
TOWARDS ISMs FOR OPSs*

Daniel M. Berry
Computer Science Department

School of Engineering and Applied Science
University of California, Los Angeles

i. Introduction

Information structure models (ISMs) [Weg70]
have been applied successfully to the study of pro-
gramming languages both in their definitions [LW69,
Wlk68,70,Wgb70] and in proofs of correctness and
equivalence of various implementation strategies
[Luc69,JH70,JL71,MoG71,Bry72].

This paper examines briefly the possibility of
using ISMs to define operating systems (OPSs). We
give a definition of the notion of ISM and indiclte
how to use them. Then we describe methods by which
the process notion has been defined in the past in
the hope that this will give some idea of the ap-
plicability of the ISM approach to the definition
of OPSs.

2. ISMs

An ISM describes an abstract machine by giving
a set of possible snapshots, i.e. abstract memory
states, a set of initial snapshots, and a trans-
formation which accomplishes the abstract machine's
instruction execution cycle.

Definition: M = (I,Io,F) is an ISM iff
i. I is a ~ountable set (of snapshots).
2. 10G I (is the set of initial snapshots).
3. F is a transformation of the form

F:I + P(I) = {xlx~I}.

A computation is a sequence of snapshots start-
ing with an initial snapshot. The progression
from a snapshot to its successor is done by the
transformation. To permit modeling of nondeter-
ministic, asynchronous phenomena, e.g. interrupts
and processes, the transformation maps a snapshot
to a set of possible successors only one of which
is chosen as the actual successor in a given com-
putation.

Definition: Let M = (I,I0,F) be an ISM. Then the
sequence C = <S1,...,Si,...> (nonempty and possibly
infinite) is a computation in M iff
1. For all S i in C, SisI.
2. S0eI 0 .
3. For all S i in C with i>0, SieF(Si_l).
4. C is not a proper initial subsequence of any

other sequence satisfying i, 2 and 3.

*This research was supported by the National Sci ~'
ence Foundation under Grants GJ809 and GJ28074.

The last condition merely does not admit as a
computation any subeomputation of another computa-
tion.

A computation C may be infinite (as most correct
OPSs are) or finite. If C is finite, then there is
a snapshot S n in C such that F(S n) = ~ and S n is the
final snapshot in C.

One defines a system by giving an ISM defining
an abstract machine which behaves like the system.
The abstract machine accepts command language
streams, programs in the languages supported by the
system, and data all as input and simulates the sys-
tem's behavior by having the tramsformation set up
system structures and modify them according to direc-
tions from the input.

In order to give this ISM, an appropriate I, I 0
and F must be defined. The Vienna Definition Lang-
uage [LW69] provides a syntactic metalanguage for
defining I and I 0 and a semantic metalanguage for
programming F. Very often, for informal or working
purposes, pictures are used to describe I and I 0 and
English is used to specify F. We will do the latter
here.

One important thing has been learned about
defining languages with ISMs. This is that a good
method of defining something is in terms of a typ-
ical stylized implementation, if for no other reason
than that this gives an accurate reflection of the
defined object's properties. With this method it is
hard to define into something more than is possible
under an implementation.

3. Model of Multi-Process Systems

We now give the basic outlines of two closely
related models of the process concept which have
been used and which can be incorporated into an ISM
definition of an OPS.

It is assumed for both of these that the snap-
shot contains two components:

i. The algorithm: a list of instructions which
has the potential of growing as new programs are
added. They may or may not be re-entrant. These
may be made up of any of the machine instructions
and primitives supported by the system.

2. The record of execution: consists of all
modifiable data cells each of which is located by

46.

a unique pointer, may be assigned to or retrieved
from, and may be allocated and freed by whatever
mechanism the system supports.

For both models of processes we follow the ad-
vice that a good way to define a concept is by some
implementation of it. A process is usually imple-
mented by having a data cell (sometimes called a
process control block) which serves as a virtual
processing unit. We call this cell the process.
Its subcells correspond exactly to the registers of
a processing unit. Because processes are data
cells it is easy to permit a "potentially un-
bounded"* number of them.

The processes are supposed to be running in some
semblance of parallelism. This is done by having a
finite number of processing units (usually i or 2)
multiplex themselves over the usually larger number
of processes. A processing unit copies the state of
a process into its registers and executes on behalf
of this process until interrupted, whereupon the
processing unit saves its state in that process and
starts the cycle over with another process.

In the literature there have been at least two
ways of modeling processes based on the implementa-
tion described above.

i. The processing unit is in the snapshot and
the process-switching actually takes place [Wlk68].

2. No processing unit is in the snapshot and
process-switching is buried under the transforma-
tion [Wlk69,Joh71,Bry71].

We describe both models by giving, for each,
extensions to the basic snapshot form and the trans-
formation.

3.1 Processing Unit Included in Model

3.1.1 Snapshot. There is an additional com-
ponent to the snapshot, namely some finite set of
processing units. Each of these processing units
has the same internal structure as the processes
described below.

We permit data cells to be allocated to pro-
cesses - there can be an arbitrary number of
these. Its components are:

i. ip (instruction pointer): points to the
next instruction to be executed by the process
(ing unit).

2. ep (environment pointer): points to a data
cell in the record of execution which constitutes
the root of a data structure containing the pro-
cess(ing unit)'s variable data. Any cell may con-
tain pointers to other cells so that a process may
be able to access other cells through the cell to
which its ep points. The set of cells that a pro-
cess(ing unit) can access through a chain of poin-
ters originating with its ep is called its accessing
environment and is the only cells it can use. The
ep is thus a stylistic representation of base reg-
isters or a process segment table.

3. stack: a set of temporaries (registers) ar-
ranged in stack form for conceptual convenience.

4. process-id: if this is a process, the process-
id points to itself; if this is a processing unit
the proeess-id points to the process it is executing
for.

5. status: one of the following four statuses:
RUNNING means the process is loaded into a pro-

cessing unit
READY means the process could be running if there

were enough processing units
ASLEEP means the process is not able to Pun now

for program-directed reasons, e.g. waiting for
I/O. It can be made ready in future.

TERMINATED means the process is dead - it cannot
ever again be made asleep, ready or running.

A typical snapshot is shown in Figure I. There are
three processes, Hi, K 2 and H 3. ffl and E2 each
have private* data regions in their environments
C1, C 2 and C 3 respectively. If the instructions
that H 1 and K 2 are executing are re-entrant and the
only data they access are in the cells pointed to
by their ep's, then the two processors will not
clobber each other's data in spite of the fact that
they are executing the same instruction. Because
of the pointers in Ci, C 2 and C3, all three proces-
ses may access C 4. C~ is thus a shared cell. ~3
is RUNNING and thus the processing unit has been
loaded from if3" The processing unit's proeess-id
points to if3" The processing unit used to be an
exact copy of H3, but since the copying, the pro-
cessing unit has executed a bit; the ip of the pro-
cessing unit is further along in the algorithm than
the process's ip.

3.1.2 Transformation. The processing units are
supposed to be running in parallel - although poss-
ibly at different speeds. Rather than actually
trying to do things in parallel and take into
account different rates, for each computation step

~,~ A S ~ S P ~ RECORD OF EXECUTION ALGORITHM

i/~ ~ R EADYPlt~

PROCESSING UNIT ~

Figure 1.

=':Actually bounded by finiteness of memory, b~t for
all practical purposes, it's unbounded. *i'.e., no other process can access them.

47.

the transformation nondeterministically picks a
processing unit and has it go through an instruc-
tion execution-interrupt cycle. In this cycle it is
nondeterministically determined whether to execute
the next instruction or to interrupt. The trans-
formation is as follows:

i. Pick any processing unit PU.
2. Flip coin.
3. If head then (PU does instruction execution)

a. Fetch the instruction INST pointed to by
PU's ip.

b. Increment PU's ip to point to next in-
struction.

c. Execute INST.
d. End of transformation

4. If tail then (do process switch)
a. Copy PU into process El pointed to by

PU's process-id and change Hl'S status
to READY.

b. Select some READY process ~2 (here de-
fined nondeterministically, but can be
by some scheduling algorithm).
Change H2's status to RUNNING and copy
H 2 into PU.
End of transformation.

of the transformation we have a new

C°

d.

At the end
snapshot.

3.2 No Processing Unit in Model

In this model the processing units are thrown
out, and processes are considered capable of exec-
uting themselves. This necessitates throwing out
the distinction between RUNNING and READY processes.
Both are considered AWAKE.

3.2.1 Snapshot. The snapshot does not con-
tain any processing units. Theme is still a poten-
tially unbounded number of processes allocatable
in the record of execution cells. The components
of the process are almost as before:

~_ ip 2. ep, 3. stack, 4. process-id ' j

as before

5. status: there are three:
AWAKE: all former RUNNING and READY processes
ASLEEP
TERMINATED/ as before

A typical snapshot in this model is given in
Figure 2. It represents the same state as in the
snapshot for the other model.

3.2.2 Transformation. All AWAF~ processes are
considered to be executing in parallel. Therefore,
the transformation nondeterministically selects an
AWAKE process and has that process go through the
instruction execution cycle:

i. Pick an AWAKE processor ~ (here defined
nondeterministically but can be by scheduling
algorithm).

2. Fetch instruction INST pointed to by H's ip.
3. Increment H's ip to point to the next instruc-

tion.
4. Execute INST.
5. End of transformation.

At the end of the transformation a new snapshot has
been produced.

3.3 Observations About These Models of Processes

i. The first model is a more accurate depiction
of what happens in an actual implementation, but
the second is a bit simpler to work with.

2. Creation of a process in both models is simp-
ly a matter of allocating a process cell and init-
ializing it to appropriate values, i.e. an ip, ep,
status, stack, and a process-id.

4. Observations About the Use of ISMs

i. The modeling is primarily qualitative rather
than quantitative. ISMs are good for exposing the
structure of objects but they have not yet been used
for measurement. It is, however, possible to con-
ceive of space-time estimates being made with ISMs
in much the same way as with Turing machines.

2. The modeling can be as fine or as gross as
desired and can ignore nonessential details; e.g.,
in our modeling of a process we were fairly detail-
ed about the process and process selection, but we
glossed over the rest of the snapshot and the in-
struction-execution phase of the transformation.
This properTty is useful if one wishes to study a
particular aspect of a system without being concern-
ed about the rest of the system.

5. Future Research Suggestions

i. Define complete or large portions of OPSs.

ALGORITHM iii ASLEE~f~ RECORD OF EXECUTION

i ~ ~ j , ook , - - r ' - !

Figure 2.

48.

2. Use proof techniques developed for proving
equivalence of ISMs to help prove things about oper-
ating systems implementations.

3. Develop methods of measuring space and time
requirements ~ la complexity theory with Turing
machines.

6. Conclusions

The brief examples presented in this paper
attempted to expose some of the issues involved in
applying the ISM approach to the study of OPSs.
It is hoped that the feasibility of this has been
demonstrated and that avenues for further work have
been suggested.

7. Bibliog~aph[

NOTE: DSIPL (pronounced "disciple") is Proceedings
of the ACM Symposium on Data Structures in Program-
ming Languages, SIGPLAN Notices, February, 1971.
PAAP is Proceedings of the ACM S[mposium on Proving
Assertions About Programs, SIGPLAN Notices, Jan-
uary, 1972.

Bry71

BI~72

HJ70

Joh71

JL71

Luc69

Berry, D.M., Definition of the Contour
Model in the Vienna Definition Language,
TR-71-40, Center for Computer and Informa-
tion Sciences, Brown University, April 1971.
Berry, D.M., "The Equivalence of Models of
Tasking", PAAP.
Henhapl, W., and Jones, C.B., The Block
Concept and Some Possible Implementations,
with Proofs of Equivalence, IBM Lab. Vien-
na, TR25.104, 1970.
Johnston, J.B., "The Contour Model of
Block Structured Processes", DSIPL.
Jones, C.B., and Lucas, P.,-"Proving Cor-
rectness of Implementation Techniques", in
Engeler, ed., Symposium on Semantics of
Algorithmic Languages, Berlin: Springer-
Verlag, 1971.
Lucas, P., Two Constructive Realizations
of the Block Concept and Their Equivalence,

LW69

McG71

McG72

Wlk68

Wlk69

Wgb70

Weg70

IBM Lab. Vienna, TR25.085, 1969.
Lucas, P., and Walk, K., "On the Formal
Description of PL/I", Annual Review of
Automatic Programming, 6:3,1969.
McGowan, C., Correctness Results for Lambda
Calculus Interpreters, Ph.D. dissertation,
Cornell University, 1971.
McGowan, C., "A Contour Model Lambda Cal-
dulus Machine", PAAP.
Walk, K., et al., Formal Definition of PL/I,
ULD Version II, IBM Vienna, 1968.
Walk, K., et al., Formal Definition of PL/I,
ULD Version III, IBM Vienna, 1969.
Wegbreit, B., Studies in Extensible Lang-
uages, Ph.D. dissertation, Harvard Univer-
sity, 1970.
Wegner, P., Information Structure Models
for Programming Languages, TR-70-22, Center
~or Computer and Information Sciences,
Brown University, September 1970.

49.

