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i. Introduction 

Information structure models (ISMs) [Weg70] 
have been applied successfully to the study of pro- 
gramming languages both in their definitions [LW69, 
Wlk68,70,Wgb70] and in proofs of correctness and 
equivalence of various implementation strategies 
[Luc69,JH70,JL71,MoG71,Bry72]. 

This paper examines briefly the possibility of 
using ISMs to define operating systems (OPSs). We 
give a definition of the notion of ISM and indiclte 
how to use them. Then we describe methods by which 
the process notion has been defined in the past in 
the hope that this will give some idea of the ap- 
plicability of the ISM approach to the definition 
of OPSs. 

2. ISMs 

An ISM describes an abstract machine by giving 
a set of possible snapshots, i.e. abstract memory 
states, a set of initial snapshots, and a trans- 
formation which accomplishes the abstract machine's 
instruction execution cycle. 

Definition: M = (I,Io,F) is an ISM iff 
i. I is a ~ountable set (of snapshots). 
2. 10G I (is the set of initial snapshots). 
3. F is a transformation of the form 

F:I + P(I) = {xlx~I}. 

A computation is a sequence of snapshots start- 
ing with an initial snapshot. The progression 
from a snapshot to its successor is done by the 
transformation. To permit modeling of nondeter- 
ministic, asynchronous phenomena, e.g. interrupts 
and processes, the transformation maps a snapshot 
to a set of possible successors only one of which 
is chosen as the actual successor in a given com- 
putation. 

Definition: Let M = (I,I0,F) be an ISM. Then the 
sequence C = <S1,...,Si,...> (nonempty and possibly 
infinite) is a computation in M iff 
1. For all S i in C, SisI. 
2. S0eI 0 . 
3. For all S i in C with i>0, SieF(Si_l). 
4. C is not a proper initial subsequence of any 

other sequence satisfying i, 2 and 3. 
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The last condition merely does not admit as a 
computation any subeomputation of another computa- 
tion. 

A computation C may be infinite (as most correct 
OPSs are) or finite. If C is finite, then there is 
a snapshot S n in C such that F(S n) = ~ and S n is the 
final snapshot in C. 

One defines a system by giving an ISM defining 
an abstract machine which behaves like the system. 
The abstract machine accepts command language 
streams, programs in the languages supported by the 
system, and data all as input and simulates the sys- 
tem's behavior by having the tramsformation set up 
system structures and modify them according to direc- 
tions from the input. 

In order to give this ISM, an appropriate I, I 0 
and F must be defined. The Vienna Definition Lang- 
uage [LW69] provides a syntactic metalanguage for 
defining I and I 0 and a semantic metalanguage for 
programming F. Very often, for informal or working 
purposes, pictures are used to describe I and I 0 and 
English is used to specify F. We will do the latter 
here. 

One important thing has been learned about 
defining languages with ISMs. This is that a good 
method of defining something is in terms of a typ- 
ical stylized implementation, if for no other reason 
than that this gives an accurate reflection of the 
defined object's properties. With this method it is 
hard to define into something more than is possible 
under an implementation. 

3. Model of Multi-Process Systems 

We now give the basic outlines of two closely 
related models of the process concept which have 
been used and which can be incorporated into an ISM 
definition of an OPS. 

It is assumed for both of these that the snap- 
shot contains two components: 

i. The algorithm: a list of instructions which 
has the potential of growing as new programs are 
added. They may or may not be re-entrant. These 
may be made up of any of the machine instructions 
and primitives supported by the system. 

2. The record of execution: consists of all 
modifiable data cells each of which is located by 
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a unique pointer, may be assigned to or retrieved 
from, and may be allocated and freed by whatever 
mechanism the system supports. 

For both models of processes we follow the ad- 
vice that a good way to define a concept is by some 
implementation of it. A process is usually imple- 
mented by having a data cell (sometimes called a 
process control block) which serves as a virtual 
processing unit. We call this cell the process. 
Its subcells correspond exactly to the registers of 
a processing unit. Because processes are data 
cells it is easy to permit a "potentially un- 
bounded"* number of them. 

The processes are supposed to be running in some 
semblance of parallelism. This is done by having a 
finite number of processing units (usually i or 2) 
multiplex themselves over the usually larger number 
of processes. A processing unit copies the state of 
a process into its registers and executes on behalf 
of this process until interrupted, whereupon the 
processing unit saves its state in that process and 
starts the cycle over with another process. 

In the literature there have been at least two 
ways of modeling processes based on the implementa- 
tion described above. 

i. The processing unit is in the snapshot and 
the process-switching actually takes place [Wlk68]. 

2. No processing unit is in the snapshot and 
process-switching is buried under the transforma- 
tion [Wlk69,Joh71,Bry71]. 

We describe both models by giving, for each, 
extensions to the basic snapshot form and the trans- 
formation. 

3.1 Processing Unit Included in Model 

3.1.1 Snapshot. There is an additional com- 
ponent to the snapshot, namely some finite set of 
processing units. Each of these processing units 
has the same internal structure as the processes 
described below. 

We permit data cells to be allocated to pro- 
cesses - there can be an arbitrary number of 
these. Its components are: 

i. ip (instruction pointer): points to the 
next instruction to be executed by the process 
(ing unit). 

2. ep (environment pointer): points to a data 
cell in the record of execution which constitutes 
the root of a data structure containing the pro- 
cess(ing unit)'s variable data. Any cell may con- 
tain pointers to other cells so that a process may 
be able to access other cells through the cell to 
which its ep points. The set of cells that a pro- 
cess(ing unit) can access through a chain of poin- 
ters originating with its ep is called its accessing 
environment and is the only cells it can use. The 
ep is thus a stylistic representation of base reg- 
isters or a process segment table. 

3. stack: a set of temporaries (registers) ar- 
ranged in stack form for conceptual convenience. 

4. process-id: if this is a process, the process- 
id points to itself; if this is a processing unit 
the proeess-id points to the process it is executing 
for. 

5. status: one of the following four statuses: 
RUNNING means the process is loaded into a pro- 

cessing unit 
READY means the process could be running if there 

were enough processing units 
ASLEEP means the process is not able to Pun now 

for program-directed reasons, e.g. waiting for 
I/O. It can be made ready in future. 

TERMINATED means the process is dead - it cannot 
ever again be made asleep, ready or running. 

A typical snapshot is shown in Figure I. There are 
three processes, Hi, K 2 and H 3. ffl and E2 each 
have private* data regions in their environments 
C1, C 2 and C 3 respectively. If the instructions 
that H 1 and K 2 are executing are re-entrant and the 
only data they access are in the cells pointed to 
by their ep's, then the two processors will not 
clobber each other's data in spite of the fact that 
they are executing the same instruction. Because 
of the pointers in Ci, C 2 and C3, all three proces- 
ses may access C 4. C~ is thus a shared cell. ~3 
is RUNNING and thus the processing unit has been 
loaded from if3" The processing unit's proeess-id 
points to if3" The processing unit used to be an 
exact copy of H3, but since the copying, the pro- 
cessing unit has executed a bit; the ip of the pro- 
cessing unit is further along in the algorithm than 
the process's ip. 

3.1.2 Transformation. The processing units are 
supposed to be running in parallel - although poss- 
ibly at different speeds. Rather than actually 
trying to do things in parallel and take into 
account different rates, for each computation step 

~,~ A S ~ S P ~  RECORD OF EXECUTION ALGORITHM 
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PROCESSING UNIT ~ 

Figure 1. 

=':Actually bounded by finiteness of memory, b~t for 
all practical purposes, it's unbounded. *i'.e., no other process can access them. 
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the transformation nondeterministically picks a 
processing unit and has it go through an instruc- 
tion execution-interrupt cycle. In this cycle it is 
nondeterministically determined whether to execute 
the next instruction or to interrupt. The trans- 
formation is as follows: 

i. Pick any processing unit PU. 
2. Flip coin. 
3. If head then (PU does instruction execution) 

a. Fetch the instruction INST pointed to by 
PU's ip. 

b. Increment PU's ip to point to next in- 
struction. 

c. Execute INST. 
d. End of transformation 

4. If tail then (do process switch) 
a. Copy PU into process El pointed to by 

PU's process-id and change Hl'S status 
to READY. 

b. Select some READY process ~2 (here de- 
fined nondeterministically, but can be 
by some scheduling algorithm). 
Change H2's status to RUNNING and copy 
H 2 into PU. 
End of transformation. 

of the transformation we have a new 

C° 

d. 

At the end 
snapshot. 

3.2 No Processing Unit in Model 

In this model the processing units are thrown 
out, and processes are considered capable of exec- 
uting themselves. This necessitates throwing out 
the distinction between RUNNING and READY processes. 
Both are considered AWAKE. 

3.2.1 Snapshot. The snapshot does not con- 
tain any processing units. Theme is still a poten- 
tially unbounded number of processes allocatable 
in the record of execution cells. The components 
of the process are almost as before: 

~_ ip 2. ep, 3. stack, 4. process-id ' j 

as before 

5. status: there are three: 
AWAKE: all former RUNNING and READY processes 
ASLEEP 
TERMINATED/ as before 

A typical snapshot in this model is given in 
Figure 2. It represents the same state as in the 
snapshot for the other model. 

3.2.2 Transformation. All AWAF~ processes are 
considered to be executing in parallel. Therefore, 
the transformation nondeterministically selects an 
AWAKE process and has that process go through the 
instruction execution cycle: 

i. Pick an AWAKE processor ~ (here defined 
nondeterministically but can be by scheduling 
algorithm). 

2. Fetch instruction INST pointed to by H's ip. 
3. Increment H's ip to point to the next instruc- 

tion. 
4. Execute INST. 
5. End of transformation. 

At the end of the transformation a new snapshot has 
been produced. 

3.3 Observations About These Models of Processes 

i. The first model is a more accurate depiction 
of what happens in an actual implementation, but 
the second is a bit simpler to work with. 

2. Creation of a process in both models is simp- 
ly a matter of allocating a process cell and init- 
ializing it to appropriate values, i.e. an ip, ep, 
status, stack, and a process-id. 

4. Observations About the Use of ISMs 

i. The modeling is primarily qualitative rather 
than quantitative. ISMs are good for exposing the 
structure of objects but they have not yet been used 
for measurement. It is, however, possible to con- 
ceive of space-time estimates being made with ISMs 
in much the same way as with Turing machines. 

2. The modeling can be as fine or as gross as 
desired and can ignore nonessential details; e.g., 
in our modeling of a process we were fairly detail- 
ed about the process and process selection, but we 
glossed over the rest of the snapshot and the in- 
struction-execution phase of the transformation. 
This properTty is useful if one wishes to study a 
particular aspect of a system without being concern- 
ed about the rest of the system. 

5. Future Research Suggestions 

i. Define complete or large portions of OPSs. 

ALGORITHM iii ASLEE~f~ RECORD OF EXECUTION 

i ~ ~ j ,  ook , - - r ' -  ! 

Figure  2. 
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2. Use proof techniques developed for proving 
equivalence of ISMs to help prove things about oper- 
ating systems implementations. 

3. Develop methods of measuring space and time 
requirements ~ la complexity theory with Turing 
machines. 

6. Conclusions 

The brief examples presented in this paper 
attempted to expose some of the issues involved in 
applying the ISM approach to the study of OPSs. 
It is hoped that the feasibility of this has been 
demonstrated and that avenues for further work have 
been suggested. 
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