decomposition Methodology
for the Design of Software Systems

Daniel M. Berry*
Computer Science Department

University of California
Los Angeles, CA 90024

U. S. A.

Abstract: This paper shows how Ada can be used as the language for expressing decom-
position and interface decisions for software systems designed by application of modern
software design methodologies such as Parnas’s information hiding methodology. It
shows by use of Parnas’s KWIC example how most of the required design documents can
be written in Ada, how Ada tools can be used to check these documents, and how imple-
mentations can be controlled by use of Ada notation.

1 Introduction

Ada [ADA82] was designed to support the programming of embedded systems [DOD78], that is,
software which becomes an integral part of the real-world system which it is to control [Leh83]. During the
design of Ada, a serious effort was made to address the programming methodologies by which these embed-
ded systems would be designed and implemented. Indeed one of the prime impetuses for the design of a com-
mon language was the recognition that widespread use of one language would create a large market for the
variety of language-particular tools needed to carry out the modern programming methodologies. The result
would be to make production of these tools economically feasible and to eventually permit larger numbers of
programmers to be programming with state-of-the-art methodologies and tools. Consequently, Ada contains a
number of features which help to express those aspects of software that are manipulated by the design metho-
dologies, i.e., modules. In addition, implementations of the language are to be distributed accompanied by an
Ada Programming Support Environment (APSE) [DOD80] which is to provide many tools directly useable in
these methodologies.

There is a wide variety of methodologies that are in use and that are envisioned as being used in
developing the embedded systems to be written in Ada. Two reports commissioned by the Department of De-
fense list and evaluate many of these methodologies [FW82, UK81]. It is not a goal of this paper to chose a
‘‘best’’ methodology — there is none. Rather, the purpose of this paper is to demonstrate how Ada and some
of its envisioned tools may be put to use in applying these methodologies. It is the final contention of this pa-
per that the use of Ada is not restricted to any one methodology and can be used profitably with any of them.
However, due to space limitations, that even a book will not solve, this demonstration is carried out using
one particular well-known methodology, David Parnas’s information hiding methodology [Par72a, b, c]. This
methodology is selected as the discussion vehicle, because it was one of the first methodologies to be
described in the literature, many other methodologies have the same goals and similar methods, and the main
paper describing the methodology is widely read, reprinted, and cited.

The information hiding methodology gives criteria for decomposing a system into modules. The
methodology recognizes, as do many others, that the heavy cost of any software development project is in
carrying out the inevitable maintenance and modification resulting from the discovery of bugs and the desires
to enhance the function of the software. The methodology tries to obtain a decomposition into modules such
that for any change, the code that must be modified is limited to at most one module. Thus the criteria for

hhhhhhhhhhhhhhhh
 Ada is a trademark of the U. S. Dept. of Defense (AJPO).

* This work was supported in parts by the Department of Energy, Contract No. DE-AS03-76F0034 P. A. No.
DE-AT0376, ER70214, Mod. A006, The University of California MICRO Program, Hughes Aircraft
Corporation, SDC — A Burroughs Company, and IBM Corporation.

308 D.M. Berry

measuring the goodness of a proposed decomposition is in how well the decomposition isolates changes. The
idea is information hiding; put in one module all and only the code that deals with one and only one abstrac-
tion, procedural or data, and then hide that code inside a module which exports only the abstraction.

In carrying out the creative part of this and any methodologies, there are a number of specifications
to be written to serve as blueprints for the later implementation stages. From these specifications, a number of
reports are to be generated. Furthermore, there are a number of checks to be done to these specifications in
order to minimize the chances that serious design flaws, e.g., interface errors, survive into the implementation
stages. It turns out that many of these specifications can be carried out in Ada and a number of the checks
can be carried out using existing, already envisioned, and proposed Ada language tools.

In order to demonstrate the application of Ada and its tools to the information hiding methodology,
this paper pretends to go through the design of the KWIC Index System that is described in Parnas’s two
1972 papers [Par72a, b] (This design is described also in a tutorial article written by Austin Maher [Mah??].).
At various points in the design process, it is useful to express the design decision just made or to produce a
required document using Ada. At these points, this paper shows the suggested Ada text and indicates how the
Ada tools can be used to do some of the checking that should be done in applying the methodology. Also this
paper shows how some of the other suggested documents are related to the Ada documents. In doing these,
the paper points out what some requirements that the Ada tools should satisfy in order that they be profitably
used in the development of software according to information hiding or any of the modern programming
methodologies.

2 The Problem

It is assumed that the reader has read at least the paper ‘‘On the Criteria to be Used in Decompos-
ing Systems into Modules’’ and is familiar with the conclusions of the paper.

The problem to solve is given in a very short requirement which is paraphrased here:

The KWIC index system accepts an ordered list of lines; each line is an ordered list of
words; and each word is an ordered list of characters. Any line may be circularly shifted
by repeatedly removing the first word and appending at the end of the line. The KWIC
index system outputs a listing of all circular shifts of all lines in alphabetical order.

Appendix I shows a sample page from the output of such a KWIC system.

Parnas presents two decompositions for this problem and determines that the second does a better
job of hiding implementation details. As a number of changes to implementation details are contemplated, the
effects of each change is confined to one and only one module in the second decomposition. In the first
decomposition the effects are much more wide-spread, in some cases all modules have to be changed.

This paper pretends that the two decompositions represent two consecutive attempts to decompose
the system correctly and that the second is arrived at after having laid out the first and having analyzed its
weaknesses.

3 First Decomposition

Parnas’s description of the first decomposition is found in Appendix II. Observe that the sample
output in Appendix I resembles that produced by a so-called ‘‘sophisticated system’’. Parnas then says ... ‘‘It
should be clear that the above does not constitute a definitive document. Much more information would have
to be supplied before work could start. The defining documents would include a number of pictures showing
core formats, pointer conventions, calling conventions, etc. All of the interfaces between the four modules
must be specified before work could begin.’’ Apart from the pictures, the definitive document can be written
in Ada so that an Ada compiler can be used to check consistency in the choices in and their expressions. Ap-
pendix III shows a core diagram showing the array of words generated by module 1 across the top and the
various index table arrays produced by 1, 2, and 3 below that.

On the Application of Ada and its Tools 309

Appendix IV shows a collection of Ada module skeletons expressing the decisions made on the
data structures (the core formats and the pointer conventions), the calling conventions, and the interfaces
between the modules. In this Ada text, the data structures declared in the main procedure are those of the di-
agram. Integers are used as pointers into the words array. The procedures are completely parameterless, and
the data structures are made available to the procedures via normal global variable access. Note that the docu-
ment suggests the possibility of separate compilation. Submitting this Ada skeleton to an Ada compiler (with
no code generation required) serves to have it completely type and interface checked. The particular docu-
ment shown passes all tests with no difficulty using the NYU Ada/Ed compiler [NYU81]. Thus the designer
is confident that when the modules are finally written, they will fit together properly.

However, the designer is dissatisfied with the decomposition because all data are global variables.
Passing data as parameters is supposed to be better. Appendix V shows another Ada program skeleton ex-
pressing a decomposition with the same data structures declared in the main procedure, but with all data
passed as parameters to all other procedures. Observe which parameters are in and which are out in each
procedure. A datum created by a procedure is made an out parameter, and a datum previously created by
another procedure is made an in parameter. This Ada text is completely type and interface checked by the
Ada compiler. Comparing the two versions shows that the advice about preferability of globals notwithstand-
ing, the program that has all procedures accessing all of its data as globals is cleaner.

Appendix VI gives a Stevens, Myers, and Constantine [SMC74] diagram for the decomposition
shown in Appendix IV. This diagram is directly deducible from the partial ordering induced by the separate
compilation directives in the program skeleton.

4 Second Decomposition

At this point the designer thinks about the ‘‘number of design decisions which are questionable and
likely to change under many circumstances’’, and deduces that in fact both realizations of the first decompo-
sition are bad. For example, a change to the location or format of the words causes all modules to be rewrit-
ten. As a consequence the designer comes up with the second decomposition. Parnas’s description is given in
Appendix VII. The modules which consist ‘‘of a number of subroutines or functions which provide the
means by which the user of the module may call on it’’ are recognized as nothing but packages.

The ‘‘more definitive documents’’ describing this second decomposition are the Ada text in Appen-
dix VIII, the Stevens, Myers, and Constantine diagram in Appendix IX, and the specifications given in [Par
72a]. The Ada text consists of a collection of Ada package specification parts and procedure skeletons ex-
pressing this decomposition. This Ada code passes through the compiler with no type and interface errors.
Thus the designer is certain that there will not be any future interfacing surprises. The diagram of Appendix
IX can be deduced from the separate compilation partial order induced by the withs and the separates The
notation for packages used here is new. The box for a package contains in the top half one sub box for each
visible identifier offered by the package, e.g. type, constant, procedure, and function names, and the bottom
half contains the name of the whole package module. A directed arc may be directed at a specific sub box (in-
dicated by an arrow head on the arc) or at the whole box (indicated by an asterisk on the arc) according to the
level of the decomposition.

Consider the behavioral specifications of [Par 72a]. Given that these specifications were written
long before Ada was even a green idea, it is amazing how well they match the packages. The sections of the
behavioral specifications correspond one-for-one with the packages, The (non-mapping and thus externally
visible) functions of the behavioral specification correspond one-for-one with the exported subprograms of
the packages. Of course, the packages were designed with this correspondence in mind; the point is that it is
so easy to preserve this correspondence. In fact, one could attach each piece of the behavioral specification as
a comment defining the semantics of the corresponding Ada text. This commentary thus provides semantic
specification of the packages and serves as a contract for the implementors and users of the packages.

Parnas compares the two decompositions by saying that ... ‘‘Both schemes will work. The first is
quite conventional [at least it was in 1972], the second has been used successfully in a class project ... [That
is, each module was assigned to different people to be programmed and tested separately. Then complete pro-
grams were formed out of different combinations of the separate modules. About 20% of the complete pro-
grams worked reflecting that only about 20% of the individual modules failed to work properly [Par72c].]
Both will reduce the programming to the relatively independent programming of a number of small, manage-
able, programs.’’

310 D.M. Berry

What Parnas is claiming is that the specification given so far for the second decomposition is
sufficient for separate people to go off and separately program each piece and expect that the pieces will fit
together. Each programmer can chose his or her own implementation for the data structures of his or her
package. This property does not hold for the first decomposition. That decomposition requires explicit agree-
ment as to the implementing data structures before each piece can be given to separate programmers. Imagine
the chaos if each programmer decided on the data structures for his or her own module. Thus in the first case,
the presence of data structure declarations in the ‘‘more definitive documents’’ is critical. In second case, the
document is sufficiently definitive without any data structure declarations. This difference is what is meant
by the claim that the second decomposition is doing a better job of hiding implementation details. Another
way to see this is that in the first decomposition, the data structures are part of the interface, but in the second
they are not even visible in the parts defining the interface.

4 Improvements

Now closer examination of the skeletons show that the operations offered by the
CIRCULAR_SHIFTS package are not sufficient to produce the sophisticated output such as shown in Appen-
dix I. The call to ith yields a circular shift line index. However, that line is to be printed in its original order
with the first word of the circular shift in the center of the output page. The first word of the circular shift is
easy to identify with the given operations, but there is no way to identify the original line or its first word (ei-
ther suffices). Thus at least one operation to do either of the above is necessary. In order to allow either, the
designer adds both. The first is an function line_index such that line_index(i) is the index of the line whose
circular shift is the ith. The second is shift such that shift(i) is the number of words that were circularly shifted
to arrive at the ith circular shift line. Interestingly, these were already internal (mapping) functions of
Parnas’s specification, but with the names HIP and SHI respectively. These improvements are included in the
Ada code of Appendix XI. The improvements are in the lines marked by a vertical bar on the left margin.
This code also went through the Ada compiler with no type or interface errors.

5 Optimization of Implementations

Parnas continues his analysis. ‘‘Note first that the two decompositions may share all data represen-
tations and access methods. Our discussion is about two different ways of cutting up what may be the same
object. A system built according to decomposition 1 could conceivably be identical after assembly to one
built according to decomposition 2. The differences between the two alternatives are in the way that they are
divided into work assignments, and the interfaces between modules. The algorithms used in both cases might
be identical.’’

One of the problems with the second decomposition is that it could have a very poor performance.
Practically everything is done with a procedure call. In fact what the first decomposition does by a direct ac-
cess to a particular element of one of the memory arrays the second does by a call to a function whose only
effect is to return the value of the particular array element. This call overhead can be eliminated if procedure
calls are expanded in-line. This in-line expansion can be done by the use of an editor working on the program
text prior to a compilation or by use of a language feature that specifies in-line compilation. The latter is to be
preferred because then the program text never changes from the fully modular form. That is the modules can
be left in the best form for dealing with the later modifications and enhancements gracefully, while at any
time code can be generated which is in the best form for performance.

Thus, what Parnas is referring to is that by judicious choice of data structures and in-line expansion
of procedure calls, the code for the two decomposition can be made identical. So the designer takes the
decomposition of Appendix VIII together with the improvements of section 4 and adds bodies to the pack-
ages giving data structures to implement the abstractions. The data structures chosen are precisely those of
the first decomposition. (The variable words has to be changed so that it does not clash with the function
words returning the number of words in a given line. The variable is now called the_words.) Note that
the_words array and the line_index table are in the body of the LINE_STORAGE package, the cs_line_index
table is in the body of the CIRCULAR_SHIFTS package, and the alphed_cs_line_index table is in the body of
the ALPHABETIZER package. In addition, a number of the procedures are given the pragma IN_LINE in
order to indicate to the compiler that calls to them are to be expanded in line. If the compiler obeys this
pragma, there is no calling overhead in each case. The procedures selected for this treatment are those
whose bodies are likely to be small and which are doing the direct accesses to the arrays that occur in the first
decomposition. The resulting Ada code is in Appendix XI. Observe that the package bodies contain dummy
bodies for each of the procedures; without this the compiler refuses to accept the code and does none of the

On the Application of Ada and its Tools 311

desired type and interface checking.

The semantics of Ada say that the IN_LINE pragma, as any other pragma, does not have to be
obeyed by the compiler, and in fact the compiler used to check the programs in this paper does not. When the
latest Ada code is put through the compiler, there are six semantic errors, all of them complaining that the
compiler does not accept the IN_LINE pragma.*

In any case, it is clear that by playing with the bodies of the procedures that are to be compiled in-
line and with which procedures are to be compiled in-line, one can get the code generated by the second
decomposition to be as close to that of the first as desired. It is interesting to see that in-line expansion has
the effect of bringing a data structure declared inside one module into another module to be accessed as if it
were declared inside the other module. For the programmer to do so would be a serious breach of modularity
and a scope error as well. However, once the compiler has verified that the programmer has done nothing to
violate scope and thus nothing to violate modularity, it can go ahead and violate both left and right to achieve
efficiency!

6 Exceptions

Parnas gives for each module a list of exceptions that may be raised if certain conditions are not
met on the call of the various functions of the modules. These exceptions amount to constraint errors on the
abstraction. These exceptions can be expressed as Ada exceptions. Appendix XII shows the exception de-
clarations to be added to each package. Then the callers of the various routines may provide handlers to
respond to the conditions as Parnas suggests should be done.

7 Makefile

From the separate compilation partial order given in the Ada code, it is possible to derive a makefile
[Fel78] which can be used to cause recompilation of only the parts affected by a given change. The makefile
resulting from the code of Appendix XI is given as Appendix XIII. The makefile assumes that the
specification part and the body of a package occupy the same file.

8 Conclusions

This paper has gone through a simulated top-level design using Parnas’s information hiding metho-
dology. Ada was used as the means to express design decisions and as the medium for giving much of the
definitive documentation needed to be able to carry out the work. The human programmers are still required
to think and the use of Ada does not reduce that need. What the use of Ada and its tools does is to provide a
means for checking the consistency of the design decisions and their expression to the extent possible without
going so far as formal verification. With the type and interface checking that the Ada compiler can do, the
designer is certain the the modules fit together and that major interface errors will not show up later. It is un-
fortunate and stupid if easily detected error remain in a design to later completely invalidate what would oth-
erwise be a good design.

Ada has been used more as a module interconnection language (MIL) [DK76, Tho76, Pen81, PB79,
PBE81] rather than as a program design language [CFG75, CG75]. The modular decomposition and inter-
face have been precisely specified while the contents of the modules have been left mostly unspecified. In
the case of a MIL, the precision of full Ada is appreciated and is in fact needed in order that an Ada compiler
do the proper checking. It is this author’s belief, the existing examples to the contrary [Wau80], that full Ada
does not make a good program design language. A program design language should permit the use of
parameterized natural language sentences with recognition and type checking of declared words that happen
to appear as parameters in the midst of these sentences [BYY83]. Neither Ada nor its compilers can support
this feature. A properly designed program design language such as SDP [Yav80] is better. SDP has
parameterized natural language sentences, optional type checking, and the ability to define abstract data types
[LZ74] so that the data type definitions do not end up being too detailed for a design document.

hhhhhhhhhhhhhhhh
* Clearly, the ability to expand procedures in-line is critical to the success of the methodology in producing
efficient, useable code. Therefore, this author recommends not buying any compiler that does not accept it.
Let the free market forces dictate what pragmas are obeyed!

312 D.M. Berry

This exercise has pointed out a number of requirements for Ada tools.

1. An option should exist in Ada compilers to allow it to do full type checking when it is presented
with packages that have private types but no private parts describing their implementation. The
private part is not needed for the type and interface checking and it is nice to be able to check types
and interfaces out completely before implementations are decided on. Apparently the NYU
Ada/Ed compiler incorrectly behaves this way. This is good, but is non-standard and thus can be
available only as an option.

2. It seems that the in-line expansion capability is absolutely essential for use of modern design
methodologies to produce efficient programs and should not be optional.

3. There should exist tools to check at least the interface consistency of an Ada module and its formal
specification. It is stupid not to have checked this and to discover later that the specification is of a
close but nevertheless different module. Such a simple checker would help prevent this occurrence.
Another idea is to embed the specification into Ada so that the Ada syntax for procedure and pack-
age interfaces is accepted as giving the interface of specification procedures and modules. This is
the approach of Anna [KL80].

Finally, note that while this paper has demonstrated the use of Ada and its tools with one particular
methodology of software system design, it is the author’s firm belief that Ada and its tools are also applicable
to other methodologies as well. For example, the author has used Ada and its tools with Composite Design
and Analysis [SCM74] as well and is incorporating Ada and its tools into the SARA System Design Metho-
dology [Pen79, Raz77, RVB80, RVE79, REFRSV79, Sil81, VOR80, VE84]. The point is that almost all of
the methodologies are doing programming-in-the-large [DK76] and as such are dealing with the module as
the unit of discourse. Ada has nice linguistic features for dealing with modules and its tools are likewise con-
versant with modules [Bry84]. This author urges the reader to try using Ada and its tools with his or her
favorite methodology.

Bibliography

[ADA82] ‘‘Reference Manual for the Ada Programming Language’’, U. S. Department of Defense, MIL-STD-
1815, 1982.

[Bry83] ‘‘On the Application of Ada and its Tools to the Information Hiding Decomposition Methodology for
the Design of Software Systems’’, Computer Science Department, UCLA, August 1983.

[Bry84] Berry, D.M. ‘‘On the Use of Ada as a Module Interconnection Language’’, Proceedings of the Seven-
teenth Annual Hawaii International Conference on Systems Science, Honululu, Hawaii, January 1984.

[BYY83] Berry, D.M., Yavne, N., and Yavne, M. ‘‘On the Requirements for a Program Design Language:
Parameterization, Abstract Data Typing, and Strong Typing in Software Design Processor (SDP)’’,
Computer Science Dept., UCLA, 1983.

[CFG75] Caine, S.H., Farber, D.J., Gordon, K.E., ‘‘Program Design Language’’, Caine, Farber and Gordon, Inc.,
March 1975.

[CG75] Caine, S.H., Gordon, K.E., ‘‘PDL - A Tool for Software Design’’, AFIPS Proceedings of the 1975 Na-
tional Computer Conference, Vol. 44, May, 1975, pp. 271-276.

[DOD78] ‘‘Department of Defense Requirements for High Order Computer Programming Languages, STEEL-
MAN’’, U. S. Department of Defense, 1978.

[DOD80] ‘‘Department of Defense Requirements for Ada Programming Support Environments, STONEMAN’’,
U. S. Department of Defense, 1980.

[DK76] De Remer, F. and Kron, H. H. ‘‘Programming-in-the-Large Versus Programming-in-the-Small’’, IEEE
Trans. on SE, SE-2:2, June, 1976.

On the Application of Ada and its Tools 313

[Fel78] Feldman, S. I., ‘‘Make — A program for Maintaining Computer Programs’’, Bell Laboratories, Murray
Hill, NJ, 1978.

[FW82] Freeman, P., Wasserman, A. I., ‘‘Software Development Methodologies and Ada, METHODMAN’’,
U. S. Department of Defense, AJPO, 1982.

[Leh83] Lehman, M. M., Private Communication, 1983.

[LZ74] Liskov, B.H. and Zilles, S. N., ‘‘Programming with Abstract Data Types’’, ACM SIGPLAN NOTICES,
Vol. 9, No. 4, April 1974, pp. 50-60.

[KL80] Krieg-Bru"ckner, B. and Luckham, D. C., ‘‘ANNA: Towards a Language for Annotating Ada Pro-
grams’’, Proceedings of the ACM-SIGPLAN Symposium on the Ada Programming Language, SIG-
PLAN Notices, Vol. 15, No. 11, November, 1980, pp. 128-138.

[Mah??] Maher, A. ‘‘Parnas Decomposition’’, Kearfott Division, Singer, Wayne, NJ, 19??.

[NYU81] ‘‘The NYU Ada/Ed System, An Overview’’, Courant Institute, New York University, 1981.

[Par72a] Parnas, D. L., ‘‘A Technique for Software Module Specifications with Examples’’, Comm. ACM, Vol.
15, No. 5, May, 1972, pp. 330-336.

[Par72b] Parnas, D. L., ‘‘On the Criteria to be Used in Decomposing Systems into Modules’’, Comm. ACM, Vol.
15, No. 12, Dec., 1972, pp. 1053-1058.

[Par72c] Parnas, D. L., ‘‘Some Conclusions from an Experiment in Software Engineering Techniques’’,
Proceedings of the FJCC, Vol. 41, 1972, pp. 325-329.

[Pen79] Penedo, M. H., ‘‘SL1 System Reference Manual’’, Internal Memorandum #190a, Revised UCLA, Au-
gust 1979.

[Pen81] Penedo, M. H., ‘‘The Use of a Module Interconnection Description in the Synthesis of Reliable
Software Systems’’, Ph. D. Dissertation, UCLA, Report No. CSD-810115, January, 1981.

[PB79] Penedo, M.H. and D. Berry, ‘‘The Use of a Module Interconnection Language in the SARA System
Design Methodology’’, Proceedings of the 4th International Conference on Software Engineering,
Munich, Germany, September 1979.

[PBE81] Penedo, M., D. Berry and G. Estrin, ‘‘An Algorithm to Support Code-Skeleton Generation for Con-
current Systems’’, IEEE 5th International Conference on Software Engineering, March 1981.

[Raz77] Razouk, R., ‘‘The GMB Simulator System Reference Manual’’, UCLA, July 27, 1977.

[RVB80] Razouk, R., M. Vernon and M. Brewer, ‘‘Control-Flow Analyzer Reference Manual’’, UCLA, Febru-
ary 8, 1980.

[RVE79] Razouk, R., M. Vernon and G. Estrin, ‘‘Evaluation Methods in SARA -- The Graph Model Simulator’’,
Proceedings of the Conference on Simulation, Measurement and Modeling of Computer Systems, Au-
gust 1979, pp. 189-206.

[REFRSV79] Ruggiero, W., G. Estrin, R. Fenchel, R. Razouk, S. Schwabe and M. Vernon, ‘‘Analysis of Data Flow
Models Using the SARA Graph Model of Behavior’’, AFIPS Conference Proceedings, National Com-
puter Conference, Anaheim, CA, June 1979.

[Sil81] Silva, E. ‘‘New User’s Guide’’, Internal Memorandum #205, UCLA, January 1981.

[SMC74] Stevens, W. P., Myers, G. F., and Constantine, L. L., ‘‘Structured Design’’, IBM Systems Journal, Vol.
13, No. 2, 1974, pp. 115-139.

314 D.M. Berry

[Tho76] Thomas, J. W., ‘‘Module Interconnection in Programming Systems Supporting Abstraction’’, Ph. D.
Dissertation, Brown University, Providence, RI, April, 1976.

[UK81] Easteal, B. R., Pickett, M. J., Denvir, B. T., Jackson, M. I., Dignan, A. J., Taylor, W. J., Davis, N. W.,
Tate, A. R., and Harwood, W., ‘‘Report of the Study of an Ada Based System Development Methodol-
ogy’’, U.K. Department of Industry, 1981.

[VOR80] M. Vernon, W. Overman and R. Razouk, ‘‘GMB PL1 Preprocessor Reference Manual’’, UCLA, Janu-
ary 18, 1980.

[VE83] Vernon, M. and Estrin, G. ‘‘The UCLA Graph Model of Behavior: Support for Performance-Oriented
Design’’, These proceedings, 1984.

[Wau80] Waugh, D. W. ‘‘Ada as a Design Language’’, IBM Software Engineering Exchange Vol. 3, No. 1, Oc-
tober, 1980.

[Yav80] Yavne, N. ‘‘Software Development Processor User Reference Manual’’, Mayda Software Engineering,
P. O. B. 1389, Rehovot, Israel, 1980.

Appendix I
Make - A Program for Maintaining Computer Programs [Fel78]

Make - A Program for Maintaining Computer Programs [Fel78]
Reference Manual for the Ada Programming Language [ADA81]

The NYU Ada/Ed System, An Overview [NYU81]
The NYU Ada/Ed System, An Overview [NYU81]

Make - A Program for Maintaining Computer Programs [Fel78]
Program Design Language [CFG75]
Software Development Processor User Reference Manual [Yav80]

Make - A Program for Maintaining Computer Programs [Fel78]
Reference Manual for the Ada Programming Language [ADA81]

The Ina Jo Reference Manual [LSSE80]
The Ina Jo Reference Manual [LSSE80]

Program Design Language [CFG75]
Reference Manual for the Ada Programming Language [ADA81]

Make - A Program for Maintaining Computer Programs [Fel78]
Make - A Program for Maintaining Computer Programs [Fel78]

Software Development Processor User Reference Manual [Yav80]
The Ina Jo Reference Manual [LSSE80]

Reference Manual for the Ada Programming Language [ADA81]
The NYU Ada/Ed System, An Overview [NYU81]

The NYU Ada/Ed System, An Overview [NYU81]
Software Development Processor User Reference Manual [Yav80]

Program Design Language [CFG75]
Make - A Program for Maintaining Computer Programs [Fel78]

Reference Manual for the Ada Programming Language [ADA81]
Make - A Program for Maintaining Computer Programs [Fel78]

Software Development Processor User Reference Manual [Yav80]
The Ina Jo Reference Manual [LSSE80]

Reference Manual for the Ada Programming Language [ADA81]
Software Development Processor User Reference Manual [Yav80]

The NYU Ada/Ed System, An Overview [NYU81]
Reference Manual for the Ada Programming Language [ADA81]

The Ina Jo Reference Manual [LSSE80]
The NYU Ada/Ed System, An Overview [NYU81]

Software Development Processor User Reference Manual [Yav80]

Appendix II

Modularization 1:

Module 1: Input. This module reads the data lines from the input medium and stores them in core for process-
ing by the remaining modules. The characters are packed four to a word, and an otherwise unused character is used to indi-
cate the end of a word. An index is kept to show the starting address of each line.

Module 2: Circular Shift. This module is called after the input module has completed its work. It prepares an
index which gives the address of the first character of each circular shift, and the original index of the line in the array made
up by module 1. It leaves its output in core with words in pairs (original line number, starting address).

Module 3: Alphabetizing. This module takes as input the arrays produced by module 1 and 2. It produces an
array in the same format as that produced by module 2. In this case, however, the circular shifts are listed in another order
(alphabetically).

Module 4: Master Control. This module does little more than control the sequencing among the other four
modules. It may also handle error messages, space allocation, etc.

On the Application of Ada and its Tools 315

Appendix III

words
__
! | | | ! | | | ! | | | ! | | | ! | | | ! | | | ! | | | ! | | | ! | | | ! | | | !
!T|h|e|%!I|n|a|%!J|o|%|R!e|f|e|r!e|n|c|e!%|M|a|n!u|a|l|%!O|n|%|t!h|e|%|C!r|i|t|e!.....
!_|_|_|_!_|_|_|_!_|_|_|_!_|_|_|_!_|_|_|_!_|_|_|_!_|_|_|_!_|_|_|_!_|_|_|_!_|_|_|_!
A A A A A A A A
| | | | | | | |
| | | +-------------+ +---+ | | |
| | +-----------------+ | | +-----------|-----|-------+
| +-----------------------+ | | | +-|-----------|-----+
| +------------------|-|-|-|-+-|-|-----------+
+----------+-|----------------+ | | | | | | |
__________ | | __________ | | | | | | | | __________
| | | | | | | | | | | | | | | | | | |
| 1 | 0 |-+ | | 1 | 0 |-+ | | | | | | | | 52 | 973 |..........
|____|_____| | |____|_____| | | | | | | | |____|_____|
| | | | | | | | | | | | | | | | |
| 2 | 28 |---+ | 1 | 4 |---+ | | | | | | | 33 | 568 |..........
|____|_____| |____|_____| | | | | | | |____|_____|
| | | | | | | | | | | | | | |
| 3 | 90 |..... | 1 | 8 |-----+ | | | | | | 77 |1464 |..........
|____|_____| |____|_____| | | | | | |____|_____|
| | | | | | | | | | | | | |
| 4 | ??? |..... | 1 | 11 |-------+ | | | | | 46 | 729 |..........
____	_____		____	_____						____	_____
			1	21	---------+						
			____	_____							

| | | | | |
line_index | 2 | 28 |-----------+ | | alphed_cs_line_index

____	_____		
2	31	-------------+	
____	_____		
2	35	---------------+	
____	_____		
		cs_line_index	
2	???	
____	_____		

Appendix IV

procedure kwic is
use SYSTEM;
type PAIR is record

line_no:INTEGER;
character_no:INTEGER;

end record;
type INDEX_TABLE is array

(INTEGER range <>) of PAIR;
no_of_characters: constant INTEGER:=

MAX_INT;

words:STRING(1..no_of_characters);
line_index:INDEX_TABLE(1..no_of_characters);
cs_line_index:INDEX_TABLE

(1..no_of_characters);
alphed_cs_line_index:INDEX_TABLE

(1..no_of_characters);

procedure input is separate;
procedure make_circular_shifts is separate;
procedure alphabetize is separate;
procedure output is separate;

begin

316 D.M. Berry

input;
make_circular_shifts;
alphabetize;
output;

end kwic;

separate(kwic)
procedure input is
begin

null;
end;

separate(kwic)
procedure make_circular_shifts is
begin

null;
end;

separate(kwic)
procedure alphabetize is
begin

null;
end;

separate(kwic)
procedure output is
begin

null;
end;

Appendix V

procedure kwic is
use SYSTEM;
type PAIR is record

line_no:INTEGER;
character_no:INTEGER;

end record;
type INDEX_TABLE is array

(INTEGER range <>) of PAIR;
no_of_characters: constant INTEGER:=

MAX_INT;

words:STRING(1..no_of_characters);
line_index:INDEX_TABLE

(1..no_of_characters);
cs_line_index:INDEX_TABLE

(1..no_of_characters);
alphed_cs_line_index:INDEX_TABLE

(1..no_of_characters);

procedure input(words:out STRING
(1..no_of_characters);

line_index:out INDEX_TABLE
(1..no_of_characters))

is separate;

procedure make_circular_shifts(words:in
STRING(1..no_of_characters);

line_index:in INDEX_TABLE
(1..no_of_characters);

cs_line_index:out INDEX_TABLE
(1..no_of_characters))

is separate;

On the Application of Ada and its Tools 317

procedure alphabetize(words:in STRING
(1..no_of_characters);

line_index:in INDEX_TABLE
(1..no_of_characters);

cs_line_index:in INDEX_TABLE
(1..no_of_characters);

alphed_cs_line_index:out INDEX_TABLE
(1..no_of_characters))

is separate;

procedure output(words:in STRING
(1..no_of_characters);

line_index:in INDEX_TABLE
(1..no_of_characters);

cs_line_index:in INDEX_TABLE
(1..no_of_characters);

alphed_cs_line_index:in INDEX_TABLE
(1..no_of_characters))

is separate;

begin
input(words,line_index);
make_circular_shifts(words,line_index,

cs_line_index);
alphabetize(words,line_index,cs_line_index,

alphed_cs_line_index);
output(words,line_index,cs_line_index,

alphed_cs_line_index);

end kwic;

separate(kwic)
procedure input(words:out STRING

(1..no_of_characters);
line_index:out INDEX_TABLE

(1..no_of_characters))
is

begin
null;

end;

separate(kwic)
procedure make_circular_shifts(words:in STRING

(1..no_of_characters);
line_index:in INDEX_TABLE

(1..no_of_characters);
cs_line_index:out INDEX_TABLE

(1..no_of_characters))
is

begin
null;

end;

separate(kwic)
procedure alphabetize(words:in STRING

(1..no_of_characters);
line_index:in INDEX_TABLE

(1..no_of_characters);
cs_line_index:in INDEX_TABLE

(1..no_of_characters);
alphed_cs_line_index:out INDEX_TABLE

(1..no_of_characters))
is

begin
null;

end;

318 D.M. Berry

separate(kwic)
procedure output(words:in STRING

(1..no_of_characters);
line_index:in INDEX_TABLE

(1..no_of_characters);
cs_line_index:in INDEX_TABLE

(1..no_of_characters);
alphed_cs_line_index:in INDEX_TABLE

(1..no_of_characters))
is

begin
null;

end;

Appendix VI

| |
| KWIC |
|_____________|

| | | |
______________________| | | |___________________
| ________| |_______ |
| | | |

___V___ _________V________ _______V______ ____V___
INPUT		CIRCULAR_SHIFTER		ALPHABETIZER		OUTPUT
_______		__________________		______________		________

Appendix VII

Modularization 2:

Module 1: Line Storage. This module consists of a number of functions or subroutine which provide the
means by which the user of the module may call on it. The function call CHAR(r,w,c) will have as value an integer
representing the cth character in the rth line, wth word. A call such as SETCHAR(r,w,c,d) will cause the cth character in the
wth word of the rth line to be the character represented by d (i.e. CHAR(r,w,c)=d). WORDS(r) returns as value the number
of words in line r. There are certain restrictions in the way that these routines may be called; if these restrictions are violat-
ed the routines "trap" to an error-handling subroutine which is to be provided by the users of the routine. Additional rou-
tines are available which reveal to the caller the number of words in any line, the number of lines currently stored, and the
number of characters in any word. Functions DELINE and DELWRD are provided to delete portions of lines which have
already been stored. A precise specification ... has been given in [Par 72a] and we will not repeat it here.

Module 2: INPUT. This module reads the original lines from the input media and calls the line storage module
to have them stored internally.

Module 3: Circular Shifter. The principal functions provided by this module are analogs of functions provid-
ed in module 1. The module creates the impression that we have created a line holder containing not all of the lines but all
of the circular shifts of the lines. Thus the function call CSCHAR(l,w,r) provides the value representing the cth character in
the wth word of the lth circular shift. It is specified that (1) if i<j then the shifts of line i precede the shifts of line j, and (2)
for each line the first shift is the original line, the second shift is obtained by making a one-word rotation to the first shift,
etc. A function CSSETUP is provided which must be called before the other functions have their specified values. For a
more precise specification of such a module see [Par 72a].

Module 4: Alphabetizer. This module consists principally of two functions. One, ALPH, must be called be-
fore the other will have a defined value. The second, ITH, will serve as an index. ITH(i) will give the index of the circular
shift which comes ith in the alphabetical ordering. Formal definitions of these functions are given [in Par 72a].

Module 5: Output. This module will give the desired printing of set of lines or circular shifts.

Module 6: Master Control. Similar in function to the modularization above.

On the Application of Ada and its Tools 319

Appendix VIII

package LINE_STORAGE is
function char(l,w,c:INTEGER)return

CHARACTER;
procedure setchar(l,w,c:INTEGER;

d:CHARACTER);
function chars(l,w:INTEGER)return INTEGER;
function words(l:INTEGER)return INTEGER;
function lines return INTEGER;
procedure delword(l,w:INTEGER);
procedure deline(l:INTEGER);

end LINE_STORAGE;

with LINE_STORAGE;
use LINE_STORAGE;
package CIRCULAR_SHIFTS is

procedure cssetup;
function cschar(l,w,c:INTEGER)return

CHARACTER;
function cschars(l,w:INTEGER)return INTEGER;
function cswords(l:INTEGER)return INTEGER;
function cslines return INTEGER;

end CIRCULAR_SHIFTS;

with CIRCULAR_SHIFTS;
use CIRCULAR_SHIFTS;
package ALPHABETIZER is

procedure alph;
function ith(i:INTEGER)return INTEGER;

end ALPHABETIZER;

with ALPHABETIZER;
use ALPHABETIZER;
procedure kwic is

procedure input is separate;
procedure output is separate;

begin
input;
alph;
output;

end;

with LINE_STORAGE;
use LINE_STORAGE;
separate(kwic)
procedure input is

l,w,c:INTEGER;
d:CHARACTER;

begin
-- read in characters one by one into d,
-- breaking into words and lines and setting
-- the line, word, and character indices
-- l,w, and c appropriately and do
setchar(l,w,c,d);
-- for each

end INPUT;

with ALPHABETIZER,CIRCULAR_SHIFTS,TEXT_IO;
use ALPHABETIZER,CIRCULAR_SHIFTS,TEXT_IO;
separate(kwic)
procedure output is

l:INTEGER;
begin

320 D.M. Berry

for i in 1..cslines() loop
l:=ith(i);
for w in 1..cswords(l) loop

for c in 1..cschars(l,w) loop
-- in the proper place for the fancy
-- output do
put(cschar(l,w,c));

end loop;
end loop;

end loop;
end OUTPUT;

Appendix IX

| |
| KWIC |
|_____________|

| | |
______________________| | |___________________
| ___| |
| | |

___V___ | ____V___
INPUT			OUTPUT
_______			________

| | ___________________| |
| | | ___________|
| __V_______V___ |
	ALPH	ITH	
	______	_______	
	ALPHABETIZER		

_____________________*_____________*____________			
	CSSETUP	CSCHAR	CSCHARS
	_________	________	_________
	CIRCULAR_SHIFTS		
	__		

__V________________________*_______________________________
SETCHAR	CHAR	CHARS	WORDS	LINES	DELWORD	DELINE
_________	______	_______	_______	_______	_________	________
LINE_STORAGE						

Appendix XI

package LINE_STORAGE is
p1:constant INTEGER;
p2:constant INTEGER;
p3:constant INTEGER;

function char(l,w,c:INTEGER)return
CHARACTER;

procedure setchar(l,w,c:INTEGER;
d:CHARACTER);

function chars(l,w:INTEGER)return INTEGER;
function words(l:INTEGER)return INTEGER;
function lines return INTEGER;
procedure delword(l,w:INTEGER);
procedure deline(l:INTEGER);

| pragma IN_LINE(char,setchar);

On the Application of Ada and its Tools 321

end LINE_STORAGE;

package body LINE_STORAGE is
use SYSTEM;
type PAIR is record

line_no:INTEGER;
character_no:INTEGER;

end record;
type INDEX_TABLE is array

INTEGER range <>) of PAIR;
no_of_characters: constant INTEGER:=

MAX_INT;

the_words:STRING(1..no_of_characters);
line_index:INDEX_TABLE(1..no_of_characters);

function char(l,w,c:INTEGER)return
CHARACTER is begin null; end;

procedure setchar(l,w,c:INTEGER;
d:CHARACTER) is begin null; end;

function chars(l,w:INTEGER)return INTEGER
is begin null; end;

function words(l:INTEGER)return INTEGER
is begin null; end;

function lines return INTEGER
is begin null; end;

procedure delword(l,w:INTEGER)
is begin null; end;

procedure deline(l:INTEGER) is begin null; end;
pragma IN_LINE(char,setchar);

end LINE_STORAGE;

with LINE_STORAGE;
use LINE_STORAGE;
package CIRCULAR_SHIFTS is

p4:constant INTEGER;

procedure cssetup;
function line_index(l:INTEGER)return INTEGER;
function shift(l:INTEGER)return INTEGER;
function cschar(l,w,c:INTEGER)return

CHARACTER;
function cschars(l,w:INTEGER)return INTEGER;
function cswords(l:INTEGER)return INTEGER;
function cslines return INTEGER;

| pragma IN_LINE(cssetup,cschars);
end CIRCULAR_SHIFTS;

package body CIRCULAR_SHIFTS is
use SYSTEM;
type PAIR is record

line_no:INTEGER;
character_no:INTEGER;

end record;
type INDEX_TABLE is array

(INTEGER range <>) of PAIR;
no_of_characters: constant INTEGER:=

MAX_INT;

cs_line_index:INDEX_TABLE
(1..no_of_characters);

procedure cssetup is begin null; end;
function line_index(l:INTEGER)return INTEGER

is begin null; end;

322 D.M. Berry

function shift(l:INTEGER)return INTEGER
is begin null; end;

function cschar(l,w,c:INTEGER)return
CHARACTER is begin null; end;

function cschars(l,w:INTEGER)return INTEGER
is begin null; end;

function cswords(l:INTEGER)return INTEGER
is begin null; end;

function cslines return INTEGER
is begin null; end;

pragma IN_LINE(cssetup,cschars);

end CIRCULAR_SHIFTS;

with CIRCULAR_SHIFTS;
use CIRCULAR_SHIFTS;
package ALPHABETIZER is

procedure alph;
function ith(i:INTEGER)return INTEGER;

| pragma IN_LINE(ith);
end ALPHABETIZER;

package body ALPHABETIZER is
use SYSTEM;
type PAIR is record

line_no:INTEGER;
character_no:INTEGER;

end record;
type INDEX_TABLE is array

(INTEGER range <>) of PAIR;
no_of_characters: constant INTEGER:=

MAX_INT;

alphed_cs_line_index:INDEX_TABLE
(1..no_of_characters);

procedure alph is begin null; end;
function ith(i:INTEGER)return INTEGER

is begin null; end;
pragma IN_LINE(ith);

end ALPHABETIZER;

with ALPHABETIZER;
use ALPHABETIZER;
procedure kwic is

procedure input is separate;
procedure output is separate;

begin
input;
alph;
output;

end;

with LINE_STORAGE;
use LINE_STORAGE;
separate(kwic)
procedure input is

l,w,c:INTEGER;
d:CHARACTER;

begin
-- read in characters one by one into d,
-- breaking into words and lines and setting
-- the line, word, and character indices
-- l,w, and c appropriately and do
setchar(l,w,c,d);

On the Application of Ada and its Tools 323

-- for each
end INPUT;

with ALPHABETIZER,CIRCULAR_SHIFTS,
LINE_STORAGE,TEXT_IO;

use ALPHABETIZER,CIRCULAR_SHIFTS,
LINE_STORAGE,TEXT_IO;

separate(kwic)
procedure output is

l,k,v:INTEGER;
begin

for i in 1..cslines() loop
l:=ith(i);

| k:=line_index(l);
| for w in 1..words(l) loop
| for c in 1..chars(l,w) loop
| v:=shift(l);
| -- observing that the v th word is the
| -- first word of the kth circular shift
| -- which is ith in the alphabetical ordering
| -- and is a shift of the l th line,
| -- in the proper place for the fancy
| -- output do
| put(char(l,w,c));
| end loop;
| end loop;

end loop;

for i in 1..lines() loop
for w in 1..words(l) loop

delword(l,w);
end loop;
deline(l);

end loop;

end OUTPUT;

Appendix XII

package LINE_STORAGE is
...
ERLGEL:exception;
ERLGNL:exception;
ERLGEW:exception;
ERLGNW:exception;
ERLGEC:exception;
ERLGNC:exception;
ERLSEL:exception;
ERLSBL:exception;
ERLSEW:exception;
ERLSBW:exception;
ERLSEC:exception;
ERLSBC:exception;
ERLCNL:exception;
ERLCNW:exception;
ERLWNL:exception;
ERLDLE:exception;
ERLDWE:exception;
ERLDLL:exception;

end LINE_STORAGE;

with LINE_STORAGE;
use LINE_STORAGE;

324 D.M. Berry

package CIRCULAR_SHIFTS is
...
ERCNES:exception;
ERCIND:exception;
ERCINL:exception;
ERCSND:exception;
ERCSNL:exception;
ERCGND:exception;
ERCGNL:exception;
ERCGNW:exception;
ERCGNC:exception;
ERCCND:exception;
ERCCNL:exception;
ERCCNW:exception;
ERCWND:exception;
ERCWNL:exception;
ERCLND:exception;

end CIRCULAR_SHIFTS;

with CIRCULAR_SHIFTS;
use CIRCULAR_SHIFTS;
package ALPHABETIZER is

...
ERAEBL:exception;
ERAEBW:exception;
ERAWBL:exception;
ERAWBW:exception;
ERALEL:exception;
ERAALB:exception;
ERAINL:exception;
ERAIND:exception;

end ALPHABETIZER;

Appendix XIII

The following assumes the existence of an Ada compiler following UNIX naming conventions and that base
of a file name (the part before the ‘‘.’’) is the same as the name of the contained module.

kwic: kwic.ada input.o ALPHABETIZER.o output.o
ada -o kwic kwic.ada input.o ALPHABETIZER.o output.o

input.o: input.ada LINE_STORAGE.o
ada -o input.o input.ada LINE_STORAGE.o

output.o: output.ada ALPHABETIZER.o CIRCULAR_SHIFTS.o LINE_STORAGE.o
ada -c output.o output.ada ALPHABETIZER.o CIRCULAR_SHIFTS.o \

LINE_STORAGE.o
ALPHABETIZER.o: ALPHABETIZER.ada CIRCULAR_SHIFTS.o

ada -o ALPHABETIZER.o ALPHABETIZER.ada CIRCULAR_SHIFTS.o
CIRCULAR_SHIFTS.o: CIRCULAR_SHIFTS.ada LINE_STORAGE.o

ada -o CIRCULAR_SHIFTS.o CIRCULAR_SHIFTS.ada LINE_STORAGE.o
LINE_STORAGE.o: LINE_STORAGE.ada

ada -o LINE_STORAGE.o LINE_STORAGE.ada

hhhhhhhhhhhhhhhh
 UNIX is a trademark of Bell Telephone Laboratories.

