SIGPLAN Notices 14 1970 September

Daniel M. G -
THE IMPORTANCE OF IMPLEMENTATION MODELS IN ALGOL 68, or @ Lé-e Berry’ eneral El
ectric Company, PO, Box §,

HOW TO DISCOVER THE CONCEPT OF NECESSARY ENVIRONMENT Schenectady New York 19301#
. I .

Abstract The need for implementation models in understanding languages, Algol 68 in particular,
is stressed. The model is used to demonstrate the new concept of necessary environment

of a procedure,

Algol 68, implementation model, pushdown stack, static link, environment, environment

pointer, scope, procedures, pointers.

CR Categories; 4,12, 4.2, 4.20, 4.92

Keywords

Traditionally computer languages have been specified indepen-
dently of any implementation concerns. The effect of this divorce
was felt even when the Algol 60 report [5] came out. A clear under-
standing of blocks, procedures, and the non-local and parameter
mechanisms was best obtained from a conceptual model for its run
time dynamics. The model used was that of a stack with activation
records and static links (97. The conceptual model did not have
to be a full blown one with the exact mechanism for maintaining
the stack, but rather just the notion of last-in first-out order
of activation and deactivation of records and the static link
sufficed for understanding Algol 60. The divorce of language speci-
fication from its implementation has reached its zenith with the
Algol 68 report [8]. The report is quite elegant, but no real in-
sight into the structure of Algol 68 is going to come unless there
is use of a model.

The use of such conceptual models of run time configurations
arising from execution of a program can give much insight into the
necessity of certain features and restrictions in the language.

One example is the scope restrictions on assignations in Algol 68.
The rules state that the scope of the right hand side of an assigna-
tion must be greater than or equal to the scope of the left hand
side. Because of these rules, the assignation in line 5 of the

following program is illegal.

X CONTRIBUTIONS
Present address: Department of Applied Mathematics, Brown Univergity.

SIGPLAN Notices 15 1970 September

e

begin
ref ref int xx = loc ref int;
begin

ref int x = loc int : =1 ;

XX ¢ = X ;
end

print (xx);

W ~N o W

b end

The scope of the left hand side, xx, is the outer range, the
scope of the right hand side, %, is the inner range, and is thus
less than that of the left hand side. Clearly the scope rule for
assignations is violated. The true nature of this violation and
the catastrophic result of not obeying this rule is clearer if one
considers a run time implementation model for Algol 68. The model
used has two stacks, S1 and S2 [3, 10] Sl holds activation records
containing cells for values possessed by identifiers and contain-
ing a static link. S2 hold locally generated cells.

First the outer range is entered and the declaration in line
2 is elaborated. On Sl is placed an activation record with a cell
for xx and a null static link. S2 has a cell for the reference

of xx.

Si S

CONTRIBUTIONS

SIGPLAN Notices 16 1970 September

Then in line 3, a new range is entered and in line 4, x is declared,
resulting in an activation record with a cell for x and a static
link to the previous record on S1. S2 gets a cell for the refer-

ence of X and this cell is initialized to 1.

XX

sl S2

Now suppose the illegal assignation in line 5 were allowed. Then the

reference of xx gets a copy of the value possessed by X.

- — | copy

A ™~
)(/ N :[V-

wl S

) S

When the range is ended, the top activation record is popped from Sl

and its reference in S2 is deleted.

?YY D
XX —

E51 S2

CONTRIBUTIONS

SIGPLAN Notices 17 1970 September

The pointer in the reference of xx now points to a non-existent
cell. Any value accessing use of xx, such as the write (xx) in line
7, will have problems digging up an integer value. Thus, we see
from the model, the necessity of the scope rule for assignation.

It is clear that the scope rule prevents upwards pointers in the
stack which might provide access to deallocated cells.

This paper has two main points. The first has been demonstrated
and will continue to be demonstrated; it is that the use of the model
can convey new insight into computational processes and language
design. One such insight is recognition of a new concept, that of

the necessary environment of a procedure, the introduction of which

is the second main point of this paper. This concept was discovered
by use of the model and trying to reconcile the Report's scope

rules as applied to procedures with the implementation features of
environment and environment pointers of procedure values. First we
show the run time configuration of the program that lead to the
discovery and the development of the concept. This concept has
several implications for implementation of Algol 68 which are briefly
listed. Finally, the application of this concept to other languages

is briefly explored.
Let us consider the following brief Algol 68 program.

- begin

ref int b = loc int,

ref int a loc int,

ref proc (int) int p = loc proc (int) int;

Vi B W N e

a: = 1;

CONTRIBUTIONS

SIGPLAN Notices 18 1870 September

6 begin

7 ref int ¢ = loc int: = 2
8 L p: = (@nt 1) int: i + a);
9 end

10 b: = p(3);

11 l— end

The Algol 68 report defines the scope of a procedure value
to be the smallest range containing a declaration of any non-local
identifier in the denotation possessing the procedure value. 1In
 the program above the scope of the denotation in line 8 is the outer
range because it has the declaration of the non-local a. Remember
that Algol 68 has a rule which says that an assignation is legal
only 1f the scope of the right hand side is greater than or equal
to the scope of the left hand side. 1In line 8, the left.hand side,
p, has a scope of the outer range. Hence the assignation is legal.
Observe that if the non-local in the denotation were ¢ instead of a,
the assignation would be illegal.

Now let us follow the run time configuration for elaboration
of the program. After executing the declarations of the outer range
in lines 1-4 and the assignation in line 5, we have an activation

record on S1 and three cells on S2.

oo

o
§
PIRY

(o

St 52

CONTRIBUTIONS

SIGPLAN Notices 19 1970 September

Then at lines 6-7 a new range is entered with the subsequent
creation of an activation record on Sl and a cell on S2. The static

1ink of this new activation record is shown on the left side of Sl.

C = 2
P > ,
a > A
b >

S1 S

In line 8, a procedure value is computed. This value consists of
an instruction pointer, ip, and an environment pointer, ep. The ip
of the computed value points to the beginning of the text of the
procedure in line 8. Traditionallyf one takes as the ep a pointer
to the top activation record of the current environment, that is,

to the top record of Sl (The current environment is the top record
and all records linked to the top by a chain of static links). This
value is then assigned to the reference of p . This process of
creating and assigning a procedure value is called binding, and

the environment traditionally used is the current environment at

binding time.

P 8%

A S2

The word "traditionally'merely indicates that the mentioned scheme
for computing the ep of a procedure has been widely used with Algol
60 a la Randell and Russell 12} and with PL/1 a la the ULD formal

definition [13].

SIGPLAN Notices 20 1970 September

Now at line 9, the top record is deallocated as the inner range

is ended.

N9

. i ‘

> ‘*963 hagt
4

3

p
a
b

Si S2

Observe that the ep of the procedure is now dangling; its reference
has been deallocated. This is indeed a disaster because when the
activation record for the call in line 10 is created its static
link is to be a copy of the ep. There will be no activation record
pointed to by this static link, making it difficult to access non-
locals via the static chain.

The scope rules were apparently designed to prevent this disaster
resulting from pointing too far up the stack. To regain correct-
ness of implementation a modification in the definition of the ep
of a procedure value is needed. The ep constructed at binding time
will point to the top most activation record of the current environment
in which any non-local of the procedure is declared. We call this
record and those records of the current environment accessible from

this record by the static chain the necessarv environment of the

procedure. In the above example, the ep would point to the bottom
activation record. We show a modified diagram after elaboration

of line 8.

ol P v O
!
o
i

Si S2

SIGPLAN Notices 21 1970 September

This way the inner range can be deallocated and the call in
line 10 may be elaborated. The activation record for the call has

a static link pointing to the bottom record.

3

3/‘@ e

> —8| —
-~ h-

r & 4

cgpyj;:;“‘t—a_i§} 52

The new rule for determining the ep of a procedure value when

elaborating a procedure denotation has several implications:

1) The ep points to an activation record of the range which
constitutes the scope of the procedure value.

2) A procedure with no non-locals has a null ep.

3) Elaboration of a routine denotation will produce the same
value no matter where in its scope the denotation is written.

4) There are at least two compiler/run time techniques which
can be used to implement procedure values and calls with the necessary
environment. At compile time, <i,j> pairs, that is <nesting height,
relative position in record> pairs, are created for individual iden-
tifiers. At run time the ep and static links are used to maintain
a display which provides immediate access to an activation record of
a given nesting height. One technique is to use the normal nesting
height conventions in compilation but to have a display with holes
in itﬁﬁjin the example, the routine denotation has a nesting height
of three (note brackets). So, the local i in the denotation would
be compiled as <3,1>. However at call time, there is no activation
record for a range of nesting height two because that range has been

exited, and the ep of the procedure points to a record of height one.

CONTRIBUTIONS

SIGPLAN Notices 22 1970 September

s

—8

|
)
)

’.“, o
DISPLAY Q S 52

This technique makes compiling relatively easy, but it forces a little

Ao)

extra work at run time. The second method retains the normal display
management at the expense of the compiler. In compiling <i,j> pairs
routine denotations are compiled to have a nesting height of one

more than that of the range containing the declaration of the inner-
most non-local. In the example, the denotation would have nesting
height two and the local i would be compiled as <2,1>. In this way,
the static link arising from the ep can be used to construct a hole-

free display stack.

r'\)
W

2 X 1

[{)
DISPLAY 54 S /

This new concept of necessary environment may be applied to

other languages which have procedure values treated as general values,

and in which the non-locals are bound as in Algol 60 or 68. 1In

CONTRIBUTIONS

SIGPLAN Notices 23 1970 September

some of these languages such as GEDANKEN [llj and OREGANO, which this
author is developing, the non-locals are kept as long as the procedure
value still exists. The usual implementation technique is to save

the entire binding time environment. However, saving only the
necessary environment would insure correctness while conserving

storage.®

BIBLIOGRAPHY

1. Goos, Gerhard, '"Some Problems in Compiling Algol 68" Rechenzentrum
der Technischen Hochschule, Munchen, Germany, paper delivered
to ACM SIGPLAN Algol 68 Symposium, June, 1970.

2. Jorrand, Philippe, "Tutorial on Algol 68", AFIPS SJCC 1969 Proc.,
pp. 403-407.

3. Jorrand, P. and Wegner, Peter, Some Aspects of the Structure of
Basel, Brown University, Providence, R. I., Jan., 1970.

4. Marshall, S. "An Algol 68 Garbage Collector'", TMO01ll, Dartmouth
College, Dec., 1969.

5. Naur, P. et al. "Revised Algol Report', CACM 6,1 Jan., 1963.
6. Peck, J. E. L. Draft of Algol 68 Companion, University of British

Columbia, paper delivered at ACM SIGPLAN Symposium, June,
1970.

7. van der Meulen, S. G. and Lindsey, C. H. Informal Introduction to
Algol 68. Amsterdam: Math. Centrum, 1969.

8. Van Wijngaarden, A.;Mailloux, B. J.; Peck, J. E. L.; and Koster,
C. H. A. "Report on the Algoritmic Language Algol 68", Num.
Math. 14, pp. 79-218, 1969.

9. Wegner, P. Programming Languages, Information Stuctures, and
Machine Organization. New York: Mcgraw Hill, 1968.

%*The help of John B. Johnston in the preparation of this paper is acknowledged
with many thanks.

CONTRIBUTIONS

SIGPLAN Notices

24

1970 September

g bl

2

Advances in Computers, vol

10, 1970.

11. Reynolds
John C."
on,PrincipleGggAngN, A Simple Typeless La -
CACM 13,5 M ompieteness and the Reference C Based
’ ay, 1970, pp. 308-319 eference Concept"

12. Randell
, B. and Ru
ssell, L. J. Algol 60 Implementation, N
, New York:

Academic Press,

1964.

13, Alber, K.
al, Informal Introduction to Abstract $
yntax and

Intet‘pretatio _/_ U
n Of
’ 2 9 9

14, R
7 osenkrantz, D, Private Communication

L

ash2
5

CONTRIBUTIONS

RDAM

AIMACO

AESOP.
aLGOL

ALTRAN

AMTRAN |

Rrmated Movie
TPL/360] | APT
BACAIC

BASIC
CLP

COGENT
COLINGO

Commercial Trans!

CLP

Computer Design

)
SATATEXT] | DEACON
DOCUS

DIMATE
DYNAMO DYSAC

a73LQuery | _ FAct
AC Formua ALGAL

ALGY

auevs | —Jc-10

Friended ALGOL
FLAP

AMBIT
APL

BASEBALL

COBOL
COLASL

comT
ator
Comput
CORAL
Gulter—Fried DAS
5 TDIAMAG

er Compiler
CORC

DSL/QQ DYANA
English
1\C
aon-
FQRTRF\N 6L
Geco

G GAT
AR wecer M2f
FORTRANSIT] Graphic P s

GR
GPSS Tior ma\\on gab pot I\QI\BT
Lant 08 20 WP z

ICES

10
058 SOV

incol !
yincoin ELB\ MAD N
MAT T \TRA

LOUTA AP
g PP WETAS
Matrix Comp'®l
oChL
NEURC i o
AUk 25 NGOL

GURAL,
] Simul. Dig. Syst.

oPS
8
owntt Al oposa\ Wntng

SPRINT STRESS STROBES

wee v 8
waocr?
WIS

ey oSy

SIMSCRIPT

snosoL | | SOt
Symba

TMG ~TRAC TRANDIR

TREET UNCOL

e

P P“ ‘\\\\e*

Short Code

SIMULA
Speedcoding
lic Math. Lab.
UNICODE

