Software Reuse

Software Engineering Course Given by: Arnon Netzer

What is reuse?

To use parts of one product in another product with a different function.

What can be reused?

code, documentation, design, testing, anything

Is porting an example of reuse?

NO!!

How Reuse Happens?

- accidental reuse:
 when a part turns out to be reusable by accident.
- deliberate reuse:
 when a part is purposely built for possible reuse.

Obvious Reuse Examples:

- Cut & Paste (accidental reuse).
- Visual Basic a system that generates code automatically using built-in reusable modules.
- stdio.h subroutine libraries are bunches of reusable modules.

Advanced Reuse Examples:

- Hopefully An organization saves and reuses code modules it has developed itself.
- Utopically Organizations sell each other modules for reuse.

Purpose of Reuse

- Cheaper products
- Better quality products

Cheaper products ?!!

- Shorter development time.
- Increase productivity.
- Decrease testing domain.
- Easier maintenance.

Better quality products !!?

Code that was written for reuse:

- Has better specifications.
- Is more thoroughly tested.

Software utilizing reused code has to be:

- Better specified.
- Well standardized.
- Organized.

Drawbacks of Reuse

- Code designed for reuse is more expensive to create.
- Integrating reusable code introduces an overhead in the development process.
- Maintaining the reusable resources requires added mechanisms.

How to Create Reusable Code

Problem Domain Vs. Solution Domain

- Designs which attempt to adhere as closely as possible to the structure of the problem (application) domain are said to be application-driven.
- Designs which attempt to simplify the solution are said to be solution-driven.

Problem Domain Design

- Design that well describes one application space, should be able to fit a similar application space with minimal design adjustment.
- Small and localized change in the original problem specification should result in a small and localized change in the object-oriented design.

Spanning the Problem Domain

- Design software that spans as wide a region of the problem space as possible.
- Regard the properties and behavior of the object rather then the functionalities you currently need.

How to Use Reusable Code

Inheritance

```
class GeometricObject {
  Point position;
                       // center of object
  Point bbox;
                      // bounding box
  angle orientation;
                       // orientation
public:
  void move(Point r); // abs. translate
  void rotate(double angle); // abs. angle
  virtual void draw(); // display on screen
  // etc...
};
class Rectangle : public GeometricObject {
  // etc...
};
```

Composition

Composition is the process of composing a class object out of several object of other related classes.

```
class Stack {
    List list;
public:
    int push(char *s) {
       return list.add(s);
    }
    char *pop() {
       return list.removeAt(List::First);
    }
    int size() {
       return list.size();
    }
}:
```

Effects of Reuse on Quality Productivity and Economics

Metrics collected on two case studies at Hewlett-Packard.
Wayne C. Lim 1994.

1st case study-Overview

- The study was done in the Manufacturing Productivity section of HP's Software Technology Division.
- The MP section produces larg-application software for manufacturing resource planning.
- The study was started in 1983.

1st case study-Technical Data

- Reuse was done on application source code etc.
- Total reusable code size was 55,000 lines of noncomment source statements.
- The code was written in Pascal and SPL.

2nd case study-Overview

- The study was done in the San Diego Technical Graphics Division of HP.
- The STG develops applications for plotters and printers.
- The study was started in 1987.

2nd case study-Technical Data

- Reuse was done on application source code etc.
- Total reusable code size was 20,000 lines of noncomment source statements.
- The code was written in C.

Code Quality

Coding Productivity

Additional Effort in Creating Reusable Code in STG

Reuse Case Study - Economics

	MP	STG
time horizon	1983-1992	1987-1994
start-up resources required	26 engineering months \$0.3 million	107 engineering months \$1.4 million
Ongoing resources required	54 engineering months \$0.7 million	99 engineering months \$1.2 million
Gross cost	80 engineering months \$1.0 million	206 engineering months \$2.6 million
Gross savings	328 engineering months \$4.1 million	446 engineering months \$5.6 million
Return on investment	410%	216%
Break even year	2 nd year	6 th year