### Requirement Engineering for Upgrading Drilling and Blasting Analysis at ABC Ltd

July 18, 2019

Presented by: Umar Ahsan

Advanced Topics in Requirements Engineering (CS 846)

Spring 2019

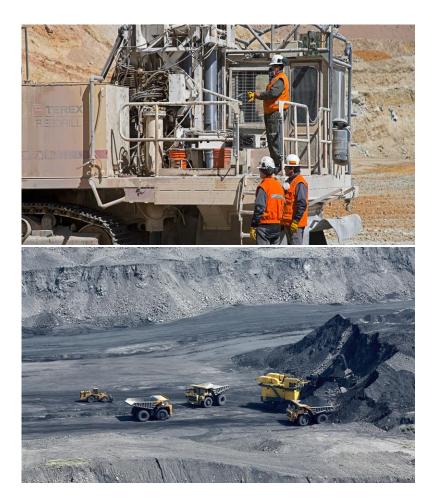


### Outline

- Background Information
- Overview
- Project Goals
- Agile Requirement Engineering
- Project Phases
- Problems during RE
- Things to Redo during RE
- Learning Opportunity
- Conclusion



### Background Information – Drill, Blast & Shovel






### Overview


Drilling and Blasting (D&B) are vital components of any surface mine operation:

- It's a complex process with many variables
- Significant cost of mining is associated with the process
- Lots of information is available within different platforms
- Integration of data in one platform to assist engineers for setting blast parameters
- Informed decision by D&B engineers to reduce variability between different blasting patterns





### Overview - (Contd)



Requirement Engineering for Upgrading Drilling and Blasting Analysis at ABC Ltd



### **Project Goals**

#### **Optimize Blasting**

By analyzing within a blasted pattern:

- Resultant digability
- Geological properties of the pattern like Blastability Index
- Blasting Parameters like delays, explosive material
- Define Key Performance Indicators (KPIs) for digability, productivity, energy generation and cost

#### **Target for Digability**

Add target digability for each blast pattern:

- Lower range is dictated by not affecting shovel productivity
- Upper range is limited by no wasted energy and positive benefits for production

#### Web Application

Design a platform under which:

- Integrated data from multiple sources can be visualized
- End users can interact through advance User Interface (UI) to define goals for a blast pattern



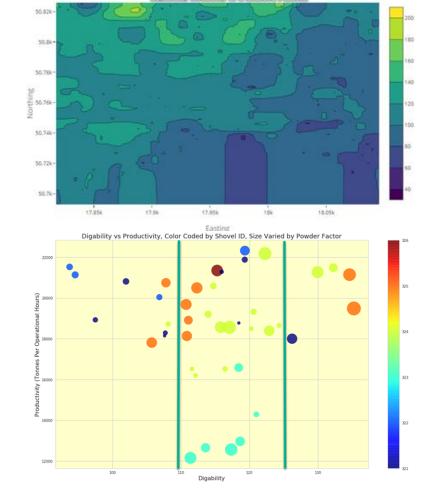
# **Agile Requirement Engineering**

### **Design and Execution Plan**

- Required flexible and quicker solution
- Constant feedback from the site engineers was required
- Agile design strategy
- Weekly Scrums

### **Requirement Engineering Phases**

- Proof of Concept (POC) (Oct 2018 Jan 2019)
- Phase 1 (Feb 2019 March 2019)
- Phase 2 (April 2019)


# **Proof of Concept Phase**

#### Goals

- Understand requirements from the Engineers
- Search for required data in the database
- Automate the integration of data
- Validation of results by end users

#### Results

- Per pattern analysis:
  - Digability
  - Productivity of the shovel
  - Powder Factor
  - Geological properties
  - Cost
  - Many more insights
- Overall analysis:
  - Average out the per pattern analysis to provide bigger picture to design engineers

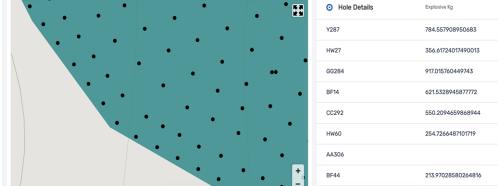


Digability/Heatmap.of/a Blasted Pattern



Requirement Engineering for Upgrading Drilling and Blasting Analysis at ABC Ltd

### Phase 1


#### Goals

- Design a web application
- Test the results
- Put the application into production

### Results

- Data Integration:
  - Drill and Blast
  - Payload
  - Block Model
- Post Blast KPI report:
  - 40 integrated metrics
- Advance UI:
  - Multi-pattern map view
  - Data visualization on map

| 🔅 Pattern Design | Design | Executed | 3/2 Blast Parameters                 | Design Executed     | : Drilling Data         |  |
|------------------|--------|----------|--------------------------------------|---------------------|-------------------------|--|
| Burden, m        | 8.02   | 10.140   | Total Design Volume, m3              | 377169.1 532802.7   | Drilling Equipment      |  |
| Spacing, m       | 8.99   | 9.510    | Total Design DRY Bulk Explosives, kg | 0.000 0.000         | Diameter, inches        |  |
| Subdrill, m      | 1.38   | 1        | Total Design WET Bulk Explosives, kg | 189660.66 166387.41 | Number of Holes Drilled |  |
| Bench Height, m  | 15     | 13       | Powder Factor DRY, kg/m3             | 0.000 0.000         | Total Re-Drilling, m    |  |
|                  |        |          | Powder Factor WET, kg/m3             | 0.641 0.688         | Total Over-Drilling, m  |  |
|                  |        |          | Total Design Mixed Explosive         | 0.00 0.00           | Total Drilling, m       |  |
|                  |        |          | Mixed Powder Factor, kg/m3           | 0.000 NA            |                         |  |
|                  | •      |          | • 🖽                                  | O Hole Details      | Explosive Kg            |  |





### Phase 2

#### Goals

- Live data ingestion using cloud platform
- Incorporate more KPI features
- Additional advance UI

### Results

- Data Pipeline
  - Google cloud platform for data streaming
  - Batch data sharing strategy
- Additional KPI features:
  - 60 integrated metrics
- Additional Advance UI:
  - Heat Maps
  - Aggregate information based on user selected polygon



#### ■ Patense 8 Departs Type Population Nerroge Hale Population N

| <ul> <li>Holes</li> </ul> | Mining Area | Elevation | Pattern Group | Pattern | Hole Details | Explosive Kg | Explosive<br>Type |
|---------------------------|-------------|-----------|---------------|---------|--------------|--------------|-------------------|
| •                         | BRIDGE2     | 1605      | 00            | 06      | WW148        | 798.929      | 700P              |
| •                         | BRIDGE2     | 1605      | 00            | 06      | WW150        | 900.059      | 700P              |
| •                         | BRIDGE2     | 1605      | 00            | 06      | VV148        | 718.025      | 700P              |
| •                         | BRIDGE2     | 1605      | 00            | 06      | YY149        | 920.285      | 700P              |
| •                         | BRIDGE2     | 1605      | 00            | 06      | WW149        | 900.059      | 700P              |
| •                         | BRIDGE2     | 1605      | 00            | 06      | XX150        | 960.737      | 700P              |
| •                         | BRIDGE2     | 1605      | 00            | 06      | XX(147       | 596.669      | 700P              |
| •                         | BRIDGE2     | 1605      | 00            | 06      | XX(149       | 970.851      | 700P              |
| •                         | BRIDGE2     | 1605      | 00            | 06      | XX148        | 839.381      | 700P              |
| •                         | BRIDGE2     | 1605      | 00            | 06      | VV149        | 869.72       | 700P              |



# **Problems during Requirement Engineering**

# **Database Entity Relationship**

- Lack of Entity Relationship Diagram (ERD)
- Reverse engineer the software and understand the origin of data

### **Data Integration**

• Spatial joining required advance python tools

## **Data Quality**

- Availability of sensor data due to breakdown of sensor
- Data cleaning



### Things to Redo during RE process

### **User Interface**

- Data visualization tool Web Application
- Customization of MapBox
- Selection of blast patterns from drop down to tree structure

### Data Collection from Database

- Modify the formula for feature calculation
- Redefine the number of features displayed by default



# Learning Opportunity during RE

## User Engagement

• Importance of defining the feature definition using business analysis sessions with the end users

### **User Stories**

 Understand the true requirements of end users and transforming them into technical language for software development

# **Database Complexity**

• ERD of database



### Conclusion

- Designed a web application to upgrade drilling and blasting analysis at ABC Ltd.
- Three phases to understand RE: POC, Phase1, Phase2
- Understanding the complexity of upgradation through POC
- Constant feedback from end users through Agile RE
- Less effort required related to redoing tasks due to weekly scrums

### UNIVERSITY OF WATERLOO



### THANK YOU FEEDBACK, COMMENTS & QUESTIONS

Requirement Engineering for Upgrading Drilling and Blasting Analysis at ABC Ltd