308 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.3, MARCH 2002

Formal Methods Application:
An Empirical Tale of Software Development

Ann E. Kelley Sobel, Member, IEEE Computer Society, and Michael R. Clarkson

Abstract—The development of an elevator scheduling system by undergraduate students is presented. The development was
performed by 20 teams of undergraduate students, divided into two groups. One group produced specifications by employing a formal
method that involves only first-order logic. The other group used no formal analysis. The solutions of the groups are compared using
the metrics of code correctness, conciseness, and complexity. Particular attention is paid to a subset of the formal methods group
which provided a full verification of their implementation. Their results are compared to other published formal solutions. The formal
methods group’s solutions are found to be far more correct than the nonformal solutions.

Index Terms—Formal methods, software specifications, software engineering curriculum.

1 INTRODUCTION

s part of a grant to study the integration of formal

methods into a undergraduate software engineering
curriculum,' a group of students participated in a sequence
of courses that taught and used formal analysis. The goals
of the grant included demonstrating the potential of
undergraduate students for learning formal analysis tech-
niques, establishing the feasibility of teaching formal
analysis, and increasing the complex problem solving skills
of the students. In order to establish the latter, several
measures of the formal methods students’ abilities were
taken over the three year study for comparison to other
students in the major. One of these measures, the ability to
develop software, provides evidence that the formal
methods students had increased complex problem solving
skills and also supports the common belief of formal
analysis advocates that the use of formal analysis during
software development produces “better” programs [1], [8],
[12]. This work provides, for the first time, concrete
empirical evidence that this common belief is indeed true,
using the metrics of code correctness, conciseness, and
complexity to characterize a “better” program.

This paper is based on two classes of students at Miami
University of Ohio that studied object-oriented design
(OOD) in a one-semester course. One of the classes studied
the material as it is typically taught at the university and,
henceforth, will be referred to as the control group. The

other class, in conjunction with the OOD course material,

1. CDA-9522257 from the US National Science Foundation’s CISE
Educational Innovation program.

o A.EK. Sobel is with the Computer Science and Systems Analysis
Department, Miami University, 230 | Kreger Hall, Oxford, OH 45056.
E-mail: sobelae@muohio.edu.

o M.R. Clarkson is with the Computer Science Department, Cornell
University, 4130 Upson Hall, Ithaca, NY 14853-7501.

E-mail: clarkson@cs.cornell.edu.

Manuscript received 19 July 1999; revised 21 Sept. 2000; accepted 9 Jan. 2001.
Recommended for acceptance by D. Rosenblum.

For information on obtaining reprints of this article, please send e-mail to:
tse@computer.org, and reference IEEECS Log Number 110273.

also studied the use and application of formal methods
during software design. This class will be referred to as the
formal methods group. These students had already received
two semesters of instruction in formal methods: one
semester on formal program specification and derivation,
and one semester on the axiomatic semantics of abstract
data types. The formal method that was employed uses
first-order logic as a specification language and is based on
that presented by Cohen [4].

As a project in the OOD course, both classes were
assigned the development of an elevator system. Each of the
groups was divided into teams of students, with an average
of two students on each team. There were six teams in the
formal methods group and 13 teams in the control group.
The inspiration for the elevator problem came from a 1987
IEEE Workshop on Software Specification and Design [9].
The elevator system was to simulate the operation of an
elevator in carrying passengers, and graphically display the
state of the system. In addition to the functioning executable
and full source code, all student teams were encouraged to
submit a Unified Modeling Language (UML) [10] diagram
showing their design of the system. The formal methods
group was also asked to submit a formal specification,
written using first-order logic, of the elevator system.

The empirical data presented in this work clearly
demonstrates the benefits of formal analysis. Most remark-
ably, the percentage of implementations that passed a
standard set of test cases was 45.5 percent of control teams
versus 100 percent of formal methods teams. The formal
methods group produced better designs and implementa-
tions than the control group. Further analysis of the results
of this project revealed interesting details about the
structure of the formal methods group’s solutions.

The following sections present a comparison of the
development efforts of these two groups. Section 2 provides
background on the experimental curriculum. The experi-
mental design for the elevator project is described in
Section 3. The comparison begins in Section 4 with a
description of the exact problem statement given to each
group. It continues in Section 5 with a presentation of the
various designs that the student teams produced. In

0098-5589/02/$17.00 © 2002 IEEE

SOBEL AND CLARKSON: FORMAL METHODS APPLICATION: AN EMPIRICAL TALE OF SOFTWARE DEVELOPMENT 309

TABLE 1
Course Sequence and Status

Course Sequence and Status

Course Title

New Existing

Introduction to Program Derivation .

Semantics of Data Structures

Object-Oriented Design

Formal Analysis of Concurrent Programs .

Software Engineering

Practicum in Software Development

Section 6, the implementations of the systems are compared
statistically based on metrics of correctness, conciseness,
and complexity. An account of one team’s fully formal
solution to the problem is presented in Section 7, and
compared to several published solutions from the IEEE
workshop. Section 8 concludes the paper.

2 BACKGROUND

The elevator project described in this paper was part of an
experimental curriculum that had the goal of introducing
the study of formal methods early in an undergraduate
software engineering curriculum. The established curricu-
lum for the department in which the experimental
curriculum was taught is a blend of computer science,
software engineering, and operations research courses. The
injection of formal analysis into the curriculum occurred
through two new courses and modification of four existing
core courses. The two new courses dealt solely with formal
methods. The sequence of courses and their status is shown
in Table 1.

The elevator project occurred in the course on OOD.
Thus, the students in the formal methods group had taken
two previous courses involving formal methods—the
program derivation and the modified data structures
courses. The control group had not taken the program
derivation course and their data structures course did not
teach any formal semantics. Students from both groups had
also taken other classes within the department since this
project occurred in the first semester of most students’ third
(junior) year of undergraduate education.

The program derivation course was the first course
offered in the experimental curriculum. Students were
taught to specify programs using first-order logic and
Cohen’s specification notation [4] and to represent pro-
grams with Dijkstra’s guarded command code [6]. Proofs
were created manually and made use of Hoare triples and
the wp predicate transformer [7]. The programs examined in
this class were typically quite small, usually under 15 lines
of code.

The data structures course taught typical abstract data
types (ADTs), including lists, stacks, queues, and trees. The
formal analysis component that was added to this course
for the formal methods group was formal specification of
the semantics of ADT operations. Students defined these
operations using an algebraic notation and proved proper-
ties of programs that used these operations.

For more detailed information about the experimental
curriculum and its results, see [15], [16], [19].

3 EXPERIMENTAL APPROACH

Given the goal of establishing an increase in the complex
problem solving skills of students who use formal analysis,
this particular experiment tests the hypothesis that the
formal methods group solutions were better than the
control group solutions (using the criteria of code correct-
ness, conciseness, and complexity) due to their use of
formal analysis.

The student population of the control group consisted of
a random sample of Systems Analysis majors® at Miami
University of Ohio. The students in the formal methods
group were self-selected in that they volunteered to take the
formal methods curriculum. Their reasons for this choice
included potential interest in the topic and a desire to try
something different. The experimental students took a
learning style survey which categorized them as collabora-
tive and competitive.

Despite the fact that the experimental group was self-
selected, standardized tests revealed no statistical difference
between the abilities of the two classes of students as of the
first common course of the experimental and standard
curriculum [15]. For this particular experiment, the self-
selection of the formal methods group was not weakness,
but, in fact, a necessity since the use of random selection to
form a small group generally does not produce equivalence
with a randomly selected large group [5].

By starting the experiment with two equivalent groups, it
was crucial to maintain their equivalence with the exception
of the continued exposure of formal analysis to the formal
methods group. Every attempt was made to teach the two
groups the same standard material. In courses in the
sequence, both groups used the same texts and were taught
by the same instructor. Both groups were given the same
programming assignments and exams. Thus, prior to the
elevator project described in this paper, both groups had
taken the same data structures course® and had been taught
the same material on OOD.

Since both populations were alike in all aspects except
for the use of a formal method, the educational experiment

2. The major has since changed to Computer Science and Systems
Analysis.

3. There may have been some small number of students in the control
group that had taken a different data structures course since some students
do not follow the required course sequence.

310 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.3, MARCH 2002

method of difference was used to establish the cause for the
different outcomes of the programs generated by the two
populations [3]. The conclusion can be made that it was the
use of formal analysis employed by the students during the
development of their software solution which caused the
increase in the correctness of their solutions.

4 REQUIREMENTS

Below is an excerpt from the program requirements given
to both groups of students:

You are to create a... program that allows a user to issue a set
of elevator requests, floor and direction. These are entered
through menus and dialogs and are displayed in the
“request” view. A request contains the floor at which the
request is made and also the floor to which the user wants to
go. In another view, the elevator and floors of a building are
graphically displayed. When the user presses the “GO”
button in this graphic view, the elevator proceeds to process
the requests that have been entered via the other view. The
application shows the elevator going from one floor to
another processing these requests. The current request,
current floor, and status of elevator (stopped, moving up,
moving down) should be displayed in text at the bottom of
this graphic display. While the elevator is processing these
requests, the user may enter other requests in the other
view... [The elevator scheduling] algorithm should examine
all current requests to determine the next floor and direction.
When a new request is added, the algorithm should
recalculate the next floor and direction.

In addition to this requirement, there was an implicit
requirement of using object-oriented design principles [2],
C++ [17] as the implementation language, and the Microsoft
Foundation Classes (MFC) [11] for the graphical interface.

5 DESIGN

5.1 Designs: Control Group

Since students in the control teams were not required to
submit a design for their elevator systems, almost no record
of the design (if any) these teams used is available. None of
these teams elected to submit a UML diagram, as they were
invited to do. Thirteen control teams submitted an execu-
table with nine of those teams submitting the corresponding
source code.

The source code from the control teams does reveal some
insight into their design: Four of the nine teams that
submitted source code used a design that was tightly
coupled. That is, they mixed functionality from the
graphical display and the elevator system into the same
modules.

Four of the 13 teams that submitted executables also
submitted pseudocode for the algorithm they used to
control scheduling of the elevators. Each of the four designs
revealed by the pseudocode is different—no common
design appeared.

The first of these four algorithms guarantees processing
of requests, but at the expense of efficiency. The elevators
are scheduled to travel in a loop from the first floor to the
top floor and back down again, ad infinitum. The second
algorithm is based on the principle of least work. The
elevators only change direction when it becomes fruitless

to continue in the current direction. The algorithm is very
complex and heavily based on case analysis of the state of
the system. The third algorithm has each elevator always
servicing the nearest request and that request only. The
final algorithm is described incompletely. It fulfills all
requests for stops originating from passengers inside the
elevator before admitting new passengers. It, however,
does not describe the method for deciding which
passengers to admit.

5.2 Designs: Formal Methods Group

Two types of design artifacts exist for the formal methods
teams. The first is voluntary submission of UML diagrams.
The second is specifications in the form of preconditions,
postconditions, and invariants written for particular func-
tions in the teams’ designs.

Out of the six teams, three submitted UML diagrams. In
their UML diagrams, two of the teams indicated a logical
abstraction between the elevator system and the GUI library
in which it was being implemented. That is, the elevator
classes were designed independently of the graphical
interface. This is an arguably good design decision in that
it reduces coupling between the elevator backend and the
graphical frontend. The third team, however, produced a
tightly coupled design. The modules that control the state of
the elevator are mixed with those controlling the display of
the elevator.

The completeness of specifications varied between the
four of the six teams that submitted a specification. Three of
the teams specified functions for deciding when and where
to move the elevator (thus, comprising the scheduling
functionality), while one team specified only the main-
tenance of the request lists. As an aggregate, the teams
specified the following types of functions:

Updating of the request lists

Checking the current request in the system
Movement of the elevator

Updating the people and requests inside the elevator
Changing of the elevator’s direction

For example, one team specified the loading, unloading,
and moving of the elevators. Their postcondition for the
function that performed this operation was:

(3p : Person | OnFloor(e,p)
A e.direction == p.direction : AddPerson(p))
A (GoingDown(e) = e.current_floor := e.current_floor—1
V GoingUp(e) = e.current_floor := e.current_floor + 1)

A (3p : Person | p.ending_floor ==

e.current_floor : RemovePerson(p)).

This specification demonstrates that the team has clearly
defined exactly what operations (removal, addition, changes
in the current floor) should occur and in what states these
should occur, but that their familiarity with the specification
language is less than perfect. Both of the quantifiers should
be V rather than 3. Also, the assignment and equality
operators, borrowed from guarded command code and
C++, respectively, are inappropriate for use in first-order
logic. Only the Boolean equality operator (=) should be

SOBEL AND CLARKSON: FORMAL METHODS APPLICATION: AN EMPIRICAL TALE OF SOFTWARE DEVELOPMENT 311

used. Finally, their specification leaves a part of the state
space unexamined. If the elevator is neither going up nor
down, but is instead halted, the elevator will never move
again, according to this specification. Other than this last
error, the specification captures the elevator movement
quite well.

Another team specified the movement of the elevator in
terms of a target destination floor:

CurrDest = CurrFloor =
(=IsEmpty(e) A CurrDest = Farthest AwayRequest(e))
V (IsEmpty(e) A (—SysQueuel sEmpty A CurrDest =
NearestSysRequest(e)
V SysQueuel sEmpty A CurrDest = 1)).

This team used the specification language correctly and
was able to clearly and concisely specify the changing of the
current destination of the elevator. Whether this particular
algorithm is a good scheduler is not immediately apparent,
but the effects of the function have been captured well.

Three of the formal methods teams also provided
pseudocode descriptions of their scheduling algorithm,
similar to the control teams. The first is a case analysis of
what direction to move, but without any knowledge of a
global list of requests in the system. The elevator must move
to a floor to discover if any requests exist on it. The second
is a FIFO queue of requests, with the modification that any
requests that could be fulfilled enroute to the current
request being serviced are also processed. The final
algorithm is based on maintaining, instead of a current
direction for the elevator (as did all other algorithms), a
target destination floor. The destination is recalculated
based on the passengers inside the elevator and the outside
requests.

5.3 Comparisons

The OOD'’s used by the control and formal methods groups
were not significantly different. The control group did
produce a greater percentage of coupled designs, but it is
unclear whether this is a result of the formal methods
group’s training in formal analysis. The algorithms for
scheduling that the groups used also seem to vary widely.
Only one of the four nonformal algorithms is reasonable in
that it is at least mindful of efficiency and service of all
requests. Two out of the three formal algorithms do in fact
consider efficiency and liveness (service of all requests).
This would suggest that formal analysis training increased
the students” ability to design algorithms.

6 IMPLEMENTATION

Several metrics were used in evaluating the implementa-
tions submitted by the teams. The most important con-
sideration was the functional correctness of the program. In
order to measure this, a set of test cases was developed that
addressed six different scenarios in the elevator system. An
executable had to pass all six cases in order to be considered
correct. Conciseness of the code was measured by lines of
code, broken into two categories (request maintenance and

TABLE 2
Statistics from the Control Teams’ Implementations

Statistics from the control teams’ implementations

Avg. Std. dev. | Conf. int. (o = .05)

Total lines 136 88 (82, 191)

Request 67 83 (15, 119)
Scheduling 69 39 (45, 93)
Loops 7 6 (3, 11)

ifs 16 10 (10, 22)

Cases 30 20 (17, 42)
Deepest nesting 4 1 (4, 5)

elevator scheduling). Complexity of the code was measured
by the number of loops, selection statements, and maximal
nesting depth. Finally, style was observed qualitatively.

6.1 Implementations: Control Group

The majority of the control teams developed implementa-
tions that were functionally incorrect. Three implementa-
tions were completely nonfunctional and failed all the test
cases—their elevators would not move, or would stop at
floors randomly, without any of the conventional function-
ality of an elevator. Three more implementations failed at
least one of the test cases. Two of the implementations were
not available for testing in that no executable existed and
the executable could not be built using locally available
libraries. This left only five out of 11 implementations, or
45.5 percent, as correct.

Conciseness and complexity varied greatly among the
control implementations. Nine sets of source code from the
13 teams were available for analysis. The summary statistics
are shown in Table 2.

The style of the code produced by the control teams was
almost uniformly poor. In only two cases was the code for
elevator scheduling and request maintenance encapsulated
outside of the interface classes. Four of the nine implemen-
tations mixed their code for maintenance and scheduling, in
one case into a single, very large function. Several examples
were found of heavy case analysis. Documentation was
nearly nonexistent. Furthermore, several teams duplicated
code instead of creating functions, or using arrays and
loops. For example, one team hard-coded each of the
elevators in their system as a separate variable, and
duplicated code for the scheduling, changing only the
name of the variable each time.

An example of the typical, and especially the poorer,
code written by the control teams would be prohibitively
long to reproduce here. However, an example of the better
code written by one team gives an idea of the nature of the
code written by the rest of the teams. One of the better
elevator scheduling algorithms that was submitted by the
control teams is shown in Figs. 1la and 1b with the
comments stripped to conserve space.

The fact that this is relatively good code for the control
teams raises some alarm. It is a large function and very
similar code is repeated three times within it. It is nested
rather deeply. Even with the 16 lines of comments that were
stripped from it, it is still not easy to read or to understand.

312 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.3, MARCH 2002

void CElevatorDoc: :ProcessFloorStop()
{
char TempState;
bool found = false;
bool foundl = false;
int NextDestination;
TempState = ’8’;
Destinations[CurrentFloor].RemoveAll();
if (State == ’U?)
{
for (int count = CurrentFloor; count<=4; count++)
if (!'Destinations[count.IsEmpty())
TempState = ’U’;
}
for (count = CurrentFloor; count<=4; count++)
POSITION pes;
pos = Requests[count].GetHeadPosition();
while ((pos != NULL) && (found == false))
if ((Direction(count, Requests[count].GetNext (pos)))
== y’)
{
found = true;
TempState = ’U’;
I
}
}
else if (State == ’D’)
{
for (int count = CurrentFloor; count >= 0; count--)
{
if (!'Destinations[count].IsEmpty())
TempState = ’D’;
}
for (count = CurrentFloor; count >= 0; count--)
{
POSITION pos;
pos = Requests[count].GetHeadPosition();
while ((pos !'= NULL) && (found == false))
r
1
if ((Direction(count, Requests[count].GetNext(pos)))
== ’D?)
{
found = true;
TempState = ’D’;
}
}
¥
}

Fig. 1a. Code sample from one of the control group teams.

It can be concluded from the above that the control teams
performed badly in this programming exercise. Their code
was extremely incorrect and made complex by the use of
case analysis. Their coding style was poor. Overall, the
control implementations showed that the students lacked
the ability to program well.

6.2 Implementations: Formal Methods Group

The formal methods teams’ implementations were all
functionally correct—all six of the implementations passed
all six test cases. As with the control teams, however,
conciseness and complexity varied widely. All six sets of
source code were available for analysis, producing the

SOBEL AND CLARKSON: FORMAL METHODS APPLICATION: AN EMPIRICAL TALE OF SOFTWARE DEVELOPMENT 313

State = TempState;

if (State == ’87)

}
}

State = TempState;

UpdateAllViews (NULL) ;

for (int count = 0; count<=4; count++)

if ((!Requestsl[count].IsEmpty()) && (foundl == false))

{
if (CurrentFloor == count)
{
POSITION pos;
pos = Requests[count] .GetHeadPosition();
while ((pos != NULL) &% (found == false))
{
NextDestination = Requests[count].GetNext (pos);
TempState = Direction(count, NextDestination);
foundl = true;
else
TempState = Direction{CurrentFloor, count);
foundl = true;

ExchangePeople(CurrentFloor, State);

Fig. 1b. Code sample from one of the control group teams (cont.).

statistics shown in Table 3. The code that the formal
methods teams produced was in some ways similar to that
of the control group. Two of the teams failed to encapsulate
their request maintenance and elevator scheduling code
from the interface code. Of the remaining four, two mixed
most of these two types of code into one large function. The
final two teams produced an implementation that was both
encapsulated and modular. Two teams made use of heavy
case analysis in their scheduling algorithms. Documenta-
tion was at least present in most of the teams’ code, but was
not particularly verbose.

One team produced an elevator scheduling algorithm
that was atypically poor compared to the rest of the teams.
Their algorithm consisted of one large, 128-line function
that contained hard-coded, though identical, algorithms for
the separate cases of one, two, and three active elevators.
Again, this was an atypical case and an outlier that greatly
influenced the above statistics.

As an example of one of the better implementations from
the formal methods teams, consider the code presented in
Figs. 2a and 2b. It is based on the idea of servicing requests
as a FIFO queue, but also will service any compatible
requests along with its primary service goal from the head
of the queue. Once again, comments have been stripped.

This sample of code illustrates several of the points made
above. It is not necessarily more concise than that of the
example from the control group (Section 6.1), but it is less

complex. In particular, it uses less nesting and loops. It
exhibits more encapsulation in the member functions that
are called on request and elevator objects. It does repeat a
certain amount of code, thus it could be made more
modular.

In summary, the formal methods teams all produced an
implementation that was correct. However, their code was
not particularly concise, nor did it avoid high levels of
complexity in some cases. The style of their code was
mixed—some teams exhibited good style, while others did
not. The formal methods teams performed well, overall,
although the actual code they wrote could be improved.

6.3 Comparisons

The most important comparison that can be made between
the groups is in the category of correctness. Functional
correctness, as defined by the six standard test cases to
which all the groups’ programs were subjected, was
achieved by only 45.5 percent of the control groups and
100 percent of the formal methods groups. This is a
phenomenal example of how training in formal analysis
can benefit programmers. It could be claimed that another
factor besides this training affected the results, such as a
student’s intelligence or programming experience. How-
ever, empirical data in [15] suggests that no significant
difference in intelligence, as measured on standardized
tests, existed in the student population. In addition, the

314 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.3, MARCH 2002

TABLE 3
Statistics from the Formal Methods Teams’ Implementations

Statistics from the formal methods teams’ implementations

Avg. Std. dev. Conf. int. (o =.05)

Total lincs 117 44 (81, 154)
Request 45 38 (14, 76)

Scheduling 72 38 (41, 104)
Loops 4 3 0,9)

ifs 16 10 {7, 24)

Cases 24 11 (14, 33)
Deepest nesting 5 3 (2,7)

students had all taken the same sequence of programming
classes—the only meaningful difference being the incor-
poration of formal methods into one track. The conclusion
left, then, is that training in formal analysis gave students
an increased ability to create functionally correct programs.

The categories of conciseness and complexity show much
less differentiation between the formal methods and control
groups. In each of the seven metrics reported above, there
exists no statistically significant difference (o = .05) between
the two groups. Remarkably, by increasing to a = .2 and
removing the outlier from the formal methods group
discussed above (Section 6.2), nearly all complexity metrics
become significant, as illustrated in Table 4.

These results are puzzling. It has been suggested that the
use of formal analysis leads to increased conciseness and
decreased complexity [1], [8], but this was not observed at
any high level of confidence. The only positive result is that
decreased complexity was observed in two-thirds of the
formal methods teams, albeit at a low level of confidence.
But, at this same confidence level, the lines of code devoted
to the scheduling algorithm became statistically identical,
leading to the conclusion that there was no increase in
conciseness.

In answer to this puzzle, we suggest that the full benefits
of formal analysis (including at least correctness, concise-
ness, and simplicity) can be fully realized only when the
entire formal method is applied. The formal methods teams

CRequest request;

{

void CFloorsView: :ProcessRequests (CDC# pDC)
CFloorsDoc#* pDoc = GetDocument();

if (! pDoc->m requests. IsEmpty())

request = pDoc->m_requests.GetHead();
pDoc->m_elevators [0] .SetDestFloor (request.GetCurFloor());

if(pDoc—>m_elevators [0] .GetCurFloor ()

< pDoc->m elevators[0].GetDestFloor())

pDoc->m elevators[0].SetMotion("Moving Up...");
else if (pDoc->m_elevators[0].GetCurFloor ()

> pDoc->m_elevators[0].GetDestFloor())

pDoc->m_elevators[0].SetMotion("Moving Down...");

MoveElevator{pDoc->m elevators[0] .GetCurFloor (),
pDoc—>m_elevators[0] .GetDestFloor());
pDoc—>m elevators[0] .SetMotion("Elevator stopped.™);
process = 0;
}
t

void CFloorsView::WatchRequests (int curMoveFloor,
int destMoveFloor)
{

CFloorsDoc* pDoc = GetDocument () ;

POSITION posl;
CRequest request;

request = pDoc->m requests.GetTail();
posl = pDoc->m.requests.GetTailPosition();

int sizelist = pDoc->m requests.GetCount();

Fig. 2a. Code sample from one of the formal methods teams.

SOBEL AND CLARKSON: FORMAL METHODS APPLICATION: AN EMPIRICAL TALE OF SOFTWARE DEVELOPMENT 315

{

}
}

}
}

}

{

Invalidate();

}
}

for(int 1 = 1; i < sizelist; i++)
if(pDoc->m_elevators[0] .GetMotion() == "Moving Up...")
if (curMoveFloor == request.GetCurFloor() &&
destMoveFloor >= request.GetDestFloor () &&

request.GetDirection() == "Moving Up...")

pDoc->m_elevators[0] .SetMotion("Elevator stopped.');
m_stopOnFloor [request.GetDestFloor ()] = 1;

pDoc->m requests.Removelt (posl);

if(pDoc->m_elevators[0] .GetMotion() == "Moving Down...")
if (curMoveFloor == request.GetCurFloor() &%
destMoveFloor <= request.GetDestFloor() &&
request.GetDirection() == "Moving Down...")

pDoc->m_elevators[0] .SetMotion("Elevator stopped.');
m_stopOnFloor[request.GetDestFloor ()] = 1;

pDoc->m requests.Removelt (posl);

request = pDoc->m_requests.GetPrev(posl);

if(m_stopOnFloor [curMoveFloor])
pDoc->m elevators[0] .SetMotion("Elevator stopped.");

m_stopOnFloor [curMoveFloor]=0;

Fig. 2b. Code sample from one of the formal methods teams (cont.).

stopped application of the method before deriving code. As
a result, they achieved correctness (their specifications and
training at least provided that), but not the other two
benefits. Without formally producing code, they could only
produce as good of code as others at their level of
programming expertise.

The final category, style, showed another positive impact
of formal methods. The style of the control teams was

TABLE 4
Confidence Intervals on Control
and Formal Methods Metrics, o = .2

Confidence intervals on Control
and Formal Methods metrics, o = .2

Control Formal Methods
Total lines | (116, 183) (109, 134)

Request (51, 113) (33, 75)

Scheduling (52, 83) (52, 82)
Loops (5, 10) (1, 4)

ifs (14, 21) (11, 15)

Cascs (28, 42) (21, 24)
Deepest nesting (4, 5) (3, 4)

uniformly poor, while that of the formal methods teams
varied from poor to good. This again supports training in
formal analysis.

7 A FuLLY FORMAL SOLUTION

After the class assignment was finished, four students of the
formal methods group undertook a more thorough formal
analysis of the elevator system. This team took the
specification of the most important part of the system (the
elevator scheduling algorithm), implemented it using
guarded command code (GCC), verified that the code
satisfied the specification, and, finally, translated the GCC
into C++.* This team will be referred to as the verification
team throughout this section.

7.1 Requirements

In addition to the requirements in Section 4, the verification
team chose to gather further requirements for the schedul-
ing algorithm. Their informal definition of the elevator
scheduling problem was taken from the call for papers of

4. This work was presented in a poster session at the 1998 SIGCSE
conference [14]. Special thanks to Toni Lehmkuhl, Stephanie Taylor, and
Bryce Williams for allowing part of that work to be reproduced here.

316 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.3, MARCH 2002

the 1987 IEEE International Workshop on Software Speci-
fication and Design, where it was explicitly proposed as a
“challenging exercise” [9]. The informal requirements were
adapted as follows:

1. Maintain a set of buttons that have been pushed
inside the elevator (requested floor number).

2. Maintain a set of buttons that have been pushed
outside the elevator (floor number on which a
passenger is waiting and the requested direction).

3. Halt when the elevator has no more requests to
service.

4. Service all outside requests eventually with all floors
given equal priority.

5. Service all inside requests eventually with all floors
being serviced sequentially in the direction of travel.

6. Ensure that requests are processed in a timely
manner and that the direction of elevator movement
occurs in a logical manner that maximizes the use of
the elevator.

7.2 Design

The verification team produced both a UML diagram and
formal specifications.

The primary classes indicated in their UML diagram
were FElevator and FElevatorSystem. The team concluded
that the majority of the methods in these classes needed
little in the way of algorithmic design, for example, list
operations. The scheduling algorithm itself was encapsu-
lated in the UpdateElevator method of class Elevator. This
method was the focus of their verification.

The guiding principle behind their UpdateElevator
method is that of least work; in particular, the elevator does
not change direction until there is no reason to continue in
the current direction. By continually traveling in one
direction for a maximal distance and only taking on
passengers traveling in that direction, inside requests can
be serviced in a timely manner.

After the members of the team produced a first-order
specification of the method, they wrote guarded command
code based on that specification. They then produced proofs
that the guarded command met its specification. For
examples of the specification, guarded command code,
and proof, see the appendix.

The original specification was revised as errors were
discovered through the verification process. The errors
were generally due to the specification being incomplete.
For example, one error resulted from not specifying how the
elevator should resume motion after halting (as did another
team in an above example). Another important result of the
verification was the discovery of an error that led to the
generation of an abort statement.

The original draft of the specification required approxi-
mately five hours for the team to write. Revising the
specification to account for errors required approximately
ten additional hours, some of which were used for
generating portions of the verification. The verification
itself required another ten hours to complete.

A key result of the formal method used by the
verification team is that all errors in the specification were
discovered before implementing the code—that is, the

TABLE 5
Values from the Verification Team’s Implementation

Values from the verification
team’s implementation

Total lines 105
Request, 11
Scheduling 94
Loops 7

ifs 135

Cases 24
Dcepest nesting 4

specification never required revision due to errors discov-
ered during actual code testing. The verification process
produced a sound design that did not need changes based
on discoveries from implementation and testing.

7.3 Implementation

In order to implement the functions which were formally
derived, the verification team translated their guarded
command code into C++ in a very direct manner. Predicates
were translated as function calls, multiple assignments were
changed into sequences of single assignments, and non-
determinism in if statements was resolved in the order in
which the guards appeared. The resulting code is given in
Appendix A 4.

The formal methodology applied by the verification team
proved beneficial in implementing the code for this
algorithm. The first run of the program was not error-free,
but the errors encountered were related exclusively to the
code not derived from a specification. ReasonToGo was the
only procedure involved in the scheduling algorithm itself
that contained an error in logic, and it was, not coinciden-
tally, the only procedure in the algorithm that was not
formally derived. Further testing of the code showed the
sections generated by the application of formal methods to
be correct, not just in theory, but in practice.

The verification team’s implementation passed all six test
cases that were used to evaluate the control and formal
methods teams’ implementations, thus making it function-
ally correct. Its conciseness and complexity are character-
ized by the values in Table 5. Note that the values in Table 5
include more code than is presented in the appendix, thus
increasing the length and complexity of the code.

The style of the verification team’s code is exceptionally
good. It is both encapsulated and modular. The use of case
analysis is avoided. Documentation was present both in the
comments in the source code and in the form of a complete
specification and guarded command code.

To summarize, the verification team’s implementation
was functionally correct, just as the rest of the formal
group’s implementations. Even more importantly, it was
virtually error-free at the first run of the program.
Comparisons based on conciseness and complexity are
difficult to make because of the small sample size (only
one). Finally, the style was better than all the other teams.
The verification team performed very well in this program-
ming exercise.

SOBEL AND CLARKSON: FORMAL METHODS APPLICATION: AN EMPIRICAL TALE OF SOFTWARE DEVELOPMENT 317

7.4 Comparisons to Published Formal Solutions

Many solutions were offered to the elevator scheduling
problem as presented at the IEEE Workshop on Specifica-
tion and Design. Other solutions to the problem dealt
primarily with the physical requirements of the elevator.
One concentrated on elevator lights (on/off), doors (open/
closed), and buttons (press/release) [18, p. 266]. Another
included the operation of the emergency button in the
design [13, p. 23]. All of these aspects are important in the
physical operation of an elevator, but ignore the essence of
designing an algorithm to control the movement of the
elevator itself. Furthermore, these solutions did not include
in their specifications the maintenance of request sets for
inside and outside the elevator. Tracking such information
is crucial in designing an elevator that will minimize
waiting time for passengers.

One published solution to this problem [13, p. 26] gives
priority to the passengers in the elevator and those waiting
on floors that the elevator passes by, not allowing the
elevator to check for requests on other floors. If no one in
the elevator ever requests a floor where people are waiting
and the elevator never passes that floor, then those people
will never be picked up. This ignores a serious part of the
functionality of an elevator by not guaranteeing that all
requests are eventually serviced.

The solution to the elevator scheduling problem devel-
oped by the verification team is more logical in nature,
focusing on the actual algorithm that determines the
direction the elevator should travel dependent upon the
requests of people waiting for and riding inside the
elevator. This quintessential part of the problem was
captured mathematically in a manner that permits proof
of the correctness of the code derived from it. Furthermore,
the solution is much more complete and detailed than
others presented at the IEEE Workshop.

8 CONCLUSIONS

The development of an elevator scheduling system by three
groups of teams of students, with each group utilizing
formal analysis to a different extent, revealed interesting
details about the benefits of formal analysis.

For a requirements definition, the control and formal
methods groups were content with the somewhat vague
definition given to them. Only the verification team, which
utilized the formal method to its full extent, sought a much
more detailed requirements definition.

In the design phase of the project, the control teams did
not produce any artifacts that can be analyzed, but their
source code shows a lack of characteristics that would result
from good design. In particular, their code exhibited a high
degree of coupling with the functionality of the interface
code. The designs of the formal methods group were at least
documented in diagrams and first-order specifications,
although some of these were incomplete. Their designs
showed less coupling and their specifications of elevator
scheduling and maintenance request functions adequately
capture the effects of these functions, even though their
understanding of the specification language showed some
deficiencies. The verification team’s design was very

complete, including a class diagram of the entire system,
as well as a full specification of the elevator scheduling
algorithm.

The implementations produced by the three groups
demonstrated that the application of formal analysis
provided great benefits. The most important result was
the percentage of implementations that passed a standard
set of test cases: 45.5 percent of control teams versus
100 percent of formal teams. Beyond correctness, there
appears to be a certain advantage in decreased complexity
of code for the formal teams, but not at a high level of
confidence. Conciseness did not seem to be affected by the
use of formal specifications. This fact may be explained by
the formal methods group only using formal analysis to
write specifications and not actually deriving their code.
The verification team did indeed achieve significant levels
of conciseness; however, their one data point is not
sufficient for a comparison of conciseness or complexity.
Finally, a positive correlation appeared to exist between the
increased use of formal methods and better coding style.

These results support the hypothesis that the use of
formal analysis led to better solutions by the formal
methods group. The enhanced ability to develop software
is a demonstration that the formal methods group had
increased complex problem solving skills. This validates the
common belief of formal analysis advocates that the use of
formal analysis during software development produces
“better” programs. It is our hope that these results
contribute to the inclusion of formal analysis in software
engineering curricula at other universities.

APPENDIX A

FORMAL VERIFICATION

A.1 Specification
The parameters required by UpdateElevator are:

e CurFloor An integer representing the floor where

the elevator is currently located

e CurDir A value in the set {UP,DOWN,HALT}

that represents the direction in which the elevator is
currently moving

o InsideReqSet A set of integers representing the floor

numbers associated with the buttons currently
illuminated inside the elevator

e QutsideReqSet A set of OutsideReq values (pairs

consisting of a floor number and direction value)
that represent the set of buttons currently illumi-
nated outside the elevator. Elements are added to
this set by a process external to the elevator
scheduler.

The precondition is necessary for saving the initial values
of CurDir, InsideReqSet, and OutsideReqSet since these
values can change during the execution of UpdateElevator,
and both the initial and final values must be referenced in
the postcondition. Thus, references to CD, I, or O in the
postcondition are actually references to the initial values of
CurDir, InsideReqSet, and Outside ReqSet.

The postcondition was separated into one main portion,
two predicates, and one function. These predicates, whose

318 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.3, MARCH 2002

definitions follow, are textual substitutions for frequently
repeated pieces of the postcondition, and are used to
improve readability.

The only function, Rev(Dir), returns the reverse of the
direction Dir. For example, Rev(UP) would return the
direction value DOWN and Rev(HALT) = HALT.

ReasonToGo(Dir) is a predicate that is true if there
is a reason to go in the direction Dir. For example,
ReasonToGo(UP) is true either if someone inside the
elevator has pushed a button requesting to go to a floor
higher than the floor the elevator is currently on, or if
someone on a higher floor outside the elevator has pushed a
button to request the elevator.

PickupDropoff(Dir) is a predicate that specifies the
changes that occur in the inside and outside request sets
as passengers are picked up and dropped off at different
floors throughout the building. When conditions permit the
fulfillment of a request, this predicate specifies that the
request will no longer exist in the appropriate request list
(though it may be added to the other list) after execution of
the algorithm. This fulfills the maintenance component of
the first two English requirements.

In the main postcondition, ReasonToGo is used to realize
the liveness properties of the fourth and fifth requirements.
As long as requests exist, this predicate will be true and,
thus, the elevator will not stop moving and servicing
requests, although no formal proof of this has yet been
devised. When ReasonToGo becomes false for all direc-
tions, the main postcondition chooses HALT as the new
elevator direction, thus fulfilling the third requirement.
Other directions are chosen based upon ReasonToGo. The
guiding principle behind the specification is that of least
work; in particular, the elevator does not change direction
until there is no reason to continue in the current direction.
This is in order to meet the efficiency goals of the
requirements. By continually travelling in one direction
for a maximal distance and only taking on passengers
travelling in that direction, inside requests can be serviced
in a timely manner.

Specification of UpdateElevator
var CurFloor : int
;var CurDir : direction {CD = CurDir}
;var InsideReqSet : setof int {I = InsideReqSet}
;var OutsideReqSet : set of OutsideReq{O =
OutsideReqSet}
; CurDir, Inside ReqSet, Outside ReqSet : (CD = HALT
N (ReasonToGo(UP)
A CurDir = UP A PickupDropoff(UP))
V(ReasonToGo(DOWN)
A CurDir = DOWN A PickupDropoff(DOW N))
V(= (ReasonToGo(UP) V ReasonToGo(DOWN))
A CurDir = HALT))
V(CD # HALT A (ReasonToGo(CD)
A CurDir = CD A PickupDropoff(CD))
V(=ReasonToGo(CD) A ReasonToGo(Rev(CD))
A CurDir = Rev(CD) A PickupDropoff(Rev(CD)))
V(=(ReasonToGo(CD) V ReasonToGo(Rev(CD)))
A CurDir = HALT A PickupDropoff(HALT)))

where
UP Dir = DOWN
DOWN Dir=UP
HALT Dir=HALT
ReasonToGo(Dir) = (3i|0 < i < #1 :
(I‘i > CurFloor A\ Dir = UP)
V(I.i < CurFloor A Dir = DOWN)))

V(30|0 <o< #O: (O.o.floor > CurFloor \ Dir = UP))
V(0O.0.floor < CurFloor A Dir = DOWN)
V(O.o.floor = CurFloor N\ Dir = O.o.Dir))

PickupDropoff(Dir) = ((CurFloor, Dir) ¢ O
/\(Coo : CurFloor ¢ 1V (C’urFloor el
AInsideReqSet = I — CurFloor)))

V((CurFloor, Dir) € O A (CurFloor ¢ I

AInsideReqSet = I + GetDests()
AOutsideReqSet = O — (CurFloor, Dir))
V(CurFloor € I A InsideReqSet = I 4+ GetDests()
—CurFloor, OutsideReqSet = O — (CurFloor, Dir)))
Direction = {UP, DOWN,HALT}
OutsideReq = (floor : int, dir : Direction)

Rev(Dir) =

GetDests() is a call to the user interface. This function
returns the set of buttons just pushed inside the elevator as
passengers enter. The equivalent gathering of buttons
pushed outside the elevator occurs external to this
scheduling algorithm.

Specification of ProgPD
{true} ProgP D(Dir) { PickupDropoff(Dir)}

A.2 Guarded Command Code

The following guarded command code was written by the
verification team based on the above specification. The code
for UpdateElevator and ProgPD, a helper function, is
presented here.

Guarded Command Code for UpdateElevator
ifCD=HALT —
if ReasonToGo(UP) —
CurDir := UP; ProgPD(UP)
O ReasonToGo(DOWN) —
CurDir == DOW N; ProgPD(DOWN)
0 —(ReasonToGo(UP) V ReasonToGo(DOWN)) —
skip
g
0O CD+# HALT —
if ReasonToGo(CD) —
ProgPD(CD)
O —ReasonToGo(CD) A ReasonToGo(Rev(CD)) —
CurDir ;== Rev(CD); ProgPD(Rev(CD))
0 —(ReasonToGo(CD) V ReasonToGo(Rev(CD))) —
CurDir .= HALT; ProgPD(HALT)

fi
{R}
Guarded Command Code for ProgPD
if(CurFloor, Dir) ¢ O —

if CurFloor ¢ I — skip
O CurFloor € I — InsideReqSet :== I — CurFloor

SOBEL AND CLARKSON: FORMAL METHODS APPLICATION: AN EMPIRICAL TALE OF SOFTWARE DEVELOPMENT

fi
O (CurFloor,Dir) € O —
if CurFloor¢ I —
InsideReqSet, OutsideReqSet := I + GetDests(),
O — (CurFloor, Dir)
g CurFloor eI —
InsideReqSet, OutsideReqSet := I+ GetDests() —

CurFloor,O — (CurFloor, Dir)
fi

A.3 Proof

The verification team also produced proofs that the above
guarded command met its specification. The following is an
excerpt from a paper presented at [14] that shows the
annotated specification, guarded command code, and proof
of ProgPD:

Specification
{Q : true} ProgP D(Dir) { PickupDropoff(Dir)}

Guarded command code
{P: true}
if Cy : (CurFloor, Dir) ¢ O —
Ty : if Coo : CurFloor ¢ I — Ty : skip
[] Cor: CurFloor € I — Ty : InsideReqSet :=
I — CurFloor
fi
[| Cy : (CurFloor,Dir) € O —
Ty :if Cyg: CurFloor¢ I —
Ty : InsideReqSet, Outside ReqSet :=
I + GetDests(),
O — (CurFloor, Dir)
[| Cy1: CurFloor e I —
Ti1 : InsideReqSet, Outside ReqSet :=
I+ GetDests() —
CurFloor,O — (CurFloor, Dir)
fi
fi
{U : PickupDropoff(Dir)}

Proof
(1) Disjunction of guards
Co VvV Ch
=< Substitution >
(CurFloor, Dir) ¢ OV (CurFloor, Dir) € O
=< Definition of ¢ >
=((CurFloor, Dir) € O) V (CurFloor, Dir) € O
=< pVp>
true

Co V Cyn = Chp V Ch1 = true by similar logic.

@ {Coo} Too {Uo}
wp.skip.Uy
=< Definition of skip >
Uy
=< Assume Cyg >
true

319

(3) {Co1} To1 {Uo}
wp.InsideReqSet := I — CurFloor.U
=< Assume Cy; >
wp.InsideReqSet := I — CurFloor.InsideReqSet =

I — CurFloor
=< Definition of :=, x = = >
true

Proofs of Ty and T}, are identical in shape, with
appropriate subscripts.

@) {CotTh{U}
wp.Ty.U
=< Definition of if >
(Coo VvV Co1) ANMCoo} Too {Uo} A {Cor} Tor {Uo}
=< (1), (2), (3) >
true
Proof of T} proceeds indentically, using
appropriate subscripts.

(5) {P}ProgPD{U}
wp.ProgPD.U
=< Definition of if, Assume appropriate guards >
(Co v C1) ANMCo} To {Un} AN C1} T {Un}
=< (1),(4) >
true

A.4 Implementation

void CElevatorSystem: :
ProgPD(int CurFloor, int Dir)
{
if (!InOutRegSet(CurFloor, Dir)) {
if (InInRegSet(CurFloor)) {
while (m_Elevator.FindStop(CurFloor)) {
m_Elevator.RemoveStop(CurFloor);
}
}

} else if (! InInRegSet(CurFloor)) {
GetDests(CurFloor, Dir);
RemoveRequests(CurFloor, Dir);

} else {
while (m_Elevator.FindStop(CurFloor)) {

m_Elevator.RemoveStop(CurFloor);

}
GetDests(CurFloor, Dir);
RemoveRequests(CurFloor, Dir);

}

}

int CElevatorSystem: :Rev(int Dir)
{
if (Dir == UP) {
return DOWN;
} else if (Dir == DOWN) {
return UP;
} else

320

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO. 3, MARCH 2002

return HALT,;

int CElevatorSystem: :UpdateElevator ()

{

int CD, CurFloor;

CD =m_Elevator.GetCurrentDirection();
CurFloor =m_Elevator.GetCurrentFloor();

if (CD == HALT) {

if (ReasonToGo(UP)) {
m_Elevator.SetCurrentDirection(UP);
ProgPD(CurFloor, UP);

} else if (ReasonToGo(DOWN)) {
m_Elevator.SetCurrentDirection(DOWN);
ProgPD(CurFloor, DOWN);

}

} else if (ReasonToGo(CD)) {
ProgPD(CurFloor, CD);

} else if (ReasonToGo(Rev(CD))) {
m_Elevator.SetCurrentDirection(Rev(CD));
ProgPD(CurFloor, Rev(CD));

} else {
m_Elevator.SetCurrentDirection(HALT);
ProgPD(CurFloor, HALT);

}

return m_Elevator.GetCurrentDirection();

REFERENCES

(1]
(2]

B3]
(4

(5]

(0]
(7]

8]

]
(10]

[11]
[12]

(13]

(14]

[15]

[1o]

(171

J.P. Bowen and M.G. Hinchey, “Ten Commandments of Formal
Methods,” Computer, vol. 28, no. 4, pp. 56-63, Apr. 1995.

G. Booch, Object-Oriented Analysis and Design with Applications,
second ed. Addison Wesley Longman, 1994.

L. Christensen, Experimental Methodology. Allyn and Bacon, 1977.
E. Cohen, Programming in the 1990s: An Introduction to the
Calculation of Programs. Springer-Verlag, 1990.

D.T. Campbell and J.C. Stanley, Experimental and Quasi-Experi-
mental Designs for Research. Houghton Mifflin, 1963.

E.W. Dijkstra, A Discipline of Programming. Prentice Hall, 1976.
E.W. Dijkstra and C.S. Scholten, Predicate Calculus and Program
Semantics. Springer-Verlag, 1990.

A. Hall, “Seven Myths of Formal Methods,” IEEE Software, pp. 11—
19, Sept. 1990.

IEEE, Proc. Int’l Workshop Software Specification and Design, 1987.
G. Booch, J. Rumbaugh, and I. Jacobsen, The Unified Modeling
Language Reference Manual. Addison Wesley, 1998.

Microsoft, Microsoft Visual C++ MFC Library Reference, vol. 1,
Microsoft Press, 1997.

H. Saiedian, “An Invitation to Formal Methods,” Computer, vol. 29,
no. 4, pp. 16-30, 1996.

M.D. Schwartz and N.M. Delisle, “Specifying a Lift Control
System with CSP,” Proc. IEEE Workshop Software Specification and
Design, 1987.

ACM, Proc. 29th SIGCSE Technical Symp. Computer Science
Education, 1998.

AEK. Sobel, “Empirical Results of a Software Engineering
Curriculum Incorporating Formal Methods,” ACM Inroads,
vol. 32, no. 1, pp. 157-161, Mar. 2000.

A.EXK. Sobel, “Emphasizing Formal Analysis in a Software
Engineering Curriculum,” IEEE Trans. Education, May 2001.

B. Stroustrup, The C++ Programming Language, third ed. Addison
Wesley, 1997.

[18] J.C.P. Woodcock, S. King, and L.H. Sorensen, “Mathematics for
Specification and Design: The Problem with Lifts...,” Proc. IEEE
Workshop Software Specification and Design, 1987.

[19] http://www.eas.muohio.edu/csa/formal, 2002.

Ann E. Kelley Sobel received the PhD degree
in computer science from The Ohio State
University. She is an associate professor in the
Computer Science and Systems Analysis De-
partment of Miami University. Her research
interests include formal methods creation and
application, software engineering, and surviva-
ble systems. She is a member of the IEEE
Computer Society and the ACM.

Michael R. Clarkson received the BS and BM
degrees in computer science and music, re-
spectively, from Miami University. He is currently
a graduate student at Cornell University where
he is working toward the PhD degree in
computer science. His research interests include
programming languages, formal analysis of
software, and security in distributed systems.

> For more information on this or any other computing topic,
please visit our Digital Library at http://computer.org/publications/dlib.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

