
Too Big To Trash(TBTT)
Requirements Engineering of Perfective Maintenance



Outline

1. Recap from Dan’s previous lectures
2. Extrapolating the recap
3. Research strategy
4. Open source’s strategy
5. Agile
6. Is all perfective maintenance agile?
7. Tips I found for perfective maintenance
8. Closing thought



Cost of Requirements Changes per Stage



E-Type Software

● Software that once it is deployed, changes the requirements of the system.
● Usually the systems allows something to happen that couldn’t happen 

previously.
● Once the new behaviour exhibits itself, it needs to be addressed in new ways 

there were not considered beforehand.
● Ex. A bank that deploys ATMs as an optional feature, allows increased 

customer base, no longer optional, additional supports needed to provide 
redundancy.



Types of Maintenance
● Corrective maintenance is traditional bugs.
● Perfective and adaptive maintenance is 

either e-type software or desired 
requirements that were not thought of 
ahead of time.



What does this all mean?

● Less and less large software seems to be built in a way that would facilitate 
full scale upfront RE.

● But upfront RE has numerous benefits, as shown by previous lectures.
● When a CBS gets to the maintenance stage, the most expensive stage, a lot of 

RE might still left to do for the perfective and adaptive maintenance.
● If the size of the software is large enough, throwing it out could be an 

impossibility (maybe not logically, but politically/realistically)
● What is the right way to accomplish this?



Research Strategy

● Looking at Google Scholar, IEEE Xplore, ACM DL, “perfective maintenance 
requirements” or returned 0 seemingly relevant results

● During project proposal discussions, Dan was nice enough to give me a few 
seed papers and online books that he had found.

● Followed a loose mental snowball of each paper suggesting new topics or 
related research



Open Source Software Development (OSSD)

● Open source software (OSS) seems to manage this on the regular (Mozilla, 
Linux, etc.)

● Lots of OSS seems to exist for a long time adding features, Linux was 
originally released in 1991.

● With OSS, almost anybody can submit a change request, and almost anybody 
can make and submit modifications.

● Where do they get their requirements?



OSSD Requirements

● Many OSS developers are also OSS users.
● A common reason to contribute is they will use the feature they add.
● OSS developers working on a feature work very closely with an OSS user who 

is highly available to ensure that the feature matches the requirements.
● A change being reviewed by other OSS developers, is also reviewed by OSS 

users to ensure the feature matches the requirements.
● Sounds a lot like Agile.



Agile Software Development (Agile)

● At a high level, Agile involves:
○ Keeping software runnable
○ Working closely with customers to define requirements when they are needed
○ Accepting and working with changes as they come
○ Valuing software over documentation



Two Common Agile RE Techniques

Test Cases as Requirements(TCR)

And

Just In Time Requirements Determination



Test Cases as Requirements

● If a test case is testing the required behaviour, as long as the test case is 
understandable, it can serve a similar purpose.

● Can involve recording informal or formal requirements and translating to test 
cases or bypassing separately recorded requirements entirely.

● Adding a new feature to a software in maintenance would involve just 
creating the new test cases.

● All other test cases should be able to maintain satisfaction of all other 
requirements.



Just In Time(JIT) Requirements Determination

● JIT involves maintaining requirements in high level simple formats until 
implementation is about to begin.

● Requirements are elaborated in conjunction with implementation beginning.
● If an entire system is built this way, all issues will be built on top of other 

requirements with finished implementations. 
● This means that the development process is maintained the same through 

maintenance and should cause no undue issues than the initial development.



How Does This Relate to Perfective Maintenance

● A few of the principles of the Agile Manifesto relate to always having working 
software. 

● Dan suggested while discussing my project proposal that if you always have 
working software, every iteration past the first is perfective maintenance



How Does This Relate to Perfective Maintenance

● It seems based on my research that all perfective maintenance is loosely 
agile until you throw everything away and start over or just continue being 
agile forever.

● It all involves working with users to some degree to add the features they 
want into an existing codebase. When the feature is done you release out to 
the masses.

● Beatty and Weigers suggest adopting agile practices when taking on an 
enhancement project regardless of how the original project was built.



Tips for Perfective Maintenance

● If requirements documentation is missing for what you are perfecting, create 
as much documentation as makes sense for your change and how it 
interfaces with the existing software.

● Pay attention to the costs and benefits of documentation to determine 
whether poorly documented existing work should be documented.

● Try to keep track of which requirements are no longer necessary and drop 
them to reduce bloat.

● Practice politics like Dan described in previous lecture with your userbase to 
make any changes as easy as possible. 



A Further Question I Had

● Dan suggests that upfront RE is best in his experience and to throw out 
written software when the cost of updating it is too high.

● Large software makes that difficult because each individual change is so 
small that it doesn’t cost enough to throw out.

● Could large software be written in a way that was modular enough and with 
small enough modules that you could throw away just a module and start 
over with upfront RE?

● Seems like a large discipline crossover between Software Architecture and 
Requirements Engineering.



References
Dan Berry, “The Requirements Iceberg” https://cs.uwaterloo.ca/~dberry/ATRE/Slides/IcebergSlides.pdf

Karl Wiegers and Joy Beatty, “Developing Requirements for Enhancement and Replacement Projects”, 8/15/2013

Dietze, Stefan. (2005). Agile requirements definition for software improvement and maintenance in open source software development. 

https://www.extremetech.com/computing/94026-linux-is-20-years-old-today

Eva-Maria Schön, Jörg Thomaschewski, María José Escalona,”Agile Requirements Engineering: A systematic literature review,” Computer Standards & Interfaces, Volume 49, 
2017,Pages 79-91

T. A. Alspaugh and W. Scacchi, "Ongoing software development without classical requirements," 2013 21st IEEE International Requirements Engineering Conference (RE), Rio de 
Janeiro, 2013, pp. 165-174.

N. A. Ernst and G. C. Murphy, "Case studies in just-in-time requirements analysis," 2012 Second IEEE International Workshop on Empirical Requirements Engineering (EmpiRE), 
Chicago, IL, 2012, pp. 25-32.

A. Q. Do and T. Bhowmik, "Refinement and Resolution of Just-in-Time Requirements in Open Source Software: A Case Study," 2017 IEEE 25th International Requirements Engineering 
Conference Workshops (REW), Lisbon, 2017, pp. 407-410.


