
Ignorance
Hiding

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Based on:

Programmer-Client
Interaction in Writing
Program Specifications

Daniel M. Berry
Orna Berry

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Problem -1

Most software is produced by a professional
programmer to meet requirements of a client
who is not a programming or computing
professional.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Problem -2

All too often, the resultant software is not
what the client wants.

• The programmer misunderstood what
client wants.

• The client misunderstood what he or she
wants.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Problem -3

The software, though correct with respect to
the specifications does;

• too little
• too much
• the wrong thing

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Problem -4

With modern programming methods and tools,
it is quite reasonable nowadays to expect
good compliance with specifications.

So, assuming that programming is perfect, the
problem of obtaining specifications stating
exactly what the client wants remains.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Problem -5

Thus the major problem in the production of
software meeting the client’s requirements is
in obtaining mutually satisfying specifications,

which specify exactly what the client
wants,

which, perhaps, anticipates future needs,

from which the programmer may write the
required software.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Problem -6

We know that the source of more than half of
the errors found during testing, acceptance
testing, and production use is poor
specifications.

In these slides, “specifications” means
“requirements specifications” and is used
interchangeably with “requirements” even
though specifications are normally only a
written manifestation of the requirements.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Problem -7

The difficulties preventing sufficient mutual
understanding to arrive at suitable
specifications are that

the programmer knows little or nothing
about the client’s domain,

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Problem -8

the client knows little or nothing about
what is possible with a computer,

or worse than that, the client believes that
experience with a home computer makes
an expert!

A big ga p here!

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Problem -9

We believe that it is the job of the
programmer, as the professional in the
situation to bridge the gap to the client.

It is up to the programmer to get the client to
teach him or her about the client’s domain.

It is up to the programmer to teach the client
enough about computing to make intelligent
choices.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Problem -10

If the client cannot do an adequate teaching or
learning job, it is up to the programmer to
teach the client how to teach or learn.

Finally, it is up to the programmer to be able
to learn what the client is teaching.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Background -1

This talk describes an experience by the two
authors as programmer and client, for the
purpose of producing specifications for a
statistical experiment simulation program.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Background -2

The first author was, and still is, a computer
scientist and played the programmer in the
experience.

The second author, at the time, was a
statistician, and played the client in the
experience.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Background -3

The first author knows very little about
probability and statistics and, in fact, had
developed a phobia for anything remotely
smacking of the subjects.

The second author, at the time, knew very little
about computing beyond the use of BMDP and
the barest rudiments of FORTRAN coding (as
opposed to programming).

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Background -4

The second author has since then seen the
light and is now a computer scientist!

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Background -5

The native languages of the authors are
different.

Finally, the authors were, and still are, married
to each other!

Thus, the potential for misunderstanding is
clear.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Background -6

At the time, the second author was an M.A.
candidate at Tel Aviv University in statistics.

Her thesis research was on the validity of
conclusions drawn from experiments
involving a sequence of observations in which
the data become unavailable from some point
on (truncation) or in which some but not all
data are missing (censored).

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Background -7

She had to write a program that permitted
numerous simulations of experiments with
large observation vectors.

An experiment was to generate a pair of
vectors of observations, then to both

truncate one of the pair at some random
point, and

censor one of the pair at some random
points.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Background -8

Finally, she was to compare conclusions
drawn from the full vector to those drawn from
the truncated and censored vectors.

Drawing conclusions and comparing them
involved calculating some very well-known
statistical measures (well-known to
statisticians!).

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Difficulties -1

All had to be finished in 10 weeks (extended
by one more week at the end):

• writing the program
• running several experiments
• documenting the program
• writing the thesis
• defending the thesis
• correcting the program or the thesis based

on the committee’s recommendations (i.e.,
requirements)

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Difficulties -2

Why the short fuse? The advisor was leaving
the country for the summer.

At the time, second author did not know how
to program, but the advisor, the author of the
BMDP statistical package, does.

The three-person committee could, in
principle, require new calculations at any time,
even at the defense.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Difficulties -3

There were certainly some committee
members in the department who took
particular delight in delaying a student by
finding interesting new calculations to
perform.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Difficulties -4

Thus, it was clear to the first author, the
experienced computer scientist, that the
program had to be right the first time and had
to do any calculations that even the most
diabolical committee member could ever, ever
think of.

There was simply no time to write the program
a second time or even to modify it.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Difficulties -5

The first author was personally familiar with
patchwork programs that never quite worked
right that resulted from thinking of new
features as the program was being written.

He was familiar with the agony of having to
revise almost every line of a program to
accommodate the ever so small new feature
that a client asked for late in the development.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Difficulties -6

He was painfully familiar with interface
problems discovered late in a program’s
development.

These all had to be avoided at all costs!!!
(Well... not all costs!)

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Difficulties -7

In consideration of the second author’s
inexperience with computing, the advisor
agreed to allow the first author to help the
second author write the specifications for the
program.

Of course, the second author had then to write
the program herself.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Form of specification -1

The authors and the advisor agreed that the
specification would consist of two main parts:

1. list of inputs in the form of a typed,
constrained variable declaration for each
input (constraints specify bounds)

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Form of specification -2

2. given input meeting the types and
constraints of part 1, a list of all desired
output, i.e., values and tables

No details about how the calculations were to
be done were to be specified!

Actually, the phobia of the programmer would
make sure of that!

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Initial specification -1

The programmer asked the client to write a
first draft specification

This is what he got!

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Initial specification -2

Input:

n (sample size) int
θ (parameter of exponential distribution) real
p (percentage of data to be lost) real
t (truncation of the survey) real

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Initial specification -3

Output:

1. observations 2 vectors of size n, each obs
is a real no.

2. new observation vectors without the lost
data (no info as to which positions lost
data)

3. the 2 vectors of truncated data

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Initial specification -4

For each of 1, 2, 3:

4. p.25 p.50 p.75 M
N
O

5. p(t =
2
1hh) , p(t = 1) , p(t = 2)

6. table of nonparametric test each one of the
elements of (4) and (5) in the output
paragraph

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Initial specification -5

below above tot
the stats the stats totiii

vect1 n1b n1a n1
vect2 n2b n2a n2
tot n1b + n2b = nb n1a + n2a = na ncc

c
c
c
c
c

and the hypergeometric prob. p{n1a}

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Initial specification -6

7.
a. limits of the confidence intervals

between the statistics in 4 and 5 in the
output paragraph [l1,l2] in 95%
confidence level

b. for each appropriate pair of the above
stat, if it fell into its c.i. [confidence
interval] or not

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Initial specification -7

Clear, huh?

The programmer winced hard and knew that
he had his work cut out for him!

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Floundering -1

In an attempt to understand these
specifications in order to refine them into
something useable, the programmer asked the
client what in heaven’s name was going on
here!

The client began to talk.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Floundering -2

The programmer heard lots and lots of
statistical buzzwords:

take an observation vector
truncate it
censor it
concatenate two observation vectors
time t of a vector at probability p

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Floundering -3

probability p of a vector at time t

take the delta sum of a vector

the standard error of a vector at
probability p

the standard error of a vector at time t

over and over again.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Floundering -4

They were meaningless to the programmer,

but

they were clearly meaningful to the client or
anyone in the statistics field.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Inspiration -1

“ah hah! ” said the programmer.

We have an abstract data type,

observation vector

or

vector

for short,

in which each observation is a real number
and whose operations include

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Inspiration -2

create
truncate
censor
concatenate
time
probability
delta sum
standard error.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Inspiration -3

By nudging the client for more operations on
observation vectors that will be needed, the
programmer was able to produce a
preliminary list of the operations of the ADT
vector.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Inspiration -4

The programmer then asked the client to
identify for each operation

• the list of parameters and their types
• the type of the return value, if any

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Inspiration -5

The programmer nudged the client for
assurance that

• each operation is well understood by
statisticians

• each operation is either
- trivially implemented, or
- defined by a formula well-known to

statisticians

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Inspiration -6

With these assurances, the programmer felt
confident that the ADT was implementable.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Refinement -1

Now was the time to begin refining the
specifications into a useable document.

The programmer decided to produce a
description of the main program using the
ADT and its operations as primitive.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Refinement -2

Again, the specifications would show only the
input and the output and not show how they or
the ADT would be implemented.

So the programmer and client began a
refinement cycle.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Refinement -3

As the programmer and the client worked
together to make the specifications more
precise, complete, etc., the programmer knew
that they would discover

additional needed operations for the ADT
and

that parameters, parameter types, and
return types of existing operations would
be changed.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Refinement -4

Each such change would require another
iteration on the specifications with all of the
above and below mentioned nudging.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Refinement -5

Discovering a new operation for the ADT
caused

adding a description of the operation to the
ADT description,

nudging again for assurances of
implementability, and

rewriting the specifications to use the new
ADT.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Refinement -6

Occasionally the programmer discovered the
client using the same operation in more than
one way!

How could he do that even though he did not
understand the operations?

The client used the same verb with a different
set or a different number of noun phrases, i.e.,
a type inconsistency.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Refinement -7

For example,

• some applications of either empirical
standard error operation had a size
parameter of type int and others did not,

• some applications of either theoretical
standard error operation had a θ parameter
and others did not.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Refinement -8

When programmer caught these, he nudged
the client for a resolution.

Maybe each use was really of a different
operation.

Maybe the earlier uses were wrong.

Maybe the new use is wrong.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Refinement -9

Maybe both are right, and the operation
should be overloaded.

Maybe both are right, and the operation
takes a variable number of parameters,
with missing ones being set to default
values.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Refinement -10

In these cases,

size was recognized as independent of the
vector (surprise!) and therefore a
necessary parameter of the operation so
that all applications were changed to
provide size.

θ was recognized as calculable from other
data and therefore unnecessary; so, the θ
parameter was removed, and applications
were changed to provide no θ.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Refinement -11

Once a resolution was achieved, the ADT was
updated to reflect the changes, and the client
was nudged for assurance of well-
definedness.

The specification of the program was rewritten
to reflect the new ADT.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Refinement -12

There were a number of questions and
modifications that the programmer thought of
from his experience.

Spelled out identifiers would be clearer.

Program lacked generality—it was locked to
one run, with fixed uniform sized vectors, with
the same θ, loss rate, and truncation threshold
in each case.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Refinement -13

There were magic constants, e.g., the 95%
confidence level; why?

All of these fixed values were made input
parameters of the program.

The programmer’s debugging sense warned
him to have the program print out a lot of
additional information that would help trace
computations and debug the program.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Refinement -14

It turned out that all of the wouldn’t-it-be-nice-
if-you-also-calculated-xxx information
requested by the advisor and other members
of the committee were covered by this
debugging output!!!

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

The Specifications -1

First we give the abstract data type:

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

The Specifications -2

Then we give the actual input-output
specifications:

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Results -1

The specifications were completed and
approved by programmer, client, and advisor
after about 4 weeks of spirited discussion.

The client turned into the FORTRAN
programmer of the specifications.

She implemented the ADT as a collection of
FORTRAN subroutines and functions that
shared access to a named common area that
the main program did not see.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Results -2

The program ran after very few debugging
runs.

The sources of the bugs were very easy to
locate because of the extra debugging output
the first author had insisted on.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Results -3

The second author wrote the thesis, defended
it, and filed it one day before the advisor left
the country.

Also, during the writing of the thesis, the
second author delivered a baby!

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Amazing Occurrence -1

The authors were prepared for the usual
feedback on the specifications that normally
occurs as the specified program is being
written.

They were prepared to make all changes
necessary to the requirements document to
keep it consistent and up-to-date with the
program.

It had to be ready to stick into the thesis on a
moment’s notice.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Amazing Occurrence -2

But, once the specifications were accepted
and typed, they were not changed at all except
to correct minor typographical errors.

There was none of the usual feedback from
the designing, coding, testing, debugging, and
running of the program onto the
specifications.

No inconsistencies were discovered.

No new functions were discovered.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Amazing Occurrence -3

This is the first time in either author’s
experience that a requirements document had
not undergone change as the program was
being implemented and remained faithful to
that program as implemented.

This was also the first time the first author had
ever participated in the development of a
program about which he had no real
understanding (and he still does not).

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Amazing Occurrence -4

The fact that the requirements document did
not have to be changed at all is even more
surprising!

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Reasons for Amazing Event -1

So what were the factors that allowed this
amazing event to happen?

More importantly what are the techniques that
can be applied to increase the chances of
duplicating this event with other
specifications?

Beginners’ luck???

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Reasons for Amazing Event -2

Introspection showed three main techniques
that were applied beyond normal common
sense:

• abstract data typing

• strong typing

• Jewish motherhood

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Abstract Data Typing -1

You are already very familiar with the concept.

Here, the encapsulation that is normally used
to hide implementation details (so that they
can be changed) was used to

hide ignorance

of domain concepts about which the
programmer had not even the foggiest notion
and to allow him to work with them in a
consistent manner.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Abstract Data Typing -2

All he had to do was be certain that the
concepts were well enough understood that
they could be implemented, and implemented
straightforwardly.

Then he could fake his way through the
problem so well that he could find
inconsistencies in what the client was saying.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Strong Typing -1

Strong typing is that property of a
programming language that assures that the
types of all (sub)expressions can be computed
at compile time.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Strong Typing -2

The type of a constant is immediate:

1 int
3.14 real
true bool
’x’ char

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Strong Typing -3

The type of a variable is declared:

int i,j,k
real x,y
bool b
char c

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Strong Typing -4

The required types of language constructs is
known

OK if true then else fi

OK if b then ... else fi

BAD if x then ... else fi

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Strong Typing -5

The type of a procedure is the list of types of
its parameters and the type of its returned
value, if any:

proc(int)int factorial
proc(real)char real_to_char
proc(int,int)bool equal
proc(char)void print_char

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Strong Typing -6

It is possible to check applications for type
consistency without knowing the body or
meaning of procedure!

OK i:=factorial(j)
" c:=real_to_char(x)
" if equal(i,j) then ...
" print_char(c)

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

BAD c:=factorial(j)
" i:=factorial(c)
" i:=factorial(i,j)

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Strong Typing -7

In the case of this experience, strong typing
was sufficient to allow the programmer to find
all inconsistencies in what the client was
saying and in non-final drafts of the
specification.

It helped the programmer fake understanding
of the operations by giving him a tool to at
least be able to tell when an operation was
being used correctly or consistently with the
other uses.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Strong Typing -8

Is this surprising?

Not really!

It is well known how effective strong typing is
at identifying program errors prior to run time
and in preventing these errors from ever
occurring at run time.

There have been numerous studies.

Redundancy!

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Strong Typing -9

Some languages that used not to be strongly
typed are now, e.g.,

C → C++

LISP → Common LISP

Even before C++, people used lint to
approximate strong typing.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Jewish Motherhood -1

Jewish motherhood is the ability to keep
nudging the client so that he or she feels
guilty when he or she has failed to tell you
something!

It is also the ability to detect when client is not
telling you something important.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Jewish Motherhood -2

How to be a Jewish Mother by Dan Greenburg

explains how to do it and makes the point that
you have neither to be Jewish nor a mother to
be a Jewish mother.

An irish waitress and an italian barber can be
Jewish mothers.

(Your nationality) programmers can (and must
be) Jewish mothers.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Jewish Motherhood -3

You have to be able to nudge the client to
make sure that you have captured what he or
she wants.

Are you sure that this is what you want?

Are you certain that this is what you want?

Are you positive that this is what you want?

Are you sure that you are certain that this is what you
want?

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Jewish Motherhood -4

Are you sure that you are positive that this is what you
want?

Are you certain that you are sure that this is what you
want?

Are you certain that you are positive that this is what
you want?

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Jewish Motherhood -5

Are you positive that you are sure that this is what you
want?

Are you positive that you are certain that this is what
you want?

... (ad infinitum et nauseum)

You have to be able to inculcate guilt and
detect when the client is waffling

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Jewish Motherhood -6

One caveat!

There is a danger of the client learning how to
be a Jewish child, i.e., to be immune to the
guilt effects.

So you have to learn when to let up.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Specification Languages -1

The experience suggests some important
properties for a specification language, that

it permit natural language phrases,

it permit the definition of abstract data
types, and

it have a processor which does full type
checking.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Specification Languages -2

Given these requirements for a specification
language, it is clear that we are talking about a
strongly typed program design language with
some ADT definition construct.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Specification Languages -3

The paper describes an attempt by the authors
to use Ada as a such a program design
language in which to express the
specification.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Specification Languages -4

The ADT vector was expressed as a package
observation_vector defining the type vector.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

with TEXT_IO; use TEXT_IO;
package OBSERVATION_VECTOR is

type VECTOR is private;
function create_observations(size:INTEGER;theta:FLOAT)return VECTOR;
function create_kept_observations(v:VECTOR;loss_rate:FLOAT

name:STRING)return VECTOR;
function create_truncated_observations(v:VECTOR;time:FLOAT

name:STRING)return VECTOR;
function concat(v1,v2:VECTOR)return VECTOR;
function size(v:VECTOR)return INTEGER;
function time(v:VECTOR;prob:FLOAT)return FLOAT;
function probability(v:VECTOR;time:FLOAT)return FLOAT;
function delta_sum(v:VECTOR)return INTEGER;
function time_theoretical_std_error(size:INTEGER;prob:FLOAT)

return FLOAT;
function time_empirical_std_error(size:INTEGER;v:VECTOR;

prob:FLOAT)return FLOAT;
function prob_theoretical_std_error(size:INTEGER;time:FLOAT)

return FLOAT;
function prob_empirical_std_error(size:INTEGER;v:VECTOR;

time:FLOAT)return FLOAT;
function above(v:VECTOR;time:FLOAT)return INTEGER;
function below(v:VECTOR;time:FLOAT)return INTEGER;
procedure print_name(v:VECTOR);
function difference_std_error(val1,val2:FLOAT)return FLOAT;
function theta(v:VECTOR)return FLOAT;

end OBSERVATION_VECTOR;

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Specification Languages -5

The specification itself was given in the form
of a main program that withed the package.

The purpose of this exercise was to trick the
Ada compiler to do the type checking that we
wanted.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Specification Languages -6

The program consists only of declarations of
input variables to establish their types and a
bunch of applications of put (overloaded
printing routine that accepts any printable
value as its in parameter) to the results of
applications of package-defined functions to
these input variables and to for-loop index
variables.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Specification Languages -7

Things like

for each time ∈ {$1 over 2$,1,2}
...

od

in specification are expressed as

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Specification Languages -8

declare t:float;
time_set constant array(1..3) of float

:= (1.0/2.0,1.0,2.0);
begin for i in time_set’range loop

i:=time_set(i);
...

end loop; end;

This way, in the body, the uses of t will be
properly type checked.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Specification Languages -9

What happened when we ran the Ada version
of the specification through an Ada compiler?

We found one error that was actually a typo in
the published specification.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Specification Languages -10

The typo was a missing string parameter in
applications of the operations
create_truncated_observations and
create_censored_observations.

These errors are not in the FORTRAN
program.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Specification Languages -11

So we were very lucky not to have had a
serious error.

A serious error is one in which interface
inconsistencies are not noticed until
integration testing.

In a larger problem, it would have been even
luckier not to have many more serious errors.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Specification Languages -12

A type checking processor for a program
design language would certainly help to
eliminate these errors.

Such errors are, in fact, stupid errors, errors
that are algorithmically avoidable.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Specification Languages -13

Ada is not really a good program design
language because it does not really allow
arbitrary natural language text.

Only one program design language we know
of that meets all of our requirements for a
specification language.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Specification Languages -14

Ada-SDP, from Mayda Ltd. in Israel.

It recognizes Ada keywords.

Any string of text between keywords is an
application of a procedure which has
parameter words.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Specification Languages -15

If you

declare push $value into $stack

and there are types value and stack,

and you write

push plate into plate_stack

the Ada-SDP processor recognizes this as
application of

push $value into $stack

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Specification Languages -16

If, in addition, plate and/or plate_stack have
been declared, the processor checks that they
are declared of types value and stack
respectively.

Unfortunately, the company no longer exists,
so we will have to be very careful and do
things by hand.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Conclusion

We consider

• the reasons for success
• what needs to be done in the future

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Reasons for Success -1

It is always nice to believe that a method that
worked on one problem will work on all others

However, the reality is that each problem
seems to beget or require its own method or
its own variant of a method

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Reasons for Success -2

There are a number of reasons that the above
described method worked in this case and one
cannot expect that the success will generalize:

• beginner’s luck

• the small size of the problem

• the fact that there was only one client
representative

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

Reasons for Success -3

• the fact that there was only one
programmer or requirements analyst

• the very fact, as suggested by Alstad, that
the programmer knew so little about the
domain and therefore did not fall into any
tacit assumption tarpit

• the fact that the problems had such a
strong mathematical basis and the only
real problem was organizing the output

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

For the Future

We need to try the method out on

• larger problems
• with groups of client representatives
• with groups of requirements analysts
• with harder non-formalizable problems

to see how generally applicable the method is.

 1995 Daniel M. Berry Software Requirements Enginering Ignorance Hiding

