
SIGPLAN Notices

	

14

	

1970 Septembe r

Daniel M . Berry, General El -
THE IMPORTANCE OF IMPLEMENTATION MODELS IN ALGOL 68, or

	

ectric Company, P .O. Box 8 ,
HOW TO DISCOVER THE CONCEPT OF NECESSARY ENVIRONMENT

	

Schenectady, New York 12301 *

Abstract

	

The need for implementation models in understanding languages, Algol 68 in particular ,
is stressed. The model is used to demonstrate the new concept of necessary environmen t

of a procedure .

Key words

		

Algol 68, implementation model, pushdown stack, static link, environment, environment
pointer, scope, procedures, pointers .

CR Categories : 4 .12, 4 .2, 4 .20, 4 .22

Traditionally computer languages have been specified indepen-

dently of any implementation concerns . The effect of this divorc e

was felt even when the Algol 60 report [5] came out . A clear under -

standing of blocks, procedures, and the non-local and paramete r

mechanisms was best obtained from a conceptual model for its run

time dynamics . The model used was that of a stack with activatio n

records and static links [9] . The conceptual model did not have

to be a full blown one with the exact mechanism for maintainin g

the stack, but rather just the notion of last-in first-out orde r

of activation and deactivation of records and the static lin k

sufficed for understanding Algol 60 . The divorce of language speci-

fication from its implementation has reached its zenith with th e

Algol 68 report [8] . The report is quite elegant, but no real in-

sight into the structure of Algol 68 is going to come unless ther e

is use of a model .

The use of such conceptual models of run time configuration s

arising from execution of a program can give much insight into the

necessity of certain features and restrictions in the language .

One example is the scope restrictions on assignations in Algol 68 .

The rules state that the scope of the right hand side of an assigna-

tion must be greater than or equal to the scope of the left han d

side . Because-of these rules, the assignation in line 5 of th e

following program is illegal .

CONTRIBUTIONS
'Present address : Department of Applied Mathematics, Brown University .



SIGPLAN Notices

	

15

	

1970 Septembe r

1

2

3

4

5

6

7

begin

ref ref int xx = loc ref int ;

— begin

ref int x = loc int : = 1

xx . = x ;

.--- en d

print (xx) ;

8

	

end

The scope of the left hand side, xx, is the outer range, the

scope of the right hand side, x, is the inner range, and is thu s

less than that of the left hand side . Clearly the scope rule fo r

assignations is violated . The true nature of this violation an d

the catastrophic result of not obeying this rule is clearer if one

considers a run time implementation model for Algol 68 . The mode l

used has two stacks, Sl and S2 [3, 10] Si holds activation record s

containing cells for values possessed by identifiers and contain-

ing a static link . S2 hold locally generated cells .

First the outer range is entered and the declaration in line

2 is elaborated . On Sl is placed an activation record with a cel l

for xx and a null static link . S2 has a cell for the referenc e

of xx .

CONTRIBUTIONS



SIGPLAN Notices

	

16

	

1970 Septembe r

Then in line 3, a new range is entered and in line 4, x is declared ,

resulting in an activation record with a cell for x and a stati c

link to the previous record on Si . S2 gets a cell for the refer-

ence of x and this cell is initialized to 1 .

Si

Now suppose the illegal assignation in line 5 were allowed . Then the

reference of xx gets a copy of the value possessed by x .

V-J.

L
SI

When the range is ended, the top activation record is popped from S i

and its reference in . S2 is deleted .

Si

	

sz

CONTRIBUTIONS



SIGPLAN Notices

	

17

	

1970 Septembe r

The pointer in the reference of xx now points to a non-existent

cell . Any value accessing use of xx, such as the write (xx) in line

7, will have problems digging up an integer value . Thus, we see

from the model, the necessity of the scope rule for assignation .

It is clear that the scope rule prevents upwards pointers in th e

stack which might provide access to deallocated cells .

This paper has two main points . The first has been demonstrate d

and will continue to be demonstrated ; it is that the use of the mode l

can convey new insight into computational processes and languag e

design . One such insight is recognition of a new concept, that o f

the necessary environment of a procedure, the introduction of whic h

is the second main point of this paper . This concept was discovere d

by use of the model and trying to reconcile the Report's scope

rules as applied to procedures with the implementation features o f

environment and environment pointers of procedure values . First we

show the run time configuration of the program that lead to th e

discovery and the development of the concept . This concept ha s

several implications for implementation of Algol 68 which are briefl y

listed . Finally, the application of this concept to other language s

is briefly explored .

Let us consider the following brief Algol 68 program .

begin

ref int b = loc int ,

ref int a = loc int ,

ref proc (int) int p = loc proc (int) int ;

a : = 1 ;

1

2

3

4

5

CONTRIBUTIONS



SIGPLAN Notices

	

18

	

1970 Septembe r

begin

ref int c = loc int : = 2

C

	

p : = ((int i) int : i + a) ;

end

b : = p(3) ;

end

The Algol 68 report defines the scope of a procedure value

to be the smallest range containing a declaration of any non-loca l

identifier in the denotation possessing the procedure value . In

the program above the scope of the denotation in line 8 is the oute r

range because it has the declaration of the non-local a . Remembe r

that Algol 68 has a rule which says that an assignation is lega l

only if the scope of the right hand side is greater than or equa l

to the scope of the left hand side . In line 8, the left,hand side ,

2, has a scope of the outer range . Hence the assignation is legal .

Observe that if the non-local in the denotation were c instead of a ,

the assignation would be illegal .

Now let us follow the run time configuration for elaboration

of the program. After executing the declarations of the outer rang e

in lines 1-4 and the assignation in line 5, we have an activation

record on Sl and three cells on S2 .

a

Si

	

S2

CONTRIBUTIONS



SIGPLAN Notices

	

19

	

1920 Septembe r

Then at lines 6-7 a new range is entered with the subsequen t

creation of an activation record on Si and a cell on S2 . The stati c

link of this new activation record is shown on the left side of Si .

In line 8, a procedure value is computed . This value consists o f

an instruction pointer, ip, and an environment pointer, ep . The ip

of the computed value points to the beginning of the text of th e

procedure in line 8 . Traditionally, one takes as the ep a pointe r

to the top activation record of the current environment, that is ,

to the top record of Si (The current environment is the top recor d

and all records linked to the top by a chain of static links) . This

value is then assigned to the reference of 2 . This process of

creating and assigning a procedure value is called binding, an d

the environment traditionally used is the current environment a t

binding time .

51

	

S2.

* The word "traditionall/ ' merely indicates that the mentioned schem e
for computing the ep of a procedure has been widely used with Algo l

60 a
la Randell and Russell :. 12j and with PL/1 a la the ULD forma l

definition Ll3] .



SIGPLAN Notices

	

20

	

1970 Septembe r

Now at line 9, the top record is deallocated as the inner rang e

is ended .

b
51

	

52.
Observe that the ep of the procedure is now dangling ; its referenc e

has been deallocated . This is indeed a disaster because when the

activation record for the call in line 10 is created its stati c

link is to be a copy of the ep . There will be no activation recor d

pointed to by this static link, making it difficult to access non -

locals via the static chain .

The scope rules were apparently designed to prevent this disaste r

resulting from pointing too far up the stack . To regain correct-

ness of implementation a modification in the definition of the e p

of a procedure value is needed . The ep constructed at binding tim e

will point to the top most activation record of the current environmen t

in which any non-local of the procedure is declared . We call thi s

record and those records of the current environment accessible from

this record by the static chain the necessary environment of th e

procedure . In the above example, the ep would point to the bottom

activation record . We show a modified diagram after elaboratio n

of line 8 .



SIGPLAN Notices

	

21

	

1970 Septembe r

This way the inner range can be deallocated and the call i n

line 10 may be elaborated . The activation record for the call ha s

a static link pointing to the bottom record .

P

S2.

The new rule for determining the ep of a procedure value whe n

elaborating a procedure denotation has several implications :

1) The ep points to an activation record of the range whic h

constitutes the scope of the procedure value .

2) A procedure with no non-locals has a null ep .

3) Elaboration of a routine denotation will produce the same

value no matter where in its scope the denotation is written .

4) There are at least two compiler/run time techniques whic h

can be used to implement procedure values and calls with the necessar y

environment . At compile time, < i,j > pairs, that is <nesting height ,

relative position in record> pairs, are created for individual iden-

tifiers . At run time the ep and static links are used to maintai n

a display which provides immediate access to an activation record o f

a given nesting height . One technique is to use the normal nestin g

height conventions in compilation but to have a display with hole s

in it'71n the example, the routine denotation has a nesting heigh t

of three (note brackets) . So, the local i in the denotation woul d

be compiled as <3,1> . However at call time, there is no activatio n

record for a range of nesting height two because that range has bee n

exited, and the ep of the procedure points to a record of height one .

CONTRIBUTIONS



SIGPLAN Notices

	

22

	

1970 Septembe r

z

This technique makes compiling relatively easy, but it forces a littl e

extra work at run time . The second method retains the normal displa y

management at the expense of the compiler . In compiling <i,j> pairs

routine denotations are compiled to have a nesting height of on e

more than that of the range containing the declaration of the inner-

most non-local . In the example, the denotation would have nestin g

height two and the local i would be compiled as <2,1> . In this way ,

the static link arising from the ep can be used to construct a hole -

free display stack .

D i PL.AY St

This new concept of necessary environment may be applied t o

other languages which have procedure values treated as general values ,

and in which the non-locals are bound as in Algol 60 or 68 . In

CONTRIBUTIONS



SIGPLAN Notices

	

23

	

1970 Septembe r

some of these languages such as GEDANKEN Lii] and OREGANO, which thi s

author is developing, the non-locals are kept as long as the procedur e

value still exists . The usual implementation technique is to save

the entire binding time environment . However, saving only th e

necessary environment would insure correctness while conservin g

storage . *

BIBLIOGRAPHY

1. Goos, Gerhard, " Some Problems in Compiling Algol 68" Rechenzentrum
der Technischen Hochschule, Munchen, Germany, paper delivere d
to ACM SIGPLAN Algol 68 Symposium, June, 1970 .

2 . Jorrand, Philippe, "Tutorial on Algol 6 8 " , AFIPS SJCC 1969 Proc . ,
pp . 403-407 .

3 . Jorrand, P . and Wegner, Peter, Some Aspects of the Structure o f
Basel, Brown University, Providence, R . I ., Jan ., 1970.

4. Marshall, S . "An Algol 68 Garbage Collector", TM0111, Dartmout h
College, Dec ., 1969 .

5. Naur, P . et al . "Revised Algol Report", CACM 6,1 Jan., 1963 .

6 . Peck, J . E . L . Draft of Algol 68 Companion, University of Britis h
Columbia, paper delivered at ACM SIGPLAN Symposium, June ,
1970 .

7 . van der Meulen, S . G . and Lindsey, C . H . Informal Introduction _t o
Algol 68 . Amsterdam : Math . Centrurn , 1969 .

8 . Van Wijngaarden, A . ;Mailloux, B . J . ; Peck, J . E . L . ; and Koster ,
C . H . A . " Report on the Algoritmic Language Algol 6 8 " , Num .

Math . 14, pp . 79-218, 1969 .

9 . Wegner, P . Programming Languages, Information Stuctures, and
Machine Organization . New York : Mcgraw Hill, 1968 .

*The help of John B . Johnston in the preparation of this paper is acknowledge d

with many thanks .

CONTRIBUTIONS



SIGPLAN Notices

	

24

	

1970 Septembe r

10 . Wegner, P . "Three Computer Cultures ; Computer Technology ,
computer.Mathematics aid . Computer Science, "
Advances in Computers, vol . 10, 1970 .

11 . Reynolds, John C . "GEDANKEN, A Simple Typeless Language Base d
on Principle of Completeness and the Reference Concep t "
CACM 13,5 May, 1970, pp . 308-319 .

12. Randell, B . and Russell, L . J . Algol 60 Implementation, New York :
Academic Press, 1964 .

13 . Alber, K. et a1, Informal Introduction to Abstract Syntax and
Interpretation of PL/1, IBM Lab ., Vienna, TR25 .099, June 30,1969 .

14. Rosenkrantz, D . Private Communication


