
The Requirements
Iceberg and Various
Icepicks Chipping at
It

Daniel M. Berry
dberry@uwaterloo.ca

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 1

Requirements

Client’s
View

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 2

The Boring Title

Requirements Engineering (RE):
the Problems and an
Overview of Research

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 3

Outline

Lifecycle Models
RE is Hard
Why Important to Do RE Early
Myths and Realities
Where Do Requirements Come From?
Formal Methods Needed?
Requirements and Other Engineering
Bottom Line
RE Lifecycle

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 4

Outline, Cont’d

Overview of Research
Earlier and Later
Elicitation
Analysis
Natural Language Processing
Tools
Changes
Empirical Studies

Future

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 5

Traditional Waterfall Lifecycle

à la Win Royce [1970]

Realization

Operation

Integration

Design

Specifications

Requirements

Where is testing?

Only one slight problem: It does not work!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 6

Problems with Waterfall Model

The main problem, from the requirements
point of view, of the waterfall model is the
feeling it conveys of the sanctity and
unchangeability of the requirements, as
suggested by the following drawing by Barry
Boehm [1988a].

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 7

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 8

Problems with Waterfall, Cont’d

This view does not work because
requirements always change:

g partially from requirements creep (but good
project management helps)

g partially from mistakes (but prototyping
and systematic methods help)

g partially because it is inherent in software
that is used (the concept of E-type systems
is discussed later!)

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 9

Fred Brooks about Waterfall

In ICSE ’95 Keynote, Brooks [1995a] says “The
Waterfall Model is Wrong!”

g The hardest part of design is deciding what
to design.

g Good design takes upstream jumping at
every cascade, sometimes back more than
one step.

ICSE ’95 was in Seattle, Washington!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 10

Fred Brooks also says:

“There’s no silver bullet!” [Brooks 1987]

g Accidents
process
implementation

i.e., details

g Essence
Requirements

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 11

“No Silver Bullet” (NSB)

g The essence of building software is
devising the conceptual construct itself.

g This is very hard.

- arbitrary complexity
- conformity to given world
- changes and changeability
- invisibility

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 12

NSB, Cont’d

g Most productivity gain came from fixing
accidents

- really awkward assembly language
- severe time and space constraints
- long batch turnaround time
- clerical tasks for which tools are helpful

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 13

NSB, Cont’d

g However, the essence has resisted attack!

We have the same sense of being
overwhelmed by the immensity of the
programming problem and the
seemingly endless details to take care
of,

and we produce the same kind of poorly
designed software that makes the same
kind of stupid mistakes

as 40 years ago!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 14

Brooks, Cont’d

Brooks adds, “The hardest single part of
building a software system is deciding
precisely what to build.... No other part of the
work so cripples the resulting system if it is
done wrong. No other part is more difficult to
rectify later.”

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 15

Real Life

We see similar requirement problems in real-
life situations not at all related to software.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 16

Contracts

We all know how hard it is to get a contract
just right ...

to cover all possible unanticipated situations.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 17

Houses

We all know how hard it is to get a house plan
just right before starting to build the house.

Contractors even plan on this; they underbid
on the basic plan, expecting to be able to
overcharge on the inevitable changes the
client thinks of later [Berry 1998].

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 18

Homework Assignments

We all know how hard it is to get the
specification of a programming homework
assignment right, especially when the
instructor must invent new ones for every run
of the course.

There is a continual stream of updates to the
assignment.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 19

SE Lifecycle and Reqs Changes

Thus, the SE lifecycle must be prepared to
deal with ever-changing requirements.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 20

More Realistic Lifecycle Model

Spiral Model à la Barry Boehm [1988b]
Determine objectives, alternatives,

next level product

Develop, verify

Benchmarks

Models,

Simulations,

Risk analysis

identify, resolve risks

Evaluate alternatives;

Plan next phase

constraints

One may even follow the waterfall in each 360°
sweep of the spiral.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 21

Spiral Model

That is, the requirements and the
implementation are developed incrementally.

That requirements are changing is planned.

But still, where is testing?

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 22

V Model

Some describe one such sweep not as a
waterfall, but as a V

1.

2.

3.

4.

5.

6.

7. 8.

9.11.

12.

10.

software
requirements

preliminary
design

detailed
design

coding

unit test
planning

integration
test

software
system test

planning

system
testing

integration
testing

unit
testing

delivery
production
deployment

maintenance
and

enhancementplanning

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 23

Planned Testing

The V model

g tries to indicate different volumes of
information flow

g puts test planning and testing into its
proper place, i.e., everywhere !

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 24

More Unrealism in Waterfall

The Waterfall model imples also that all steps
are equally systematic:

Realization

Operation

Integration

Design

Specifications

Requirements

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 25

REAL Lifecycle for One Sweep

Client
Ideas

Reqs
Specs

Design Code

More haphazard More systematic

More difficult than thought to be

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 26

Requirements Engineering

That wavy line between Client Ideas and
Requirements Specifications is RE.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 27

IEEE Definition of Requirement

1. a condition or capability needed by a user
to solve a problem or achieve an objective

2. a condition or capability that must be met
or possessed by a system or system
component to satisfy a contract, standard,
specification, or other formally imposed
document

3. a documented representation of a
condition or capability as in (1) or (2)

[IEEE 1998]

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 28

Kinds of Requirements

g functional—what the system should do
g non-functional—constraints on system or

process, quality requirements

Some non-functional requirements (NFR) are
not specifiable, e.g., user friendliness.

It is often difficult to distinguish the two, e.g.,
a response time.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 29

Loucopoulos’s Definition of RE

Loucopoulos and Karakostas [1995]:

RE is a systematic process of
g developing requirements through an

iterative cooperative process of analyzing
the problem,

g documenting the resulting observations in
a variety of representation formats, and

g checking the accuracy of the
understanding gained.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 30

Hsia’s Definition of RE

RE is all activities which are related to
g identifying and documenting customer and

user needs,
g creating a document that describes the

external behavior and associated
constraints that will satisfy those needs,

g analyzing and validating the requirements
document to insure consistency,
completeness and feasibility, and

g evolution of these needs.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 31

Zave’s Definition of RE

Pamela Zave [1997]:

RE is the branch of SE concerned with real-
world goals for, functions of, and constraints
on software systems. It is also concerned with
the relationship of these factors to precise
specifications of software behavior, and to
their evolution over time and across software
families.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 32

Zave’s Definition of RE, Cont’d

Important aspects of definition [Nuseibeh &
Easterbrook 2000]:

g real-world goals
f what
f why

g precise specifications, basis for
f analyzing requirements
f validating with stakeholders
f defining what is to be built
f verifying implementation

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 33

Zave’s Definition of RE, Cont’d

g evolution
f over time for a changing world
f across families with partial reuse

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 34

Systems, Not Just Software

Bashar Nuseibeh & Steve Easterbrook [2000]:

RE has been called a branch of Software
Engineering.

In reality, software cannot function in isolation
from the system in which it is embedded.

Prefer to characterize RE as a branch of
Systems Engineering.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 35

Ryan’s Definition of RE

RE is the development and use of cost-
effective technology for the elicitation,
specification and analysis of the stakeholder
requirements which are to be met by software
intensive systems.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 36

Stakeholders

A stakeholder is a person who is directly or
indirectly affected by the system under
construction, .e.g.,

g customers and users
g marketing and sales personnel
g developers and testers
g maintainers
g managers

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 37

But ‘X Engineering’ is Illegal

“Engineering” is a controlled term, not legal to
use with “Requirements”.

The term “RE” is used as a reminder that the
gathering of requirements occurs as part of an
engineering process.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 38

RE is Hard

How hard?

Like fighting a platoon of angry, slightly
inebriated Klingons.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 39

Distance: Concept → Specs

Concept

Formal
Spec.

Informal
Spec.

Folded in middle to give feeling of true
conceptual distances involved

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 40

Modeling Difficulties

Brian Mathews has another view in terms of
modeling

Model

Desired

M
ir

ro
r

-
A

n
al

ys
is

W
at

er
 -

 A
n

al
ys

is

Reality

Model

Real World Real World

Air - Elicitation Fog - Elicitation

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 41

What vs. How

A requirements specification is supposed to
describe what the system should do and not
how.

It is not easy to obey this rule in practice.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 42

What vs. How, Cont’d

One person’s how is another person’s what;
to an author, a WORD data structure is a how
issue, but to a system programmer, a data
structure in UNIX is a what issue.

In a model of multiple levels of abstraction,
each level is both the how of the level above
and the what of the level below. [Ryan 1998]

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 43

Three Kinds of Requirements

Noriaki Kano [1984] identified 3 kinds of
system requirements.

1. Normal—Users mention these with no
problems.
They contribute proportionally to user
satisfaction of the system.

2. Exciting—Creative developers invent
these.
They contribute dramatically to user
satisfaction of the system.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 44

Three Kinds, Cont’d

3. Tacit—Users understand these, but do not
mention them; developers do not see
these.
Unfound by developers, they contribute
dramatically to user dissatisfaction of the
system.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 45

Three Kinds, Cont’d

Not Fulfill
Expectations

Fulfill
Expectations

Satisfaction

Dissatisfaction

Norm
al

Req
uire

m
en

ts

Exc
iti

ng R
eq

uire
m

en
ts

Tacit R
equire

ments

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 46

Errors and Requirements

According to Barry Boehm [1981] and others,
around 65–75% of all errors found in SW can
be traced back to the requirements and design
phases.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 47

Errors and Requirements, Cont’d

Ken Jackson in a 2003 Tutorial on
Requirements Management and Modeling with
UML2, cites data from a year 2000 survey of
500 major projects’ maintenance costs
concluding that 70–85% of total project costs
are rework due to requirements errors and
new requirements.

In the table, the *d lines include requirements
issues and add to 84%, but not all their
instances are requirements related.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 48

Errors and Requirements, Cont’d

Cause of Rework %-age of Total
Project Costsiii

*Changes in user requirements 43%
*Changes in data formats 17%
*Emergency fixes 12%
*Hardware changes 6%
*Documentation 6%
Efficiency improvements 6%
Other 9%

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 49

Errors and Requirements, Cont’d

Tom Gilb [1988] says that approximately 60%
of all defects in software exist by design time.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 50

Errors and Requirements, Cont’d

Marandi and Khan [2014] cite studies by
Kumaresh & Baskaran and by Suma &
Gopalakrishnan that show that the

g requirement phase introduces 50%–60%,
g design phase introduces 15%–30%, and
g implementation phase introduces 10%–20%

of total defects to software.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 51

Flip Side

Those data say that we are doing a pretty
good job of implementing of what we think we
want.

But, we are doing a lousy job of knowing what
we want.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 50

Source of Errors

Either

g the erroneous behavior is required because
the situation causing the error was not
understood or expressed correctly, or

g the erroneous behavior happens because
the requirements simply do not mention
the situation causing the error, and
something not planned and not appropriate
happens.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 51

Worth Fixing an Error?

Sometimes it’s not worth fixing a
requirements error in software that works
pretty well. That is, it’s not worth modifying
the software to meet a newly discovered
requirement.

E.g., at U of Waterloo, a system called QUEST
has automated course scheduling and
registration so that a student can register on
line via the WWW.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 52

Worth Fixing an Error, Cont’d?

For each course C for which a student S tries
to register, QUEST checks that S has
successfully taken all the prerequisites for C.

However, there are degree programs, e.g.,
ConGESE, that use regular courses, but in a
non-normal sequence. In this program,
because everyone is already a practicing
software engineer, no course has any
prerequisites.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 53

Worth Fixing an Error? Cont’d

Thus when a ConGESE student tries to
register for the RE course I teach at UW, he or
she is usually not allowed to register because
he or she has not taken any of the prerequisite
courses.

This situation was never considered in
developing QUEST.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 54

Worth Fixing an Error? Cont’d

Fortunately, QUEST has provided for
superusers that can force QUEST to accept
registrations that would otherwise not be
allowed. So the students were able to be
registered.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 55

Worth Fixing an Error? Cont’d

Is it worth changing QUEST?

Decidely, “No!”.

The frequency of the ConGESE situation is
once every year, and the number of students
involved is between 10 and 20 each time.

It’s easy enough for a superuser to handle the
situation manually.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 56

Worth Fixing an Error? Cont’d

Modifying the software risks introducing bugs.

This change would be rather complex because
it would have to introduce a notion of
independent streams with different
prerequisite structures and force prerequisites
to be associated not with just a course, but a
course and a program together. Implementing
this means changing the whole course
abstraction. Yecch!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 57

Worth Fixing an Error? Cont’d

So this bug is declared as a feature, and the
superuser intervention becomes the official
way to deal with ConGESE course
registrations.

The same solution will be applied to any other
degree program with similar requirements....

Until such time as there are so many other
programs that superuser intervention
becomes burdensome.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 58

Even NASA Doesn’t Always Fix

Robyn Lutz and Inés Carmen Mikulski [2003]
discuss how NASA sometimes discovers
requirements errors and new requirements
during system operations.

If a mission is already in progress, sometimes
the response to this discovery is to change
the procedures for the human operators at
mission control rather than to try to modify
the embedded system on board a space craft.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 59

Paradox

Fred Brooks [1995b] observed that a general
purpose system is harder to design than a
special purpose product.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 60

Study of Requirement Errors

by Martin & Tsai [1988]

Experiment to identify lifecycle stages in
which requirement errors are found

Polished 10-page requirements for centralized
railroad traffic controller, ...

written by the user, a professional railroad
traffic controller who had become a
programmer—BOBW!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 61

Experiment

Ten 4-person teams of software engineers,
pretending to prepare for implementation

User believed that teams would find only 1 or
2 errors

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 62

Study, Cont’d

92 errors, some very serious, were found!

Average team found only 35.5 errors, i.e., it
missed 56.5 to be found downstream!

Many errors found by only one team!

Errors of greatest severity found by fewest
teams!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 63

Michael Jackson Says

In a Requirements Engineering ’94 Keynote,
Jackson [1994] says:

Two things are known about requirements:
1. They will change!
2. They will be misunderstood!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 64

Tacit Assumption Tarpit

A “Foxtrot” cartoon in which Jason’s
homework solution lists all the tacit
assumptions, and I mean all, that allow him to
deduce that the average speed of a 180 mile
train trip from 10am until 2pm is 45mph.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 65

Tacit Assumptions, Cont’d

Those tacit assumptions of the problem are
reasonable, right?

Unfortunately, the source of most disasters,
such as at nuclear power plants, is perfectly
reasonable, possibly explicit but usually tacit,
assumptions that did not hold in some special
circumstances that nobody thought about.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 66

Timely Tacit Assumptions

According to the UW schedule, a TA had a
laboratory scheduled for “8:00” (with no “am”
or “pm”). He and some students assumed that
it was at 8:00am. Most students assumed that
it was at 8:00pm. The university meant
“8:00pm”.

Perhaps, those who assumed it was “8:00am”
could have figured that since classes start at
8:30am, “8:00” had to be “8:00pm”, but that’s
stretching it.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 67

Timely Tacit Assumptions, Cont’d

The university schedule should have made it
clear that it was at 8:00pm.

The reason it did not say “8:00pm” is that
there is no “pm” designation because in most
cases, from from 12:00 until 5:00, it is obvious
that “pm” is meant. Who goes to class at
4:00am?

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 68

More Timely Tacit Assumptions

Once in Tel Aviv, I read a Hebrew no-parking
sign saying “8:00–17:00” as saying that there
is no parking from 5:00pm until 8:00am the
next morning to reserve parking places for the
people who live on the street, who would have
special exemption certificates.

While numerals are read from left to right, the
flow of the sentence is from right to left and
the “–” is not part of each numeral.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 69

Timely Tacit Assumptions, Cont’d

According to the city of Tel Aviv, the sign
means that there is no parking from 8:00am
until 5:00pm to keep the street traversable
during the business day.

According to Hebrew reading rules, I am
correct and the city is wrong.

I could not get the city to see their error and
cancel the ticket!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 70

Requirements Always Change

In a Requirements Engineering ’94 Keynote,
Michael Jackson says:

Two things are known about requirements:

1. They will change!
2. They will be misunderstood!

Why will they always change?

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 71

E-Type Software

à la Meir Lehman [Lehman 1980]

An E-type system solves a problem or
implements an application in some real-world
domain.

Once installed, an E-type system becomes
inextricably part of the application domain, so
that it ends up altering its own requirements.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 72

E-Type Software, Cont’d

Example:

g Consider a bank that exercises an option to
automate its process and then discovers
that it can handle more customers.

g It promotes and gets new customers, easily
handled by the new system but beyond the
capacity of the manual way.

g It cannot back out of automation.
g The requirements of the system have

changed!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 73

E-Type Software, Cont’d

Daily use of a system causes an irresistible
ambition to improve it as users begin to
suggest improvements.

Who is not familiar with that, from either end?

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 74

E-Type Software, Cont’d

In fact, data show that most maintenance is
not corrective, but for dealing with E-type
pressures!

Perfective

Adaptive

Corrective

O
th

er

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 75

RE is Hard

Despite the clear benefits of getting
requirements complete, right, and error-free
early, they are the hardest part of the system
development lifecycle to do right because:

g we don’t always understand everything
about the real world that we need to know,

g we may understand a lot, but we cannot
express everything that we know,

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 76

RE is Hard, Cont’d

g we may think we understand a lot, but our
understanding may be wrong,

g requirements change as clients’ needs
change,

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 77

RE is Hard, Cont’d

g requirements change as clients and users
think of new things they want, and

g requirements of a system change as a
direct result of deploying the system, as
pointed out by Meir Lehman.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 78

Sources of RE Difficulties

g RE is where informal meets formal (says
Michael Jackson [1995]).

g Many requirements are created, not found.
g Users, buyers, even developers may be

unknown.
g Stakeholders have conflicting objectives.
g Multiple views exist.
g Inconsistency must be tolerated, for a

while.
g Requirements evolve during and after

development.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 79

The TRUTH About
Methodology Literature

Did you ever notice how error- and
backtracking-free are example developments
from clean requirements in the methodology
literature?

Have you ever noticed how your own
developments never go quite as smoothly and
how your requirements are never totally right?

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 80

Truth, Cont’d
As an author of some of this literature, I will let
you in on a little secret!

Shhh!

What you see in the literature is cleaned up
from the rather messy real-life development.

The requirements specification was modified
more than the design and code.

Nu?

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 81

Montenegro’s View

Sergio Montenegro described the reality by
showing an older view of the requirements
engineering process:

and then a newer view, formed after hearing
an earlier version of this talk:

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 82

Subprocesses of the Requirements Phase

Formalization

Functional

Requirements

Physical

Properties

Safety

Requirements

Requirements

Functional

Requirements

Physical

Properties

Safety

Requirements

Discretization

Functional

Requirements

Physical

Properties

Measurements

Functional

Requirements

Physical

Properties

Safety

Requirements

Textual/Informal

Continuous

Discrete

Measured

Mental Model
Description

Safety

Requirements

Gauge

Requirements

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 83

Relation between Getting and Formalizing Requirements

Subprocesses of the Requirements Phase

Formalization

Functional

Requirements

Physical

Properties

Safety

Requirements

Requirements

Functional

Requirements

Physical

Properties

Safety

Requirements

Discretization

Functional

Requirements

Physical

Properties

Measurements

Functional

Requirements

Physical

Properties

Safety

Requirements

Textual/Informal

Continuous

Discrete

Measured

Safety

Requirements

Gauge

Requirements

Get Requirements from the
Mind of the Customer

Anthropology (Observe)
Psychology (Talk)

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 84

Why Important to Do RE Early

The BIG Question:

Why is it so important to get the requirements
right early in the lifecycle? [Boehm 1981,
Schach 1992]

We know that it is much cheaper to fix an error
at requirements time than any time later in the
lifecycle.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 85

Cost to Fix Errors

Barry Boehm’s (next slide) and Steve
Schach’s (slide after that) summaries of data
over many application areas show that fixing
an error after delivery costs two orders of
magnitude more than fixing it it at RE time.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 86

Phase in which error is detected

1

2

5

10

20

50

100

R
el

at
iv

e
co

st
 to

 c
or

re
ct

 e
rr

or

Preliminary
design

Detailed
design

Code and
debug

Integrate Validate Operation

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 87

200

150

100

50

0
Reqs Specs Plan Design Code Integ Maint

1 2 3 4 10

30

R
el

at
iv

e
co

st
 to

 fi
x

fa
ul

t

Phase in which fault is detected and fixed

200

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 88

Cost to Fix Errors, Cont’d

More specifically,

g requirement defects are harder to fix than
architectural defects,

g which are harder to fix than design defects,
g which are harder to fix than implementation

defects [Allen et al 2008].

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 91

Conclusion

Therefore, it pays to find errors during RE.

Also, it pays to spend a lot of time getting the
requirements specification error-free, to avoid
later high-cost error repair, and to speed up
implementation—even 70% of the lifecycle!

The 70% is not a prescription, but a prediction
of what will happen, as we see later!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 93

Conclusion, Cont’d

Allen et al [2008] show a graph of how

total development time of software

relates to

the percentage of defects removed before
release of the software.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 94

Reliability, Safety, Security, & Survivability

We know that we cannot program reliability,
safety, security, and survivability into the code
of a system only at implementation time. They
must be required from the beginning so that
consideration of their properties permeate the
entire system development [Leveson 1995,
Cheheyl et al 1981, Linger et al 1998].

The wrong requirements can preclude coding
them at implementation time.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 90

Prime Example: the Internet

Everybody is complaining about how insecure
the Internet is [Neumann 1986]

Many are trying to add security to the Internet,
and ultimately fail.

Why?

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 91

Internet Requirements

The original requirements for the ARPAnet,
which later became the Internet, was that it be
completely open.

Anyone sitting anywhere on the net was to be
able to use any other site on the net as if he or
she were logged in at the other site.

In other words, the ARPAnet was required to
be open and essentially insecure [Cerf 2003,
Leiner et al 2000].

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 92

Internet Requirements Were Met

And the implementers of the ARPAnet did a
damn good job of implementing the
requirements!

Adding security to the Internet ultimately fails
because there is always a way around the add
on security through the inherently open
Internet.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 93

Secure Internet from Reqs Up

To get a secure Internet, we have to rebuild
the whole thing from requirements up, and
there is no guarantee that it will look anything
like what we have now and that the same
applications would run on it.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 94

Another View of History

The Internet was and is an E-type system, …

if there ever was one!

Oy!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 101

Another View, Cont’d

The original Internet sites were only university
and non-profit research labs.

No commercial, profit making organizations
allowed.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 102

Another View, Cont’d

The code implementing TCP/IP was a research
prototype, …

which is fine because this code served as only
a proof of concept, …

used by only cooperative, well-behaved users.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 103

Another View, Cont’d

When the concept was proved, it was intended
that some commercial institutions would build
production quality versions of TCP/IP, …

each of which meets the full set of
requirements needed to make it a reliable,
robust, and secure system.

They would then market it, as with other
research prototypes.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 104

Another View, Cont’d

But E-type pressures proved to be too strong.

Some people started seeing the commercial
potential of the service of the Internet and not
of TCP/IP itself, which was viewed as a utility.

So the research prototype became the utility
without ever going through the requirements
analysis and development necessary to make
it reliable, robust, and secure.

Sigh!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 105

User Interfaces (& Errors)

The same is true about good user interfaces.

They cannot be programmed in later.

They must be required in from the beginning
[Shneiderman 1984, Kösters, Six & Voss
1996].

Same is true also about system responses to
erroneous input.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 95

RE & Project Costs

The next slides show the benefits of spending
a significant percentage of development costs
on studying the requirements.

They contain a graph by Kevin Forsberg and
Harold Mooz [1997] relating percentage cost
overrun to study phase cost as a percentage
of development cost in 25 NASA projects.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 96

Project Costs, Cont’d

The study, performed by W. Gruhl at NASA HQ
includes such projects as

g Hubble Space Telescope
g TDRSS
g Gamma Ray Obs 1978
g Gamma Ray Obs 1982
g SeaSat
g Pioneer Venus
g Voyager

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 97

Project Costs, Cont’d
180

160

140

120

100

80

60

40

20

0

0 5 10 15 20 25

P
er

ce
n

ta
g

e
C

o
st

 O
ve

rr
u

n

Study Phase Cost as a Percent
of Development Cost

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 98

Project Costs, Cont’d

There are three interpretations of the data:

The more you study the problem, ...

1. the lower the costs,
2. the fewer the surprises that cause

debugging and rework, and,
3. the more accurate the cost estimates are.

It’s probably a mixture of these.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 99

Some Advantages of Project Delay

Arnis Daugulis [1998] reports a significant
increase in the quality of the requirements for
a power plant control system as a result of
delays in start of production caused by
shortage of funds.

They had the luxury of time to do two
revisions of the requirements.

He shudders to think of the failure that would
have resulted had they started to implement
the first requirements on time.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 99

A Case Study of Serious RE

A Master’s student of mine, Lihua Ou, did a
case study of writing requirements
specification in the form of a user’s manual
[Berry et al (Ou) 2004].

It was very successful in that I got a piece of
software that I wanted, it was implemented
well, it does what I want it to do, and there is a
well-written manual that describes the
software’s behavior completely.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 100

A Case Study, Cont’d

Along the way, it ended up being also a case
study in just having a serious requirements
process, in which implementation did not
begin, and was in fact delayed, until the
requirements were completely worked out and
specified satisfactorily.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 101

The Software

The software was a WYSIWYG, direct
manipulation picture drawing program, WD-
PIC, based on the batch picture drawing
language PIC, a TROFF preprocessor.

Lihua Ou’s assignment was to produce a first
production-quality version of WD-PIC as her
master’s thesis project.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 102

Ou’s Professional Background

Prior to coming to graduate school, Ou had
built other systems in industrial jobs, mainly
in commerce.

She had followed the traditional waterfall
model, with its traditional heavy weight SRS.

She had made effective use of libraries to
simplify development of applications.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 103

Ou’s Input

Ou was to look at all previous prototypes and
UMs as specifications.

She was to filter these and scope them to first
release of a production quality version of WD-
PIC running on Sun UNIX systems.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 104

Ou’s Assignment

Ou was to write a specification of WD-PIC in
the form of a UM.

This UM was

1. to describe all features as desired by the
customer, and

2. to be accepted as complete by the
customer,

before beginning design or implementation.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 105

Ou’s Assignment, Cont’d

Once implementation started, whenever new
requirements were discovered, the UM had to
be modified to capture new requirements.

In the end, the UM was to describe the
program as delivered.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 106

Project Plan
iii
Duration
in months Stepii
1 Preparationiii
2 Requirements specificationiii
4 Implementationiii
2 Testingiii
1 Buffer (probably more implementation

and testing)ii
10 Total plannediiicc

c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 107

preparation

requirement

design

implementation

testing

10/1/01

11/1

1/1/02

2/1

5/1

6/31Note feedback

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 108

Actual Schedule
iii
Duration
in months Stepii
1 Preparationiii
4.9 Writing of user’s manual = reqs spec,

11 versionsiii
.7 Design including planning for maximum

reuse of PIC code and JAVA libraryiii
1.7 Implementation including module testing

and 3 manual revisionsiii
1.7 Integration testing including 1 manual

revision and implementation changesii
10 Total actualiiicc

c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c
c
c
c

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 109

preparation

requirement

design

implementation

testing

10/2/01

11/1

3/28/02

4/20

6/11

7/31Note feedback

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 110

What Happened?

While detailed plan was not followed, total
project time was as planned.

Also, Ou produced two implementations for
the price of one, for:

g (planned) Sun with UNIX and
g (unplanned) PC with Windows 2000

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 111

Surprise

Ou was more surprised than Berry that she
finished on time.

Berry had a lot of faith in the power of good
RE to reduce implementation effort.

Adding to Ou’s surprise was that the
requirements phase took nearly 5 months
instead of 2 months; the schedule had slipped
3 months out of 10, what appeared to be way
beyond recovery.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 112

Then and ...

Ou’s long projected implementation and
testing times and the 1 month buffer indicate
that she expected implementation to be
slowed by discovery of new requirements that
necessitate major rewriting and restructuring.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 113

Then and Now

This time, only minor rewriting and no
restructuring.

Thus instead of 2 months specifying and 7
months implementing and testing,

she spent 5 months specifying and only 4
months implementing and testing.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 114

Why?

By spending 3 additional months writing a
specification that satisfied a particularly hard-
nosed customer who insisted that the manual
convince him that the product already existed,

Ou produced a specification that

g had very few errors and
g that was very straightforwardly

implemented.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 115

The Errors

Almost all errors found by testing were
relatively minor, easy-to-fix implementation
errors.

The two requirement errors were relatively low
level and detailed.

They involved subfeatures in a way that
required only very local changes to both the
UM and the code.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 116

What Helped?

All exceptional and variant cases had been
worked out and described in the UM.

Thus, very little of the traditional

g implementation-time fleshing out of
exceptional and variant cases and

g implementation-time subconscious RE.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 117

Test Cases

The manual’s scenarios, including exceptions
and variants turned out to be a complete set of
black box test cases.

Tests were so effective that, to our surprise, ...

scenarios not described in the UM, but which
were logical extensions and combinations of
those of the UM worked the first time!

The features composed orthogonally without a
hitch!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 118

Satisfied Customer

Berry found Ou’s implementation to be
production quality and is happily using it in
his own work.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 119

Another Case Study of Serious RE

This one involved what is called a lightweight
formal method [Breen 2005].

At Philips Electronics, Michael Breen
consulted for the project to develop CDR870
to become the first audio separate CD
recorder aimed at the consumer market.

The CDR870 was to be the first of a product
line.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 133

Success or Failure

The key factor determining the conduct of the
project was that it had to be finished in 6
months, in time for next Christmas.

Meeting this deadline and its implied schedule
defines success or failure for the project.

The critical component of the project was the
application-level software to be developed
from scratch.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 134

An Impossible Project?

The consensus among domain experts at
Philips, people who had worked on similar
systems in the past, was that it was
impossible to finish in time. There were just
too many unknowns.

Two people, including Breen, felt it would be
possible IF ...

(There’s ↑ the proverbial big “if”.)

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 135

High Quality RS Essential

They realized that success depended critically
on having a high quality requirements
specification (RS) with no omissions,
inconsistencies, and other defects, from
which the code could be written
straightforwardly.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 136

High Quality RS Or Else

Any omission, inconsistency, or defect in the
RS meant that the programmers would have to
do RE on the fly, ...

leading inevitably to mistakes, backtracking,
and other nasties, ...

leading in turn to delays, an unpredictable
schedule, and flaky software, i.e., ...

to failure to deliver by Christmas.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 137

Requirements for RS

The RS would have to be of only the user-
visible behavior, to have a pure WHAT RS with
complete freedom to choose the HOW based
on the available technology ...

and the RS would have to be accompanied by
a suite of automated regression tests ready to
use at any stage to test the software’s and the
system’s compliance with the RS.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 138

Started RS Provisionally

They started writing the RS on a provisional
basis.

They would proceed to implementation only if
they had completed the RS in time and the RS
met its quality requirements.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 139

FSM-Based RS

Breen got the project to use multi-variable
FSMs specified in tabular form.

The available natural language descriptions
were translated into an initial tabular FSM
specification.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 140

Benefits of FSM-Based RS

This immediately exposed potential
incompleteness in the form of unfilled table
positions.

This immediately pinpointed inconsistencies
in the form of multiple transitions from the
same state.

Some potential incompletenesses proved to
be DON’T CARES.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 141

Benefits, Cont’d

Some potential inconsistencies proved to be
the need for additional states.

The tabular FSMs gave the engineers the
information they needed to rapidly resolve
these problems.

The FSM model was built and checked
manually.

Fortunately, the FSMs were not beyond the
upper bound of what can be managed
manually.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 142

Result:

They finished the specification in time and it
was judged by all involved to be of good,
actually superb, quality.

Some felt it was the best RS that they had ever
written. They had confidence that it was
complete and consistent. They had confidence
that it could be implemented straightforwardly
with a minimum of delay and no backtracking.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 143

To Implementation

They proceeded to implementation.

They finished the implementation in time with
very few delays to flesh out requirements. The
tests ran smoothly and served to expose the
few implementation faults. No show stopping
faults were found.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 144

Success!

They delivered a high quality product in time
for Christmas!

The tabular FSM specification approach
continues to be used for subsequent members
of the product line.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 145

Myths and Realities

A bunch of myths about requirements and the
answering realities

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 133

Coding Before RE

Several related myths:

“You people start the coding while I go find
out what the customer wants.”

Requirements are easy to obtain.

The client/user knows what he/she wants.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 147

Coding Before RE, Cont’d

“You people start the coding while I go find
out what the customer wants.”

Obeying this order amounts to a very bad bet!

It’s practically guaranteed to end up at least
doubling the cost of writing the code and
developing the system.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 148

Coding Before RE, Cont’d

If as little as 10% of the code written in
advance of knowing the full requirements has
to be changed after the full requirements are
known, …

the cost of writing the code has doubled:

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 149

Bad Bet

If C is the cost of writing the advance version,
the cost of fixing the advanced version when
as little as 10% of it has to be changed,

then the total cost of writing the code is

C + (10 × 0.1×C) = 2×C

Oy!

and it gets worse if more than 10% has to be
changed.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 150

Better Bet

So what’s a better use of the programmers
who would become idle if they are not put to
work starting the coding while I go find out
what the customer wants?

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 151

Better Bet

So what’s a better use of the programmers?

Have them join the RE team

g to provide more brain power to the RE
effort and

g to help the RE team know when the
requirements specification is complete
enough that it can be programmed without
the programmers’ having to ask questions.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 152

Coding before RE, Cont’d

According to Ruth Dameron, ...

The programmer who says the first line is
suffering from the myth that the customer
would be able to know what he or she
wants and to say it just because the
programmer asked.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 135

Need Prototype

Most people (especially non-technically
oriented) learn while doing; they’ve got to
see some kind of prototype (even if it’s
only yellow stickies on a board) to discover
what they want.

First also expresses the nonsensical notion
that somehow, coding can begin before it’s
known what to code.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 136

Prototyping

Actually, there is a circumstance in which it’s
good to start coding before requirements are
completely known.

To develop a throw-away prototype from
which to learn requirements.

But, it should be a throw away!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 137

IKIWISI

I’ll know it when I see it!

This is how most clients really identify
requirements.

They cannot tell you what they want, but if
they see what they want, they spot it
immediately!

Sometimes, anything you show them is it
(AYSTII).

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 138

IKIWINT & IKIWIDSI

Flip sides of IKIWISI (identified by Janusz
Dobrowolski)

g IKIWINT—I’ll know it when it’s not there!

g IKIWIDSI—I’ll know it when I don’t see it!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 139

We Don’t Have Time for RE

“I know that it is important to get
requirements, but we don’t have time for it; we
have to get to coding to meet our deadline!”

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 140

We Don’t Have Time, Cont’d

At least one Ph.B. has been heard to say,
“Wally, we don’t have time to gather the
product requirements ahead of time. I want
you to start designing the product anyway.
Otherwise it will look like we aren’t
accomplishing anything.”

Wally stops working because he knows that
the project is doomed anyway.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 141

We Don’t Have Time, Cont’d

I will prove that we, in fact, always do write
requirements during the normal commercial
software lifecycle.

Therefore, since we always do it, we must
have had enough time!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 142

Never Needed RE Before

“We’ve never written a requirements
document and we’re still successful!”

So says the manager of a project that
delivered tested software with a user’s manual
or an on-line help.

So says the manager justifying a decision to
plunge into development without first
determining and specifying requirements.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 143

Sorry to Disappoint You!

Kamsties, Hörmann, and Schlich [1998]
observe:

Any project that does testing has to determine
the requirements in order to determine
covering test cases and their expected
outputs. The test plan ends up being a
requirements specification.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 144

Sorry, Cont’d

Any project that produces user documentation
has to determine the requirements in order
that the documentation describe all of the
features well. The documentation ends up
being a requirements specification.

Even Microsoft does both.

So there is no escaping determination and
specification of requirements (unless you
don’t do testing and user documentation!).

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 145

Sorry, Cont’d

There is no avoiding the time required to
determine and specify the requirements.

However, if you produce requirements only as
a side effect of testing and documentation,
you lose the key benefit of early requirements
determination and specification, namely
finding errors at the least cost.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 146

Sorry, Cont’d

If you stop official requirements
determination, to move on to coding, and the
requirements are not completely determined
for the current scope, then …

programmers make microdecisions to fill in on
missing requirements all along the Michael
Jackson continuum.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 155

Sorry, Cont’d

What are the chances that these programmer-
determined requirements, often made in the
best interest of the programmer, will match
the client’s true requirements?

Discovery of requirements during writing of
test cases generally leads to massive
rewriting of code whose architecture has no
place for the newly discovered requirements.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 156

They’ll change anyway!

“Why bother writing down requirements now?
We’ll discover that they’re wrong and have to
change ’em anyway!”, …

as a reason not to write a requirements spec
up front and to just start coding.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 157

They’ll change anyway! Cont’d

You are right!

The requirements you write now will be wrong,
and

you will have to change ’em.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 158

They’ll change anyway! Cont’d

But the question is:

“How will you discover that the requirements
are wrong?

What will tell you that you have made a
mistake in the requirements?”

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 159

They’ll change anyway! Cont’d

In my experience, we discover that we have
made a mistake only as a result of writing
them down.

After all, until we write the requirements down,
while they are still ideas in the air, they are
perfect!

But that’s only an illusion, arising from the
fact that we have not fully explored the
implications.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 160

They’ll change anyway! Cont’d

When we start writing things down, and not
before, the implications begin to show.

So how do we usually discover that there is
something wrong with the requirements?

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 161

They’ll change anyway! Cont’d

In my experience, we make these discoveries
only when we write down something that
contradicts something we have written before.

So the mere writing of the specs is what
exposes the wrong requirements that have to
be changed.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 162

They’ll change anyway! Cont’d

Thus, if you don’t write the requirements down
before you start the coding, …

and discover the wrong requirements before
you start the coding, …

you will discover the wrong requirements
when you actually start writing something
down, during coding.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 163

They’ll change anyway! Cont’d

But then it will cost 10 times more to fix that if
you had made the discovery before you
started coding.

Oy!!!!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 164

Recall Cost to Fix Errors
200

150

100

50

0
Reqs Specs Plan Design Code Integ Maint

1 2 3 4 10

30

R
el

at
iv

e
co

st
 to

 fi
x

fa
ul

t

Phase in which fault is detected and fixed

200

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 171

Why Fixing Code So Costly

The BIG question:

“Why does it cost so much to fix code?”

It’s because updating code correctly is like
lying perfectly consistently, which is very hard
to do.

Why is lying so hard?

What is the lie?

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 172

Why Is Lying So Hard?

You’ve murdered someone, but

you don’t want to take the rap for the crime.

Fortunately, no one actually saw you commit
the murder.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 173

Cover Up!

So, there’s a chance that you can explain
away those little facts

that would place you at the scene of the
crime at the time of the crime, and

that would give you the motive to do the
crime.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 174

Concoct a Story

All you have to do is to to come up with a
consistent story that fits

all the potentially incriminating facts

including that the victim is dead,

that anyone can see,

but that does not incriminate you, …

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 175

Concoct, Cont’d

when you have no way to be sure that you
have identified

all such potentially incriminating facts

and

all such anyones.

Oy!!!!!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 176

The Proof of the Lie

There will always be

that inconvenient witness that innocently
reports

that inconvenient fact out of nowhere, that
you did not know of

that proves that your story is a lie.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 177

What is the Crime?

What is the crime with the software?

It has a big fat BUG!!!! Oy!!!!!!! Woe!!!!!!!

You gotta totally eradicate the bug, …

without throwing out the software and starting
all over.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 178

Actually, Why Not?

Because, too many people,

including those that can fire you if you are
perceived as making a mistake,

think that that would be a crime, …

to waste all the good work that was done so
far!

So you modify the existing code.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 179

What Is The Lie?
The lie is making all parts of the modified code
appear as if …

they were produced during …

an application of the current development
method …

to produce the modified code from scratch, …

under the constraint that you cannot change
the architecture of the code …

that has, and maybe even led to the BUG!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 180

The Exposure of the Lie

The lie gets exposed because

there is always some overlooked piece of
code

that is affected by the changes you made
elsewhere in the code.

sigh!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 181

Where the Expense is

The expensive part of fixing defects in code is
the attempt to find every last cockamamie
piece of code that is

affected by the parts that you need to
change and
affecting the parts that you need to change

recursively applied until

no new parts and
no new changes

are identified.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 182

It’s SO expensive …

It’s so expensive, that fixing code costs at
least 10 times what fixing the relevant
requirements specification would cost.

Thus, if as little as 10% of the code has to be
modified, it’s cheaper to throw out the
incorrect code and start all over than to fix the
code.

But, no manager can bring him or herself to do
that!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 183

Empirical Evidence?

There is some empirical evidence to support
this, …

but because so few people are willing to stick
their necks out to try this, …

the reports are few and far between, not
enough for generalization.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 184

Evidence, Cont’d

Note that there are lots of project failure
reports, …

many of which point to the difficulty of
consistently updating code correctly.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 185

What About Refactoring?

Refactoring, i.e.,

changing the architecture of the code,

without changing its behavior, and

reusing as much of the code as possible:

Isn’t that the BIGGEST lie ever?

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 186

Has to be done SO carefully

You have to do it piecemeal, one refactoring at
a time,

moving as few code chunks as possible,

modifying as little code as possible,

and then testing,

before doing any other refactorings.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 187

Why?

Indeed, why?"

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 188

Limiting the Scope of Bugs

to try to limit the scope of where the bug can
be

when a refactoring does not preserve the
behavior of the code.

This limiting does not always work! sigh!

This piecemeal work adds to the cost of the
changes.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 189

Compounding the Lie

Let’s see what happens when these sorts of in
situ code fixes happen repeatedly so that the
lies get compounded,

which often happens in a crime when the
concocted story begins to unravel.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 190

Recall Type E Systems

Meir Lehman classifies a CBS that solves a
problem or implements an application in some
real world domain as an E-type system.

Once installed, an E-type system becomes
inextricably part of its application domain so
that it ends up altering its own requirements.

So there is no hope of getting ahead of
requirements.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 191

Most Changes are
Requirements Changes

Not all changes to a CBS are due to
requirement changes.

But, as early as 1978, Bennett Lientz and
Burton Swanson found that 80% of
maintenance changes deal with requirements
changes.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 192

Decay of Software

As early as 1976, Laszlo Belady and Meir
Lehman observed the phenomenon of
eventual unbounded growth of errors in
legacy programs that were continually
modified in an attempt to fix errors and
enhance functionality.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 193

Decay of SW Cont’d

When a change is made, it’s hard to find all
places that are affected by the change.

So any change, including for correcting an
error, has a non-zero chance to introduce a
(new) error!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 194

Belady-Lehman Graph

They modeled the phenomenon
mathematically and derived a graph:

Release Number

B
ug

s
Fo

un
d

Pe
r

R
el

ea
se

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 195

B-L Graph, Cont’d

In practice, the curve is not as smooth as in
the figure; it’s bumpy with local minima and
maxima.

It is sometimes necessary to get very far into
what we will call Belady-Lehman (B-L)
upswing before being sure where the min
point is.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 196

Min Point

The min point represents the software at its
most bug-free release.

After this point, the software’s structure has
so decayed that it is very difficult to change
anything without adding more errors than
have been fixed by the change.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 197

Freezing SW

If we are in the B-L upswing for a CBS, we
could roll back to the best version, at the min
point.

Declare all bugs in this version to be features.

Usually not changing a CBS means that the
CBS is dead; no one is demanding changes
because no one is using the software any
more.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 198

Exceptions to Death

However, many old faithful, mature, and
reliable programs have gone this way, e.g.:

g cat, and other basic UNIX applications,
g vi, and
g ditroff

Their user communities have grown to accept,
and even, require that they never change.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 199

Non-Freezable Programs

IF
g the remaining bugs of best version are not

acceptable features, or
g the lack of certain new features begins to

kill usage of the CBS
THEN a new CBS has to be developed from
scratch
g to meet all old and new requirements,
g to eliminate bugs, and
g to restore a good structure for future

modifications.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 200

Another alternative

Use best version of legacy program as a
feature server.

Build a nearly hollow client that

g provides a new user interface,
g has the server do old features, and
g does only new features itself.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 201

Tendencies for B-L Upswing

The more complex the CBS is, the steeper the
curve tends to be.

The more careful the development of the CBS
is, the later the min point tends to be.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 202

Occasionally

Occasionally, the min point is passed during
the development of the first release, as a
result of

g extensive requirements creep that
destroyed the initial architecture, or

g the code being slapped together into an
extremely brittle CBS built with with no
sense of structure at all.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 203

Purpose of Methods

One view of software development methods:

Each method has as its underlying purpose to
tame the B-L graph for the CBS developments
to which it is applied.

That is, the method tries

g to delay the beginning of the B-L upswing
or

g to lower the slope of that B-L upswing or
g both.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 204

Information Hiding

For example, David Parnas’s (1972)
Information Hiding (IH)

hides implementation details to make it
possible to change the implementation of an
abstraction by modifying the code of only the
abstraction and not of its users.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 205

IH, Cont’d

Thus, for any implementation change, only
one module is changed and the architecture is
not changed.

B-L upswing is delayed and its slope is
reduced.

∴, B-L upswing is tamed!

Now back to the main thread!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 206

May Not Even Have a Problem!

The client often says that he or she requires a
specific solution of an unknown or
nonexistent problem rather than any solution
to a specific problem [Gause and Weinberg
1990].

“We gotta automate!”

The problem with such a client is that there
may not even be a problem that requires any
solution, or if there is, other solutions,
including non-computer, may be better!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 148

Another Myth

After the requirements are frozen, ...

Ha!
Ha ha!
Ha ha ha!
Ha ha ha ha!

The only clients that are satisfied and have
stopped asking for changes are themselves
frozen!

We have already seen why requirements will
never be frozen!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 149

Whence Do Requirements Come?

REQS

REQS

REQS

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 150

Whence, Cont’d

Joe Goguen [1994a] says, “It is not quite
accurate to say that requirements are in the
minds of clients; it would be more accurate to
say that they are in the social system of the
client organization. They have to be invented,
not captured or elicited, and that invention has
to be a cooperative venture involving the
client, the users, and the developers. The
difficulties are mainly social, political, and
cultural, and not technical.”

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 151

Whence, Cont’d

Interviewing does not really help because
when asked what they do, most people will
quote the official policy, and not what they
actually do. Most of what they really do,
which is not specified by the policy, is what
they do in situations not covered by the
policy.

We’re not even talking about conscious,
politically safe mouthing of the policy.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 152

Whence, Cont’d

Wally says to his Ph.B., “I can’t start the
project because the user won’t give me his
requirements.”. The Ph.B. replies, “Start
making something anyway. Otherwise we’ll
look unhelpful.” Wally replies, “So, our plan is
to cleverly hide our competence.” The Ph.B.
observes, “You think too much.”

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 153

Whence, Cont’d

Many people simply do not remember the
exceptions unless and until they actually
come up. Their conscious model of what
happens is the policy.

Therefore, the requirements engineer has to
be there when the exceptional situations come
up in order to see what really happens.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 154

Whence, Cont’d

Moreover, many people just do not know why
they do something, saying only that it’s done
this way because the policy says so.

They very often do not even know why the
policy is the way it is.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 155

Whence, Cont’d

Moreover, many people just do not know how
they do something, drawing a complete blank
or saying only, “Watch me!”.

For example, how do you ride a bicycle? Nu?

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 156

Whence, Cont’d

Don Gause and Jerry Weinberg [1989] tell the
story of the woman who always cuts off 1⁄3 of a
raw roast before cooking both pieces together.

She was asked “Why?” ... “???”

Her mother was asked “Why?” ... “???”

Her grandmother was asked “Why?” ...

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 157

Whence, Cont’d

Because the pot of this woman’s grandmother
was too small to accommodate the full length
piece. Nu?

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 158

Whence, Cont’d

In other words, the policy once made sense,
but the person who formulated the policy, the
reasons for it, and the understanding of the
reasons are long since gone.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 159

Whence, Cont’d

For example, many companies that have
committed all data to a highly reliable data
base continue to print out the summary in
quintuplicate.

Why? At the time of automation, the five most
senior members of the company, who long
ago retired, refused to learn to use the
computer to access the data directly!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 160

Creativity

Roberto Tom Price reminds us not to forget
the requirement engineer’s

g imagination
g ideas
g suggestions

i.e. creativity [Maiden, Gizikis, & Robertson
2004]

like an architect for a new building, using
input from the client

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 161

More About Creativity

Neil Maiden and Alexis Gizkis [2001] in asking
from where do requirements come, identify 3
kinds of creativity needed in RE:

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 162

Three Kinds of Creativity

1. exploratory creativity: explores a possible
solution space and discovers new ideas

2. combinatorial creativity: combines two or
more ideas that already exist to create new
ideas, and

3. transformational creativity: changes the
solution space to make impossible things
possible.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 163

Whence, Cont’d

Goguen further observes that most of the
effort for a typical large system goes into
maintenance.

In fact, Parnas [1994] has the data:

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 164

Whence, Cont’d

100

80

60

40

1960 1970 1980 1990 2000

Sp
en

t o
n

M
ai

nt
en

an
ce

Pe
rc

en
ta

ge
 o

f
So

ft
w

ar
e

R
es

eo
ur

ce
s

Growing Percentage of Maintenance Costs

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 165

Formal Methods Needed?

Some formal methodologists say that this is
the fault of insufficient effort put into being
precise in the early, specification stages of
software development.

However, recall the conceptual distances
involved:

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 166

Concept

Formal
Spec.

Informal
Spec.

Folded in middle to give feeling of true
conceptual distances involved

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 167

FMs Needed, Cont’d

Goguen believes that “a deeper reason is that
much more is going on during so-called
maintenance than is generally realized. In
particular, reassessment and re-doing of
requirements, specification, and code, as well
as documentation and validation, are very
much part of maintenance....”

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 168

FMs Needed, Cont’d

Later, he adds, “it only becomes clear what
the requirements really are when the system is
successfully operating in its social and
organisational context.... it is impossible to
completely formalise requirements ... because
they cannot be fully separated from their
social context.”

This is precisely the phenomenon of E-type
systems.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 169

Formal Methods Myths

Goguen has identified other myths about
requirements, again based on the mistaken
idea that the hard part about requirements are
their specification.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 170

FM Myths, Cont’d

If only you had written a formal specification
of the system, you wouldn’t be having these
problems.

Mathematical precision in the derivation of
software eliminates imprecision.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 171

FM Myths, Cont’d

What is the reality?

Yes, formal specification are extremely useful
in identifying inconsistencies in requirements
specifications, especially if one carries out
some minimal proofs of consistency and
constraint or invariant preservation, ...

just as writing a program for the specification!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 172

FM Myths, Cont’d

Don’t get me wrong.

This formality is good, because it finds errors
early, thus reducing the costs to fix them.

However, formal methods do not find all gaps
in understanding!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 173

FM Myths, Cont’d

As Eugene Strand and Warren Jones [1982]
observe, “Omissions of function are often
difficult for the user to recognize in formal
specifications”....

just as they are in programs!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 174

FM Myths, Cont’d

von Neumann and Morgenstern (Theory of
Games [1944]) say,

“There’s no point to using exact methods
where there’s no clarity in the concepts and
issues to which they are to be applied.”

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 175

Preservation of Difficulty

Indeed, Oded Sudarsky has pointed out the
phenomenon of preservation of difficulty.
Specifically, difficulties caused by lack of
understanding of the real world situation are
not eliminated by use of formal methods;
instead the misunderstanding gets formalized
into the specifications, and may even be
harder to recognize simply because formal
definitions are harder to read by the clients.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 176

Bubbles in Wall Paper

Sudarsky adds that formal specification
methods just shift the difficulty from the
implementation phase to the specification
phase. The “air-bubble-under-wallpaper”
metaphor applies here; you press on the
bubble in one place, and it pops up
somewhere else.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 177

One Saving Grace

Lest, you think I am totally against formal
methods, they do have one positive effect, and
it’s a BIG one:

Use of them increases the correctness of the
specifications.

Therefore you find more bugs at specification
time than without them, saving considerable
money for each bug found earlier rather than
later.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 178

Analogy with Math Theory

Building new software is like building a new
mathematical theory from the ground up:

g Requirements gathering: deciding what is
to be assumed, defined, and proved

g Development as a whole: assuming
assumptions, defining the terms, and
proving the theorems

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 179

Math Theory, Cont’d

g Design: determining the sequence of
assumptions, definitions, and theorems to
build the theory

g Implementation: carrying out the designed
theory and proving the theorems

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 180

Math Theory, Cont’d

Mathematical papers and books show only the
results of the implementation,

This implementation is what is considered the
mathematics, and not the requirements
gathering and design that went into it.

But I know, from my own secret past life as a
mathematician, that the hard, time-consuming
parts are the requirements gathering and
design.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 181

Math vs. SW Development

g Software is usually developed under strict
time constraints, and mathematics is
usually not.

g Mathematics development is subjected to
error-eliminating social processes, and
software development is subjected to a lot
less.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 182

Math vs. SW, Cont’d

g Mathematics is written for a human
audience that is very forgiving of minor
errors so long as it can see the main point;
software is written for the computer that is
very literal and unforgiving of minor errors

- For people, UKWIM works, and they
accept imprecision.

- For computers, UKWIM and DWIM do
not work, and computers do not accept
imprecision.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 183

Another Implication of Growing
Maintenance Costs

For many programs, which are more and more
often enhancements of legacy software, any
original requirements specifications that may
have existed are long gone.

The original programmers are long gone.

The old requirements have to be inferred from
the software.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 184

Another Implication, Cont’d

What is inferred may not capture all features.

Also the obvious requirement of not impacting
existing functions in the enhancement is very
easy to state, but, oh, so hard to satisfy.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 185

More on Whence

Recall that Joe Goguen [1994a] says, “It is not
quite accurate to say that requirements are in
the minds of clients; it would be more
accurate to say that they are in the social
system of the client organization. They have to
be invented, not captured or elicited, and that
invention has to be a cooperative venture
involving the client, the users, and the
developers. The difficulties are mainly social,
political, and cultural, and not technical.”
[italics are mine]

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 186

Social, Political, & Cultural?

Several others have observed that emotions,
values, beliefs, politics, and culture play a
significant role in whether or not users accept
and use deployed information-technology
systems (ITSs).

Management tries to introduce ITSs to
automate and transform business processes.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 187

Employee View

However, many times, employees see these
ITSs not as work savers or work facilitators,
but fear them as job eliminators, job
trivializers, and job complicators.

Such employees have difficulty using the
ITSs, refuse to use them, or even sabotage
them!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 188

Sabotage

Isabel Ramos (Santos) et al [1998, 2002, &
2004] report several failed ITS deployments
because of these fears and, in one case, user
sabotage:

g a mistake-logging system
g a new centralized system for a university

library
g an OTS ERP system replacing a home-

brewed system in a commercial company
g a CSCW system in a university classroom

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 189

Political Reasons for Failed Projects

Johann Rost [2004] writes about political
reasons for failed software projects.

He describes how subversive behavior can
sabotage software projects.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 190

LAS and CAPSA

The deployments of the London Ambulance
System [Finkelstein 1993, Finkelstein & Dowell
1996] and the deployment of CAPSA, the
Cambridge University’s new on-line
accounting system [Finkelstein & Shattock
2001] failed miserably.

Ramos believes that a prime cause of these
failed deployments was the failure to deal with
the stakeholders’ emotions, values, and
beliefs during their RE processes.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 191

Technology vs. Politics

M.B. Bergman, J.L. King and K. Lyytinen
[2002] observe, “Indeed, policymakers will
tend to see all problems as political, while
engineers will tend to see the same problems
as technical. Those on the policy side cannot
see the technical implications of unresolved
political issues, and those on the technical
side are unaware that the political ecology is
creating serious problems that will show up in
the functional ecology.”

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 192

Technology vs. Politics, Cont’d

Bergman, King, and Lyytinen go on to say,
“We believe that one source of opposition to
explicit engagement of the political side of RE
is the sense that politics is somehow in
opposition to rationality. This is a
misconception of the nature and role of
politics. Political action embodies a vital form
of rationality that is required to reach socially
important decisions in conditions of
incomplete information about the relationship
between actions and outcomes.”

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 193

User Acceptability

Boehm and Huang [2003] observe, project can
be tremendously successful with respect to
cost-oriented earned value, but an absolute
disaster in terms of actual organizational
value earned. This frequently happens when
the product has flaws with respect to user
acceptability, operational cost-effectiveness,
or timely market entry.”

Note that user acceptability is an emotional
issue.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 194

User Acceptability, Cont’d

Boehm and Huang add, “the initiative to
implement a new order-entry system to reduce
the time required to process must convince
the sales people that using the new system
features will be good for their careers. For
example, if the order-entry system is so
efficiency-optimized, it doesn’t track sales
credits [which prove who sold what], the sales
people will fight using it.”

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 195

Emotional RE

Ramos [Ramos (Santos) et al 1998, 2002, &
2004] suggests that the requirements engineer
be on the lookout for signs of all sorts of
social, emotional, political, and cultural
problems among the customers and users
during RE.

When such a problem is found, it should be
explored with an eye to adjusting the
requirements of the ITS so that the problem is
ameliorated or even goes away.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 196

Just Managerial Issues?

Some who see these ITS deployment
problems regard the problems as managerial
problems and not as requirements problems.

In one sense, they are right, in that these
problems require action by management,
addressing social issues.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 197

What is a Requirements Problem?

However, any problem that can prevent the
successful deployment of a system, whether it
be

g incorrect function,
g failure to notice tacit assumptions,
g or anything else

should be identified as early as possible so
that dealing with it can permeate the entire
system design and development process.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 198

Requirements Problems!

Perhaps a so-called managerial problem borne
of emotion can be solved by a simple change
in functionality or user interface, e.g., by
eliminating a hated feature entirely.

Delaying consideration of any problem drives
up the cost of solving the problem once it is
identified as seen in graphs earlier.

When viewed this way, all such problems
become requirement problems.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 199

Managerial Solutions!

In the end, it may very well be that the adopted
solution to an problem may be considered
managerial, e.g., educating users and their
managers, providing incentives for adopting,
etc.

However, such solutions, especially that of
educating users, may be applied also to what
might appear to be a functional or user-
interface issue (as did NASA [Lutz & Mikulski
2003]).

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 200

RE and Other Engineering

Speaking of architects and other engineers
that get requirements from clients, ...

While software requirements gathering has
much in common with requirements gathering
for buildings, bridges, cars, etc., there are
significant differences in:

g the flexibility and malleability of the
medium, and

g the degree to which basic assumptions are
on the table, up for grabs.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 201

Other Engineering, Cont’d

Michael Jackson [1998] considers the more
traditional engineering disciplines.

Civil Engineering
Mechanical Engineering
Aeronautical Engineering
Electrical Engineering

Their engineers make machines by describing
them and then building them.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 202

Other Engineering, Cont’d

Software engineers make machines merely by
describing them.

Software is an intangible, infinitely malleable
medium.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 203

Other Engineering, Cont’d

To build a new car from requirements the way
software is built from requirements would be
called totally rethinking the automobile. In
fact, each new kind of car is really a minor
perturbation of existing kinds of cars.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 204

Other Engineering, Cont’d

Perhaps, we should do much more minor
perturbation of existing software, i.e., practice
reuse, but in many cases we cannot, simply
because we are developing software for an
entirely new application.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 205

Bottom Line

The notions that

g one can derive requirements
or

g even interview a few people to get
requirements

are patent nonsense.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 206

Ample Evidence That

g The later an error is detected, the more it
costs to correct it.

g Many errors are made in requirements
elicitation and definition.

g Many requirements errors can be detected
early in the lifecycle.

g Typical errors include incorrect facts,
omissions, inconsistencies, and
ambiguities.

g Requirements problems are industry’s
biggest concern.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 207

OK, OK, You’re Convinced!!!

So what do we DO about it?

What research is being done to solve the
problems?

First, recognize that the problem is HARD!

Second, recognize that requirements
engineering has its own lifecycle

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 208

Requirements Engineering
Lifecycle

Specification

Validation

Analysis

Elicitation

Conception

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 209

RE Lifecycle, Cont’d

This, of course, is an idealization, just as
much as the original waterfall.

Reality is that there is a spiral, with each
sweep going through this entire subwaterfall,
and all the steps in the sweep happening
concurrently.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 210

Another RE Lifecycle

Kevin Ryan offers the following RE process:

g Identify Requirements
g Document Requirements
g Validate Requirements—Have we elicited

and documented the right requirements?
g Verify—Have we got the model right— and

Validate—Have got the right model—
Models

g Rank Requirements by Priority
g Select and Plan Requirements

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 211

Scoping

Some facts:

g Many projects fail because what was
required was too big for the available
resources, and there is no way to subset
the requirements, i.e., it’s all or nothing!

g 80% of execution is in 20% of the code, a
rule of thumb used by compiler writers.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 212

Scoping, Cont’d

g 1998 Standish Group data [Neumann 1999]
show that among features in sampled
mass-marketed applications,
- 45% are never used,
- 19% are rarely used,
- 16% are sometimes used,
- 13% are often used, and
- only 7% are always used.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 213

Must Scope Requirements

The solution to these problems is to scope,
but how?

Must rank requirements [Davis 2003]

1. absolutely essential
2. essential
3. important
4. nice
5. fluff

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 214

Subsetting Requirements

Select an affordable, coherent subset of the
requirements consisting of the most important
requirements.

OR

Build to cost, perhaps in a spiral.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 215

Use Cases and Scenarios

Consider an interactive computer-based
system (CBS), S. It is called interactive
because its users interact with it.

A user tends to think of S in the ways that he
or she will use it.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 216

Using a CBS -1

For example, if S is an electronic voting
system, the average voter user tends to think
of two particular ways to use S:

g registering to vote, and
g voting, i.e., marking a ballot in an election.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 217

Using a CBS -2

There are other users of this S that think of
other particular ways to use the S.

For example, the voting manager user has
other particular ways to use S:

g preparing a ballot for a particular election,
g opening the polls for a particular election

for voting by voters,
g closing the polls for a particular election,
g counting the votes for a particular election.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 218

Using a CBS -3

Of course, the voting manager is also a voter
and can also register to vote and vote.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 219

Use Case

Each such particular way to use S is called a
use case.

It is one case of the many ways to use S.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 220

Scenario

A use case should not be confused with a
closely related concept called a scenario. A
scenario of S is a particular sequence of
interaction steps between a user of S and S.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 221

Use Cases and Scenarios

The relation between use cases and scenarios
can make both terms clearer.

A single use case contains many, many
scenarios.

A use case UC of S has a so-called typical
scenario. This scenario is that identified by
the stakeholders of S as being the normal
case of UC that proceeds with all decisions
being made in the so-called normal or typical
way.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 222

Variations

UC also consists of variations called
alternatives and exceptions.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 223

Alternatives -1

An alternative of UC is a sub-use-case, which
may include many scenarios, that achieves
the main goal of UC through different
sequences of steps or fails to achieve the
goals of UC although it follows most of the
steps of UC.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 224

Alternatives -2

For example, for the voting use case, the
typical case is voting in one session.

One alternative is voting in multiple sessions.

Another alternative is starting to vote, but not
finishing.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 225

Exceptions

An exception of UC is a sub-use-case, which
may include many scenarios, that deals with
the conditions along the typical scenario and
other sub-use-cases that differ from the norm
and those already covered.

For example, for the voting, what to do with a
non-registered voter trying to vote is an
exception.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 226

Misuse Cases

Sindre and Opdahl [2000] and Alexander
[2002] have proposed misuse cases to capture
use cases that a system must be protected
against, that you do not want to happen at all,
e.g., a security breach.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 227

Sharing of Subsequences

Observe that all the scenarios of a use case
share many subsequences of steps.

Some sets of these subsequences of steps
may constitute sub-use-cases that are worth
considering as use cases that can be used by
other use cases.

For example, the voting and registering use
cases may share the steps for validating that a
user is a registered voter.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 228

Power of Scenarios

Aren’t scenarios nice? They can be used
g to help elicit requirements
g as a basis for user validation of

requirements understanding
g as a basis of an active review of

specifications
g as a basis of a quick and dirty prototype
g as a basis of covering black-box test cases

for implementation
g as a basis for writing a user’s manual
Wow!!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 229

Agility vs. Full RE

In situations in which high-level requirements
are not fully understood, ...

in which prototyping should be done to help
identify requirements and to validate them
with the customers and users, ...

and iterative, incremental, or Spiral models are
appropriate, ...

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 230

Agility for Prototyping

then agile methods (AMs), such as eXtreme
programming (XP) [Agile Alliance, Highsmith
& Cockburn 2001, Eberlein & Leite 2002], help
focus quickly to produce a series of well-
inspected [Tomayko 2002] and well-tested
increments, and can be used to carry out the
prototyping effort ...

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 231

But Must Refactor

so long as it is understood that the code
produced is a prototype and that it must be
tossed in order that development of a high-
quality production version be started. In XP,
terminology, this is known as massive
refactoring.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 232

Power of XP

After all, in XP, each iteration starts with the
writing of stories (i.e., scenarios) describing
functions to be implemented in this iteration
and test cases for testing that the functions
have been implemented correctly.

This is far better than in most prototyping
regimes, and the result should be higher
quality software than under most prototyping
regimes.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 233

However...

However, all the data I have seen say that full
RE is the most cost-effective way to produce
quality software, and that it will beat out any
AM any time in the cost and quality attributes.

When all the details are hammered out during
an RE process that lasts until it is done (and
not until a predetermined date), the
development proceeds so much quicker and
with so few bugs!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 234

Tradeoff

What is the tradeoff?

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 235

Full RE Pros & Cons

Full RE leads to better and better understood
code

But risks failure to complete as nervous
managers pull the plug or as funding runs out

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 236

AMs Pros & Cons

Incremental and AMs make sure that you
always have something that runs

But risks always having an incomplete,
incorrect, and flaky program.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 237

Agility vs Full RE

Therefore, if the problem is just getting the
high-level requirements right, then go the
incremental or agile development route, ...

but if the problem is fleshing out the
requirement details given a clear vision, then
go full RE route.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 238

RE is Still an Art

And most importantly, ...

There are no real solutions yet!

It is very much an art form.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 239

Research Topics

Earlier Work, prior to mid-80s

Later Work, mostly after mid-80s

Some temporal overlap, because as we will
see, the work is classified by nature, and that
nature has changed slowly.

I apologize in advance if I have left out things
about which I am not aware.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 240

Earlier Work-1

Languages and Tools:

PSL/PSA [Teichroew 1977]
SADT [Ross and Ross & Schoman 1977]
RSL [Alford 1977]
RDL [Winchester 1982]
PAISley [Zave 1982]
RML [Borgida, Greenspan & Mylopoulos
1985]
IORL [Salton & McGill 1983]

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 241

Earlier Work-2

Alan Davis wrote the book! Requirements
Analysis and Specification [1990]

Focus was on analysis and specification, not
on elicitation

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 242

Later Work-1

More consideration of elicitation

Recognition of importance of sociology and
psychology

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 243

Later Work-2

g Elicitation
g Analysis
g Natural Language Processing
g Tools and Environments
g Changes
g Empirical Studies
g RE as a Human Activity

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 244

Global View-1

Requirements Engineering is:

How to squeeze requirements out of the
client’s mind and environment without
damaging the client or the environment!

Elicitation is:

How to squeeze information out of the client’s
mind without damaging the client!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 245

Global View-2

Analysis is:

How to squeeze as much additional
information as possible out of what has been
obtained by squeezing the client and the
environment!

Natural Language Processing (NLP) is
concerned with:

How to automate as much of the analysis
squeezing as possible

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 246

Global View-3

Tools and Environments deal with:

How to automate the storage of information
before and after analytic squeezing as well as
all kinds of squeezing!

Changes cause that:

No matter how hard you squeeze, analyze, etc.
there are new requirements, and the old ones
change.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 247

Global View-4

Empirical Studies are concerned with:

Understanding squeezing by observing it or
parts of it in real-life circumstances!

RE as a Human Activity is concerned with:

Understanding how humans do the squeezing
as a social activity.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 248

Use of Exemplars in RE Research

Many areas of SE use published exemplars,
e.g., the KWIC Index System, for research
case studies.

Since the problem is how to get the
information for requirements, published
exemplars are too polished and too late.

What is normally done to prepare exemplars
for publication is the subject

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 249

Post Mortem Reports

Post mortem reports from failed projects, e.g.,
the automation of the London Ambulance
Service [Finkelstein & Dowell 96] dispatching
system, provide useful insight in how not to
do requirements engineering.

Interestingly, the LAS learned its own lessons
and won the 1997 British Computer Society
Excellence Award!

Another is the CAPSA Report [Finkelstein &
Shattock 2001]

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 250

Elicitation Overview-1
The gist of the specific work is:

g Identify the stakeholders; these are the
people you have to ask!

g The customer is always right.
g People matter.
g Interviewing does not get all the

information that is needed.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 251

Elicitation Overview-2

g The requirements engineer should get into
the client’s work place, blend into the
woodwork or among the employees, and
observe, learn, and question, in order to
overcome ignorance of the problem
domain.

g The requirements engineer should become
an employee of the client to learn the ropes
well enough to understand the underlying
rationale behind the way things are done.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 252

Elicitation Overview-3

g The requirements engineer should parlay
his or her ignorance into on-the-spot
questions that expose tacit assumptions
and special cases.

g Don’t tell them what you mean; show them!
This works in both directions!

g Prototype to capture emergent
requirements and contextual factors.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 253

Elicitation Overview-4

g Getting all stakeholders together for week-
long facilitated meetings at which the
requirements are shlogged out together
buys commitment from all stakeholders.

g Scenarios and use-cases, which are
descriptions of the ways that the intended
system will be used to achieve specific or
classes of tasks, are a useful way to focus
users’ attention on what they actually do
and to document what they really do in the
course of doing their work.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 254

Elicitation Specifics-1

g Ignorance hiding in elicitation and analysis
[Berry 1980, 1983]

g Scenarios and Use Cases [Hooper & Hsia
1982, Jacobson 1992]

g Concept of abstract user and prototype
elicitation management tool [Burstin 1984]

g Brainstorming [Gause & Weinberg 1989]
g Contextual Inquiry, an anthropological

approach to understanding client
[Holtzblatt & Jones 1990, Beyer & Holtzblatt
1998]

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 255

Elicitation Specifics-2

g Study of discourses in elicitation
techniques, e.g., interviews [Goguen &
Linde 1993]

g Storyboarding & paper mockups [Zahniser
1993]

g Joint Application Development [Carmel,
Whitaker & George 1993] [Wood & Silver
1995]

g Importance of ignorance in elicitation
[Berry 1995]

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 256

Elicitation Specifics-3

g Stakeholder Identification [Sharp,
Finkelstein & Galal 1999]

g Scenarios and Prototyping to capture
emergent contextual factors [Carroll,
Rosson, Chin, & Koenemann 1998, Dzida &
Freitag 1998]

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 257

Analysis Overview-1

g Basic idea of analysis is to
- derive implications of,
- resolve inconsistencies in, and
- determine what is missing from
the information that has been gathered so
far so that follow up questions may be
asked.

g A key job of the analyst is to model the
system under design and its environment.
This is hard work, but from a good model,
requirements are almost there for picking.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 258

Analysis Overview-2

g Modeling the enterprise in which the
requirements are situated is essential.

g The requirements engineer must constantly
attempt to validate his or her
understanding with the client or user.

g Prototypes are a nice way to make models
and scenarios concrete to clients and
users.

g Clients’ and Users’ validation responses to
prototypes are far more credible than to
long written specifications.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 259

Analysis Overview-3

g One has to be careful about the information
content of a prototype, what is there and
not, what is intended and not, in short, its
meaning.

g It is essential to be able to trace the history
of a requirement from its conception
through its specification and on to its
implementation.

g Tracing allows determining the meaning of
a prototype.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 260

Analysis Overview-4

g Distilling scenarios into use cases is a
useful way to put some order into the
myriad scenarios described by diverse
users.

g Error checking, handling, and prevention
will not happen in a program unless they
are explicitly required of the program; this
is particularly so in safety-critical software
for which the dangers are not readily
apparent.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 261

Analysis Overview-5

g While being specified, requirements are
logically inconsistent.

g Goals and intents are important to
understand and document.

g Ranking requirements by priority allows
scoping, which in turn allows building to
resources.

g Requirements and design affect each other.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 262

Analysis Overview-6

g Dealing with non-functional requirements
(NFR) is tough since often they are not
quantifiable or expressible.

g Analysis = Modeling, Modeling, Modeling!
f Enterprise Modeling
f Data Modeling
f Behavioral Modeling
f Domain Modeling
f NFR Modeling

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 263

Analysis Specifics-1

g Prototyping for requirements discovery
and validation [Wasserman et al 1984 &
1986a & b, Bowers & Pycock 1993, Luqi
1992]

g Software safety fault isolation techniques
[Leveson 1986 & 1995]

g Viewpoint Resolution [Leite 1987,
Easterbrook 1993]

g Brainstorming [Gause & Weinberg 1989]
g Issue-based information system (IBIS)

[Burgess-Yakemovic & Conklin 1990]

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 264

Analysis Specifics-2

g Domain modeling [many, surveys: Kang et
al 1990, Lubars et al 1993]

g Object-orientation as a natural view [many,
including: Coad & Yourdon 1991, Zucconi
1993]

g Non-Functional Requirements [Mylopoulos,
Chung & Nixon 1992].

g Enterprise Modeling with Scenarios
[Mylopoulos, Chung & Nixon 1992].

g Goal-directed RE [Dardenne, van
Lamsweerde & Fickas 1993]

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 265

Analysis Specifics-3

g System Scoping & Bounding [Drake & Tsai
1994]

g Requirements Traceability [Gotel &
Finkelstein 1994]

g Living with Logical Inconsistency of Specs
[Easterbrook & Nuseibeh 1995, 1996,
Hunter & Nuseibeh 1997]

g Ranking Requirements by Priority
[Karlsson & Ryan 1997, Karlsson, Olsson &
Ryan 1997]

g Intent Specifications [Leveson 1997]

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 266

NLP Overview-1

The total amount of information to deal with
for any real problem is HUGE and
repetitititive.

We desire assistance in extracting useful
information from this mass of information.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 267

NLP Overview-2

We would like the extracted information to be

g summarizing,
g meaningful, and
g covering.

From 500 pages, we want 5 pages containing
all and only the meaningful information in the
500 pages.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 268

NLP Overview-3

We prefer less summarization and occasional
meaningless stuff than to lose some
meaningful stuff, because in any case, a
human will have to read the output and at that
time can filter out the meaningless stuff.

Stupidity is preferred to intelligence if the
latter can lose information as a result of it not
ever being perfect.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 269

NLP Overview-4

Expressing scenarios in natural language
keeps them understandable by the clients and
users but runs the risk of ambiguity.

The user’s manual, written in natural
language, turns out to be a very good
requirements specification [Berry, Daudjee, et
al 2004].

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 270

NLP Specifics-1

g Restricted natural language processing of
requirements ideas to get specifications
[Saeki, Horai, et al 1987]

g Natural language abstraction identification
with lexical affinities [Maarek 1989]

g Application domain lexicon building and
tools [Leite & Franco 1993]

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 271

NLP Specifics-2

g AI-based natural language processing
[Ryan 1993]

g Nonintelligent, fully covering natural
language abstraction identification using
signal processing techniques [Goldin 1994]

g Scenarios in Natural Languages [Somé,
Dssouli, & Vaucher 1996]

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 272

Martin Feather’s View of RE Tools

The Requirements Iceberg and Various
Machine-Assisted Icepicks Chipping at It

Client’s
View

Machine’s View

Leverage!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 273

Tools & Environments Overview-1

Even with summarizing tools,
the amount of information that the
requirements engineer must deal with is
HUGE,

the number of relations between the
individual items of information is HUGE2,
and

the number of relations between the
individual relations is HUGE4...

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 274

Tools & Environments Overview-2

So we want an environment filled with useful
tools that help manage all the information
needed to produce a requirements
specification from the first conceptions, and
then to be usable for the rest of the lifecycle.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 275

Tools & Environments Specifics-1

g Graphical Issue-Based Information System
(gIBIS) [Burgess-Yakemovic & Conklin
1990]

g Hypermedium as requirements engineering
environments [Potts & Takahashi 1993,
Kaindl 1993]

g Full spectrum, including traceability
analysis, requirements engineering tool,
READS [Smith 1993]

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 276

Tools & Environments Specifics-2

g PRIME, KAOS for formal requirements
modeling and analysis [Dardenne et al
1993]

g Multimedia hypermedium as requirements
engineering environments [Wood, Christel
& Stevens 1994]

g DOORS (Quality Systems and Software),
icCONCEPT-RTM (Integrated Chipware),
Requisite Pro (Rational→IBM), & other
industrial requirements management
platforms

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 277

Some Views of Hypermedia Tools

˜˜˜˜˜˜˜˜˜˜˜˜

˜˜˜˜˜˜˜˜˜˜˜˜ ˜˜˜˜˜˜˜˜˜˜˜˜ ˜˜˜˜˜˜˜˜˜˜˜˜

˜˜˜˜˜˜˜˜˜˜˜˜

Network of Nodes

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 278

book passenger on flight book passenger on flight

flight passenger

Links

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 279

Database objects, Pseudo-code,
Video, Image

t

a v

t

dbo
t

pcText, Diagrams, Audio,

Time-stamped Prior Copies of Hypermedium

Links of Arbitrary Functionality

Nodes of Arbitrary Type

Unit-to-Unit-Links
Unit-to-Node-Links

Node-to-Node Links
Node-to-Unit-Links

Workstation

Multi-media Hypermedium

Written Input

Requirements Engineer

Video Input

Client

System in Operation

Multimedia Hypermedium

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 280

Changes Overview-1

g Change is the only thing that is permanent
about software and requirements.

g Too many methods for RE (as for SE)
assume incorrectly that the R (and the S)
does not change, and these methods
simply wilt under the face of the continual
relentless changes that occur.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 281

Changes Overview-2

g Nowadays, a growing majority of the
software we write is reworked legacy code,
code that is too valuable to scrap, too
difficult to modify or extend without error,
too expensive to rebuild, but inadequate in
its current form. RE for legacy software
must deal with ripple effects on
requirements that are largely unknown.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 282

Changes Overview-3

g Configuration management and tracing are
methods for dealing with changes in
software, but they work only with the total
cooperation of the people involved, people
who generally disdain the regimentation
required to use them. This drawback
applies equally if not more so to
configuration management and tracing of
requirements.

g Prototyping is also a tool for controlled
evolution of software and requirements.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 283

Change Specifics

g General Software Configuration and
Change Management [Carter, Martin,
Mayblin & Munday 1984, Tichy 1985]

g Prototyping [Davis 1992]
g Traceability [Gotel & Finkelstein 1994]
g Inconsistency Management [Easterbrook &

Nuseibeh 1995]
g Change Impact Analysis [Bohner & Arnold

1996]
g Combating Requirements Creep [Berry

1998]

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 284

Empirical Studies Overview-1

g We have come to recognize that it is
essential to test in actual industrial use
those methods and tools that the research
proposes, that it is not enough to declare
that a method or tool should or must
obviously work, that it is not enough to
apply the method or tool to toy examples.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 285

Empirical Studies Overview-2

g We have also come to recognize that it is
essential to observe industrial SE and RE
in order to fully understand the problems
faced by the practitioners, that it is not
enough to theorize what must be their
problem, or to decide for them what their
problems are.

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 286

Empirical Studies Specifics

g User Participation in RE [El Aman, Quintin
& Madhavji 1996]

g Inspections and RE [Kantorowitz,
Guttmann & Arzi 1997]

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 287

RE as a Human Activity Overview-1

Nuseibeh and Easterbrook remind us that the
context in which RE takes place is usually a
human activity system.

Therefore RE draws on other disciplines for
help in understanding the process.

g Cognitive Psychology: how people
describe needs

g Anthropology: observations of human
activities

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 288

RE as a Human Activity Overview-2

g Sociology: political & cultural changes
g Linguistics: RE requires clear

communication in human languages
g Legal documents and requirements

specifications have identical requirements:
must anticipate all possible eventualities
and contingencies and must be
unambiguous

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 289

RE as a Human Activity Overview-3

g Philosophy
f Epistemology: stakeholder beliefs
f Phenomenology: real-world

observations
f Ontology: agreement on objective truths

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 290

RE as a Human Activity Specifics

g Linguistics [Knuth, Larrabee & Roberts
1989, Dupré 1998]

g Cognitive Psychology [Posner 1993]
g Anthropology [Goguen & Jirotka 1994b,

Goguen & Linde 1993]
g Sociology [Holtzblatt & Beyer 1995, Beyer

& Holtzblatt 1998]
g Ambiguity [Berry, Kamsties & Krieger 2000,

Berry & Kamsties 2004, Mich & Garigliano
2002, Mich 2001]

g Ontologies [Breitman & Leite 2003]

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 291

Future

Lots more work is needed

Please join in!!

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 292

Recent Surveys

g “Requirements Engineering: A Roadmap”,
Nuseibeh & Easterbrook [2000]

g “Requirements Engineering in the Year 00:
A Research Perspective”, van Lamsweerde
[2000]

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 293

Insightful Books

g Exploring Requirements: Quality Before
Design, Gause & Weinberg 1989

g Are Your Lights On? How to Figure Out
What the Problem REALLY Is, Gause &
Weinberg 1990

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 294

Conferences and Workshops

g International Workshop on Software
Systems Design 1–10

g International Symposium on Requirements
Engineering ’93, ’95, ’97, ’99, & ’01

g International Conference on Requirements
Engineering ’94, ’96, ’98 & ’00

g International Requirements Engineering
Conference ’02, ’03, ’04, & ’05

g IFIP WG 2.9 Software Requirements
Engineering ’95, ’96, ’97, ’99, ’00, ’01, ’02,
’03, & ’04

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 295

Journals

g Software Practice and Experience
g Journal of Systems and Software
g IEEE Software
g Journal of Automated Software

Engineering
g Requirements Engineering Journal
g ACM Interactions
g Journal of Information and Software

Technology

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 296

Research Networks

g RENOIR, Requirements Engineering
Network Of International cooperating
Research groups, a network of excellence
sponsored by the European Union

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 297

Web Pages

g Requirements Engineering Newsletter
(these are the files named renl*:
ftp://ftp.cs.city.ac.uk/pub/requirements/

g Requirements Engineering Bibliography:
http://www.inf.puc-rio.br/˜bdbib/

g RENOIR:
http://www.cs.ucl.ac.uk/research/renoir/

 2004 Daniel M. Berry Requirements Enginering Requirements Iceberg Pg. 298

