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Cost of Requirements Changes per Stage



E-Type Software

● Software that once it is deployed, changes the requirements of the system.
● Usually the systems allows something to happen that couldn’t happen 

previously.
● Once the new behaviour exhibits itself, it needs to be addressed in new ways 

there were not considered beforehand.
● Ex. A bank that deploys ATMs as an optional feature, allows increased 

customer base, no longer optional, additional supports needed to provide 
redundancy.



Types of Maintenance
● Corrective maintenance is traditional bugs.
● Perfective and adaptive maintenance is 

either e-type software or desired 
requirements that were not thought of 
ahead of time.



What does this all mean?

● Less and less large software seems to be built in a way that would facilitate 
full scale upfront RE.

● But upfront RE has numerous benefits, as shown by previous lectures.
● When a CBS gets to the maintenance stage, the most expensive stage, a lot of 

RE might still left to do for the perfective and adaptive maintenance.
● If the size of the software is large enough, throwing it out could be an 

impossibility (maybe not logically, but politically/realistically)
● What is the right way to accomplish this?



Research Strategy

● Looking at Google Scholar, IEEE Xplore, ACM DL, “perfective maintenance 
requirements” or returned 0 seemingly relevant results

● During project proposal discussions, Dan was nice enough to give me a few 
seed papers and online books that he had found.

● Followed a loose mental snowball of each paper suggesting new topics or 
related research



Open Source Software Development (OSSD)

● Open source software (OSS) seems to manage this on the regular (Mozilla, 
Linux, etc.)

● Lots of OSS seems to exist for a long time adding features, Linux was 
originally released in 1991.

● With OSS, almost anybody can submit a change request, and almost anybody 
can make and submit modifications.

● Where do they get their requirements?



OSSD Requirements

● Many OSS developers are also OSS users.
● A common reason to contribute is they will use the feature they add.
● OSS developers working on a feature work very closely with an OSS user who 

is highly available to ensure that the feature matches the requirements.
● A change being reviewed by other OSS developers, is also reviewed by OSS 

users to ensure the feature matches the requirements.
● Sounds a lot like Agile.



Agile Software Development (Agile)

● At a high level, Agile involves:
○ Keeping software runnable
○ Working closely with customers to define requirements when they are needed
○ Accepting and working with changes as they come
○ Valuing software over documentation



Two Common Agile RE Techniques

Test Cases as Requirements(TCR)

And

Just In Time Requirements Determination



Test Cases as Requirements

● If a test case is testing the required behaviour, as long as the test case is 
understandable, it can serve a similar purpose.

● Can involve recording informal or formal requirements and translating to test 
cases or bypassing separately recorded requirements entirely.

● Adding a new feature to a software in maintenance would involve just 
creating the new test cases.

● All other test cases should be able to maintain satisfaction of all other 
requirements.



Just In Time(JIT) Requirements Determination

● JIT involves maintaining requirements in high level simple formats until 
implementation is about to begin.

● Requirements are elaborated in conjunction with implementation beginning.
● If an entire system is built this way, all issues will be built on top of other 

requirements with finished implementations. 
● This means that the development process is maintained the same through 

maintenance and should cause no undue issues than the initial development.



How Does This Relate to Perfective Maintenance

● A few of the principles of the Agile Manifesto relate to always having working 
software. 

● Dan suggested while discussing my project proposal that if you always have 
working software, every iteration past the first is perfective maintenance



How Does This Relate to Perfective Maintenance

● It seems based on my research that all perfective maintenance is loosely 
agile until you throw everything away and start over or just continue being 
agile forever.

● It all involves working with users to some degree to add the features they 
want into an existing codebase. When the feature is done you release out to 
the masses.

● Beatty and Weigers suggest adopting agile practices when taking on an 
enhancement project regardless of how the original project was built.



Tips for Perfective Maintenance

● If requirements documentation is missing for what you are perfecting, create 
as much documentation as makes sense for your change and how it 
interfaces with the existing software.

● Pay attention to the costs and benefits of documentation to determine 
whether poorly documented existing work should be documented.

● Try to keep track of which requirements are no longer necessary and drop 
them to reduce bloat.

● Practice politics like Dan described in previous lecture with your userbase to 
make any changes as easy as possible. 



A Further Question I Had

● Dan suggests that upfront RE is best in his experience and to throw out 
written software when the cost of updating it is too high.

● Large software makes that difficult because each individual change is so 
small that it doesn’t cost enough to throw out.

● Could large software be written in a way that was modular enough and with 
small enough modules that you could throw away just a module and start 
over with upfront RE?

● Seems like a large discipline crossover between Software Architecture and 
Requirements Engineering.
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