
SOFTWARE ENGINEERING METHODS (CS 236321)

SPRING 1998 COURSE OUTLINE
LECTURES: Tuesdays 8:30-10:20 Fishbach 507 (Multimedia Room)

RECITATIONS: Wednesdays 10:30-12:20 Fishbach 507 (Multimedia Room)

PROF. DANIEL BERRY
E-mail address for questions: dberry@cs.technion.ac.il

Home page: http://www.cs.technion.ac.il/˜dberry
Room: Fishbach 479

Office hours: Wednesdays 12:30-14:20
Telephone number: NONE (Does not use telephone)

E-mail address for first message and for handing in test cases only: berrycourses@cs.technion.ac.il

Assistant: Ido Nachtom
E-mail address: ido@cs.technion.ac.il

Room: Fishbach 404/2 (call 4528) to gain entry)
Office hours: Sundays at 10:00-11:50

Telephone number: 829-4528

Date Tue. Topic Wed. Topic Goodiesiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
March 10 Administrative & Goodie 1 assigned

Some Software Myths
11 Information Hiding

17 Information Hiding
18 Faking It &

Documentation
24 Acting Out ADTs &

Windows Decomposition
25 Testing PreGoodie 1 due 14:30

31 OO Development Cost
April 1 Walkthrough PreGoodie Test plan due 14:30

7 Conference 8 Conference NO CLASS
14 Pesach 15 Pesach NO CLASS
21 Conference NO CLASS

22 SW Quality Ido Nachtom
28 Walkthrough Test Plan

29 Yom HaZicharon NO CLASS
May 5 In-class Inspection

6 Inspection Goodie 1 due 14:30
Goodie 2 assigned

12 Inspection
13 SW Project Management &

SW Cost Estimation
19 Student’s day NO CLASS

20 SW Cost Estimation
26 SW Legal Issues

27 Myths ReGoodie 1 due 14:30
June 2 Myths

3 Myths

1



9 Requirements Iceberg
10 Ignorance Hiding

16 Ignorance Hiding
17 OO Design & Patterns Goodie 2 due 14:30

23 OO Design & Patterns
24 Decoupling Change

from Design

The recitation (tirgul) sections will be used mainly as additional lectures. I have too much material for just the lec-
tures.

VERY IMPORTANT FOR ENABLING COMMUNICATION

No grades will be given without this information.

From preferably the account at which you prefer to receive e-mail, please by 18 March 1998, send to
berrycourse@cs.technion.ac.il an e-mail message in which you give as a one-line message,

1. your full nine-digit mispar zehut,

2. your private (first) name, in the Latin letter spelling that you prefer,

3. your family (last) name, in the Latin letter spelling that you prefer,

4. a secret word, and

5. your preferred e-mail address (even though I can see it above in the “From” line),

in that order. (If it is not in that form, it will be returned to you unlogged.)

Please use the same preferred Latin spelling that you give to me in this message in all the homeworks that you give
me during the semester. I use this name as the key to my data base and not your student number.

The secret word is a word known only to you and me that you will not forget by the end of the semester. I will post
the grades paired with these secret words rather than with student identification numbers (which are no longer
private, given that anyone can finger t2 for the real-life name associated with any student id-login name). In partic-
ular, I will not be saving sent messages in order that I can send all previously sent messages to those who are late in
sending me their information. In addition, I will be sending your final grades by e-mail to the account you have
given me. For example, for me the one-line message would be:

123456789 Daniel Berry qapla dberry@cs.technion.ac.il

I will be using this information to build my grading database, and to be able to send you announcements and useful
materials, e.g., sample inputs and goodie solutions. If you fail to do this, you will not receive any grades, announce-
ments and materials, and if this messes you up, that’s your problem! In order to help you avoid these problems, I
will reply “I got it.” when I receive what you send correctly. If you do not receive this reply within two business
days after sending it to me, please try again or come to see me.

2



Office Hours

My office hours are Wednesdays at 12:30-14:20 in 479 Fishbach, right after the lecture hours. You may send e-mail
to dberry@cs.technion.ac.il for an appointment if this is not convenient for you. The office hours of the assistant,
Ido Nachtom are Sundays at 10:00-11:50 in Fishbach 404/2 (call extensin 4528 to gain entry to 404). You may also
send questions to me by e-mail. I will answer usually within a single business day.

I am also available at other times, particularly if you see my door open or if you see me walking around
campus. Just ask if I am busy. Usually I will not be, but please respect my answer if it is “No”. However, please do
not even try to see me from 1⁄2 hour before class until class, even if my door is open. I often need that time to think
about what I am going to say. Many times, when people come to me during that perion, I find myself getting uptight
and snapping at them. Please wait until after class.

About the goodies

1. The goodies are lengthy programming assignments designed to get you to apply the techniques described in
the lectures, mainly abstract data typing, information hiding, and object orientation. In fact, you will lose
many points if you do not apply these techniques to the problem even if you do well otherwise. Moreover,
if you do well on Goodie #1, you will find the subsequent goodies easier. I understand that it is difficult to
know ahead of time how I will be grading; it is always a matter of my interpretation of what I require
versus yours. Therefore, you will get a chance to redo Goodie #1 using the feedback you get from me in
order to improve your grade up to 90% of what the goodie counts and to have a better version to use for the
subsequent goodies. Indeed, I hope many of you will use this as an opportunity to redo your goodie to
have a better version for the subsquent goodies, even if you get a satisfactory grade on Goodie #1.

2. Goodie #2 is a revision of Goodie #1. The customer (me) of Goodie #1 will discover corrections and
enhancements as a result of using your products and will require them to be incorporated into Goodie #2.
These enhancements will be done to the code produced for Goodie #1 or its redo. As you are doing Goodie
#1, you are encouraged to suggest improvements on paper to the client for incorporation into the require-
ments of the subsequent goodie, but you must still implement the requirements for the goodie as given.
There may be two different Goodies #2, each to be done by half the teams.

3. The goodies will be done in teams of two. Each member of a team will receive the same grade. That is,
each member of the team is reponsible for the whole team. If you find, after all, that you cannot work with
your teammate for any reason, especially if you feel that your teammate is not doing his or her share, then
come to me and apply for a divorce. While it is better that both come to me and apply for divorce, for good
reasons, I will grant a divorce to one in the absence of the other. In case of a divorce, each team member
gets a copy of the work accumulated so far and then works independently. The problem is small enough to
be done individually. Actually, it is about the same amount of work either way; the time you gain from
having two working people is lost in the increased communication required to keep each other up to date.
The purpose of the team is to get experience in team dynamics. Because of this divorce mechanism, I will
not accept as an excuse for lateness the claim that your teammate did not work. If one teammate has a
certified miluim or medical absence, the team can turn in its work late as described below.

4. Pregoodie #1 counts as 5%, The test plan for Goodie #1 counts as 5%, Goodie #1 counts as 40%, and
Goodie #2 counts as 50%. Note how the points go up as you get more experienced with the program.

5. Goodies must be turned in on time; the first day late loses 10% of the credit, the second day late loses an
additional 7.5%, and the third and any subsequent day each loses an additional 5% of the credit. This
means, as in real life, if you are going to be late, you will have to weigh the cost of delaying one more day
vs. that of taking your chances with what you have now. For purposes of measuring time, the day ends at
14:30 in the afternoon, when I usually disappear. In fact, on days goodies are due, I will disappear at 14:31

3



and a goodie that is even 1.0000001 minutes late will count as one day late. If you don’t like this, you do
not have to take the course, but that’s the way it is in the real world. I do not accept the excuse that the
computer was down or the printer queue was full on the last day, because that is a well-known
phenomenon that can be defended against by budgeting enough time to finish before the last day. The shab-
bat or a yom-tov plus its preparation day do not count in this scheme. Certified miluim and medical ab-
sences allow you to be as many days late, without penalty, as the certificate says you were on miluim or
sick; the day after that, penalties kick in as if you were 1 day late.

6. You may use any account you may legally have access to. You may use any of the compiled algorithmic
languages available on the system you are using, e.g., C, Fortran, Ada, C++, or even Pascal. If the
language you want to use is not mentioned in the previous line, then see me. I want to verify that it is algo-
rithmic. Therefore, I can tell you now that LISP is not acceptable. It is your responsibility to learn how to
use the editing and job submission facilities on the machine you use. You are expected to pick up the
necessary knowledge to use whatever system you pick on your own.

7. When you turn in a program you will turn in to me

a. in human-readable form:

1. The source program listing, with a table of contents and page numbers or with tabs label-
ling sections attached to the edge of the pages.

2. Two copies of a module diagram, showing in the style of my drawings for the “Informa-
tion Hiding” lecture, the modules of your program and their use of other modules. These
are not inheritance diagrams; you may show me inheritance diagrams in addition to these
required diagrams, but not in place of them.

3. Module descriptions, showing the name of the module and the header of each identifier,
usually those of procedures, invokable from outside the module. In C++-terminology,
this will be a collection of a variation of .h files, showing only the exported identifiers
and not anything that should be hidden, such as data structure definitions. In order not to
confuse these with the standard .h files, which must show private and protected data in
C++, these files should be called .mod files. The module descriptions must be separate
from the source program listing, which consists of its own .h and .c files, even though
all the information required for the module descriptions is in the source listing. I do not
like having to hunt for individual .h files buried among other files; I want the .mod
files all together. Failure to provide the module descriptions as separate from the source
listing will cost points.

4. Either each exported procedure is named so that its function is obvious or you will have
comments explaining its function.

For Goodie #2, the parts of the module description that are modified from the previous goodie
must be clearly marked, by highlighting, change bars, underlining, boldfacing, etc. Failure to do
so will cost points.

b. in electronic form, either electronic mail, sent to berrycourses@cs.technion.ac.il, or a diskette,
as described in detail below, containing the input and output from test runs (as many as you deem
appropriate given the nature of the problem; indeed part of the correctness grade depends on how
well you selected your test data). Failure to do as described will cost points.

1. Please prepare a single directory for all and only the test cases, their documentation,

4



which must explain what each test case is testing, and test case drivers.

2. If you are sending me the tests by e-mail, then send me as a single message the result of a
uuencoding of the result of tar’ing the directory containing all the test files.

If you are giving me a diskette, then give me a diskette with all and only the test files at
the root directory of the diskette.

Do not include the source program either in the e-mail or in the diskette.

3. For each test case xxx, (where xxx is some descriptive name), have an xxx.in that is the
input and xxx.out that is the resulting output.

4. The documentation about test case xxx describes in words what is tested and is in a file
called xxx.doc.

5. The test case driver for test case xxx is in a file called xxx.run. This is so I can see the
full command lines that runs each case.

6. If the goodie involves doing something with PostScript, hand in with the hard copy
module diagram, decomposition, and source code, the result of printing all non-error
xxx.out files on a PostScript printer.

7. If you hand in a diskette, write your name(s) on it!

8. If several test cases share the same xxx.in file, document that in the corresponding
xxx.doc files and use the same xxx.in in each of the different xxx.run files. That is,
it’s possible that there are fewer xxx.in files than xxx.out files, but xxx.out files,
xxx.doc files, and xxx.run have to be one-for-one-for-one.

The reasons for this electronic submission are to save paper and to make it easier to grade the
goodies. By following the requirements exactly, I will be able to follow a simple uniform pro-
cedure to grade the test cases. Failure to follow these requirements exactly will cost points.

It is a real shame when you lose points, totally unnecessarily, on a goodie because of failure to follow these
simple, explicit directions, but it is your problem.

8. DO NOT HAND IN

a. A FLOWCHART,

b. YOUR PROGRAM FLOODED WITH COMMENTS, OR

c. A NATURAL LANGUAGE DESCRIPTION OF INNER WORKINGS OF PROGRAM.

If you hand in one of these, you will lose points even if you have handed in all of the required documents.

9. On the day you are to hand in a programming assignment, there may be a short quiz in class. The quiz is
designed to be trivial if you did your own work on the problem and impossible if someone else did your
work. Your grade on the goodie will be weighted by your performance on this quiz. If you are absent from
class on that day, get in touch with me.

5



Course Materials

Course materials are available by anonymous ftp from ftp.cs.technion.ac.il. Login with user “anonymous” and send
your login@site as the password. The material for this class is in the directory:

/pub/courses/software.engr

Under the directory lectures.ps, you will find there, shortly before any lecture, PostScript files (all file names ending
with .ps) for the lecture slides. The file names should be obvious, and in any case, there is a README file. At the
suggestion of a student in the Fall of 1994, I am making the notes available this way. You can ftp them and print
them at your own expense. Evidently, this is cheaper than paying Michlol for a hard copy. Under the subdirectory
lectures.pdf, you will also find the same material in PDF form (all file names ending with .pdf), readable by the
Adobe Acrobat Reader, which is available for free by anonymous ftp from ftp.adobe.com or from Abobe’s web site,
www.adobe.com. If you get the PDF form material, I highly recommend that you use it only for viewing with an
Acrobat reader and NOT for printing. The pages of the PDF form material have a blue background and this will use
a lot of ink, even on a black & white printer, which will approximate the blue with a shade of gray. Moreover, it
prints one pages per sheet. If you want to print out a hard copy, please also take the corresponding PostScript file. It
prints strictly black text on white and 4 pages per sheet. Also a single hard copy of this 4-page-per-sheet output is
available for copying in the library.

There are adm and goodie subdirectories, which contain PostScript, PDF, and plain ASCII files for ad-
ministration and goodie-related documents, such as this outline, which is under adm as outline.ps.

To get the files, after connecting, cd to the directory mentioned above. If you getting PDF files, say
“binary”. PostScript files must be gotten in ASCII mode unless you happen also to be at a UNIX machine. To get
any particular file f say “get f”. Don’t forget to disconnect by saying “quit”. If f is of the form g.ps, then the result is
a PostScript file. This can be printed by use of “lpr g.ps” or it can be previewed on your screen with ghostscript,
which is described below. If f is of the form g.pdf, then the result is a PDF file, viewable and printable with an Acro-
bat Reader.

GhostScript is called gs on most UNIX systems and it assumes that you are running an X-windows. There
is a PC version of Ghostscript that comes in two different flavors, one for DOS and one for WINDOWS. The advan-
tage of the WINDOWS version is that you can type commands to it in one window, a DOS shell window, and you
will see the results in another, ghostscript graphics window. In the DOS version, both the commands and the results
are written to the same, and only screen. You can find the PC version of Ghostscript in x:\software\ghost in
the file server for the PC farm. Since the program is public domain, you are welcome to copy the stuff there in order
to install it on any other PC you have access to.

These course materials are also available through the course Web page, whose URL is:

http://www.cs.technion.ac.il/˜cs236321

Note though, that this page is under construction this semester, so it may not be as up to snuff as the ftp site, which
has been around for some time now.

Additional Reading

G.M. Weinberg, The Psychology of Computer Programming, van Nostrand Reinhold: New York, NY, 1971

D.L. Parnas, “On the Criteria to be Used in Decomposing Systems into Modules”, Communications of the ACM, 15:
2, pp. 1053-1058, December, 1972

F.P. Brooks, Jr., The Mythical Man-Month: Essays on Software Engineering, Second Edition, Addison-Wesley:
Reading, MA, 1975

B.W. Boehm, Software Engineering Economics, Prentice-Hall: Englewood Cliffs, NJ, 1981

6



F.P. Brooks, Jr., “No Silver Bullet”, IEEE Computer, 20: 4, pp. 10-19, April, 1987

S.R. Schach, Software Engineering, Second Edition, Aksen Associates & Irwin: Boston, MA, 1992

D.L. Parnas and P.C. Clements, “A Rational Design Process: How and Why to Fake It”, IEEE Transactions on
Software Engineering, SE-12: 2, pp. 196-257, February, 1986

E. Gamma, R. Helm, R. Johnson, and J. Vlissides Design Patterns Addison-Wesley: Reading, MA, 1995

7


