
O-O Windowing
Decomposition

 1995 Daniel M. Berry Software Requirements Enginering Goodie 5 Pg. 1



The Assignment -1

The goodie is to build an object-oriented
model or decomposition of a windowing
system whose requirements were described
thusly:

Build a modular, object-oriented
decomposition of a nice windowing system.
When appropriate, the modules should be
abstract data types or classes.

 1995 Daniel M. Berry Software Requirements Enginering Goodie 5 Pg. 2



The Assignment -2

For each module, specify whether it is a type
or object definition and give all needed
operations.

Do NOT consider data structures or flow of
control. This is intended to be an exercize in
data abstraction and object-oriented thinking.

 1995 Daniel M. Berry Software Requirements Enginering Goodie 5 Pg. 3



The Assignment -3

Your windowing system should be in the form
of a collection of routines invokable by any
application that wants to use windowing as its
communication with the user.

 1995 Daniel M. Berry Software Requirements Enginering Goodie 5 Pg. 4



The Assignment -4

Your windows should be

rectangular
creatable to any size and position
resizeable
movable
closable to be an icon
openable from being an icon
scrollable in all four directions
active only when pointed at by mouse

 1995 Daniel M. Berry Software Requirements Enginering Goodie 5 Pg. 5



The Assignment -5

Any issue that is not covered herein, you may
resolve it any way you please and build your
abstraction accordingly. However, note that
the ONLY issues that you are to decide are
semantics and NOT implementation.

For hints you might want to look at MS-
Windows, Macintosh windows, SunView,
NeWS, X-windows, etc.

The next slide shows a picture of a typical
window as I see it.

 1995 Daniel M. Berry Software Requirements Enginering Goodie 5 Pg. 6



Diagram of Window and its Parts

Numbers refer to labels of attributes

8

76 5

43 2

1

 1995 Daniel M. Berry Software Requirements Enginering Goodie 5 Pg. 7



class (...) window
/* attribute type */

lowerLeftCorner orderedPair
upperRightCorner orderedPair

isIcon boolean
isAscii boolean
isActive boolean

 1995 Daniel M. Berry Software Requirements Enginering Goodie 5 Pg. 8



vertScrollBar scrollBar(vert) /* 1 */
horizScrollBar scrollBar(horiz) /* 2 */
iconifier pushButton /* 3 */
resizer draggingButton/* 4 */
mover draggingButton/* 5 */
closer pushButton /* 6 */
menues listOf(menu) /* 7 */

contents picture /* 8 */
visiblePortionLLC orderedPair
visiblePortionURC orderedPair

cursorPosition orderedPair

 1995 Daniel M. Berry Software Requirements Enginering Goodie 5 Pg. 9



/* procedures */

create(lowerLeftCorner,upperRightCorner:
orderdPair)

close
refresh /* invokes refresh of components */
iconify
deiconify
scrollHorizontally(percentage:real)
scrollVertically(percentage:real)
resize(newLowerRightCorner:orderedPair)
move(newUpperRightCorner:orderedPair)
makeGhost

 1995 Daniel M. Berry Software Requirements Enginering Goodie 5 Pg. 10



moveCursorIntoWindow(Position:orderedPair)
moveCursor(newPosition:orderedPair)

makeActive
makeInactive

 1995 Daniel M. Berry Software Requirements Enginering Goodie 5 Pg. 11



makeContentsAsciiTerminal
/* after doing this, all the usual terminal
functions are available and window can
be target of stdout */

/* Why is this a procedure and NOT a
subclass? */

bind
/* for process to bind to window as an
output device */

getContents /* of bound window */
end window;

 1995 Daniel M. Berry Software Requirements Enginering Goodie 5 Pg. 12



Class Inheritance Hierarchy

button

picture

screen window scrollbar menu

push_ dragging_

 1995 Daniel M. Berry Software Requirements Enginering Goodie 5 Pg. 13



class picture

/* attributes and operations for defining
a single screen-displayable picture */

/* this will be the parent class of all
classes whose objects have a pictorial
representation */

/* among the attributes of a picture are
its dimensions so that once its location
is determined, the exact screen
coverage can be calculated */

 1995 Daniel M. Berry Software Requirements Enginering Goodie 5 Pg. 14



/* among the operations are: */

picture procedure compose(picture p1,p2,
orderedPair locationP1,locationP2);
/* compose p1 in front of p2 at indicated
locations into a single picture */

/* if p1 and p2 do not overlap in their
locations, then the order is irrelevant */

/* so that new pictures can be built by
combining others. */ end picture;

 1995 Daniel M. Berry Software Requirements Enginering Goodie 5 Pg. 15



class (picture) screen ...;
class (picture) window ...;
class (picture) scrollbar ...;
class (picture) button ...;
class (picture) menu ...;
class (button) pushButton ...;
class (button) draggingButton ...;

 1995 Daniel M. Berry Software Requirements Enginering Goodie 5 Pg. 16



/* Now any application object that wishes to
build a pictorial user interface needs only to
bind to a particular window, as one binds to a
file for output. Once a window is bound, an
operation can be used to get to the picture
object that is its contents, and then the picture
operations can be used to update this picture
(the window contents) to be whatever is
desired. */

 1995 Daniel M. Berry Software Requirements Enginering Goodie 5 Pg. 17



/* in Main program of application: */

/* Simulation of Electric Circuit Diagrams */

window outputDevice
picture windowContents

outputDevice := bind ...
windowContents := outputDevice.getContents

 1995 Daniel M. Berry Software Requirements Enginering Goodie 5 Pg. 18



/* Usually the window contents picture is
updated by composed pictures built out of
application object pictures such as might be
generated from the following classes: */

class (picture) circuitDiagram ...;
/* contains all the circuitElements for making
up one circuit */

class (picture) circuitElement ...;
/* contains all properties that ALL circuit
elements have independent of their particular
function */

 1995 Daniel M. Berry Software Requirements Enginering Goodie 5 Pg. 19



/* a particular circuit element is a subclass of
circuitElement which makes it also a
subsubclass of a picture */

class (circuitElement) wire ...;
class (circuitElement) transistor ...;

 1995 Daniel M. Berry Software Requirements Enginering Goodie 5 Pg. 20



/* Each object is responsible for doing its own
behavior in a simulation and updating its own
picture to reflect its new state at anytime the
state changes. */

/* Each object is responsible for inserting
itself into the circuit diagram and connecting
itself to its neighbors AND updating its own
picture to reflect this connectivity. */

 1995 Daniel M. Berry Software Requirements Enginering Goodie 5 Pg. 21



class screen /* actually window_manager */
/* attribute type */

contents listOf(window)
inFrontOf setOfPairOf(window)

/* (w1,w2) in inFrontOf if w1 is in front of w2 */

cursorLocation orderedPair /* OR
window /* window

containing cursor */

 1995 Daniel M. Berry Software Requirements Enginering Goodie 5 Pg. 22



/* procedures */

push(p1:picture)
rotate(p1,p2:picture)
refresh

/* refresh of any object invokes refresh
of its component pictures */

/* etc... */
end screen;

 1995 Daniel M. Berry Software Requirements Enginering Goodie 5 Pg. 23



The next slide shows a diagram of the data
structure of a window object.

picture is a super class of window and of
push_button.

Therefore, you see picture data at the bottoms
of the window object and of the contents and
closer components of the window object; the
types of the components are picture and
push_button respectively.

 1995 Daniel M. Berry Software Requirements Enginering Goodie 5 Pg. 24



Data Structure

Window Object

button

push_

data

data

picturecloser

data

picture

contents

picture

data

data

window

 1995 Daniel M. Berry Software Requirements Enginering Goodie 5 Pg. 25



Data Structure

button
push_

data

data

picturecloser

data

picture
contents

picture

data

data

window

Window Object


