Case Studies of Requirements Engineering for Medical Software

Presenter:

Ankith Prabhu

CS 846 project Presentation

Department of Computer Science

Contents

- Current trends in the healthcare industry.
- Industrial Requirements Engineering challenges.
- Case Study Health Informatics System
- Case Study Specifications for a System for public entity.
- Best practices

The company

- World leader in healthcare IT, in-vitro and in-vivo medical devices.
- In-vivo devices such X-ray devices, CT, MR and Ultrasound scanner
- In-vitro devices such as blood, nucleic acid and near patient testing.

Business Trends and challenges

Rate of innovation is increasing

Increasing competition leads to pressure for higher efficiency.

Challenges with regards to regulatory approval/compliance (FDA)

• Solution development fails due to insufficient requirements engineering.

Increasing rate of innovation

RE challenges in healthcare projects

- High complexity of customer requirements.
- Unclear stakeholder expectations
- Rapidly changing technology
- Distributed teams
- Ad-hoc change management and lack to traceability
- Change of scope

Impact of insufficient RE

Observation	Business Impact
Insufficient RE	High likelihood of project failure • Quality requirements not done • Increase rework (>50)
Lack of end to end upstream and down stream integration	 Mismatch with market needs Difficult to manage dev from portfolio perspective, react to changing market Tracing is difficult to manage
Inadequate process and modelling technique	 Clinical workflow requirements difficult to capture Risk of implementing inadequate product features Roadblock for automating dev tasks
Distributed teams interact inefficiently	Communicate product requirements in a global context • Inefficiencies in dev, expect lower quality
Benefits of reuse not realized	 High amount of overheads and rework for variants Requirements not mapped towards product lines/platforms No reuse of architecture, testing or coding artifacts

Development of Health informatics system prototype

Objectives

- 1. Deliver end to end high quality workflows
- 2. Redesign user interface to achieve optimized usability

Description

- 1. 40 staff, 6 scrum teams requirement engineer, UI designer, architect, developer, product manager, clinician
- 2. Rapid prototyping jot JIT requirement development.

Deliverables

- 1. 15 end to end workflows implemented
- 2. 160000 loc in java
- 3. Novel UI for admin workflows

Flowchart

Challenges addressed:

- Medical workflow capture and visualization
- Communicate product req in a global context

Benefits:

- Reduced time to market
- Quick capture of medical workflow

Electronic flow sheet prototype

Bed management system prototype

Results

Use storyboards to capture clinical workflows

- Outcomes learned
 - Establish storyboards as an artifact to serve as requirement, UI and test artifact.
 - Allows to map successful paths and failure paths
 - Review requirements with different stakeholders
 - Challenge evolution/changing scenarios

Case study 2: Public system

- Objectives
 - Develop high quality system requirement specs
 - Define RE approach including process, tools, skills
- Description
 - 4 requirement engineers to deal with more than 5000 requirements.
 - Distributed teams
 - High value project.
- Deliverables
 - System Requirement Specification
 - RE management plan
- Approved specifications will allow development team to streamline work and reduce risk.

Challenges with feature hierarchy and dependency relationships

- High complexity
- Distributed teams
- Lack of traceability/ ad-hoc change of management
- Outcomes learned
 - Late changes are expensive
 - Understanding feature dependencies and complexities is key
 - Several iterations needed
 - Work in domain logical heirarchy

Challenges with obtaining a good understanding of customer requirements

- Change of scope
- Change in tech

- Outcomes learned
 - Customer does not have complete understanding of requirements
 - Start with domain glossary and prototyping asap
 - Under promise and over deliver

Develop specifications for problem and solution space

- Requirements change as solutions are prototyped and shown to customer
- Identify risks involved in changing requirements during analysis
- Try to minimize the cost of changing requirements
- Analyze the trade-off between abstraction and detail
- Try to reduce the changes to requirements.

Challenges with consistently implementing and maintaining traceability

- Change in management
- Change in scope

- Outcomes learned:
 - Maintaining traceability yields an ROI over 5 years
 - But it also needs effort that must be budgeted for, this will reduce overall cost in the long run
 - Establish feasible traceability model from the beginning
 - Insist on impact analysis, progress tracking and testing

Challenges with establishing effective RE standards and review processes

- Distributed teams
- Poor requirement quality
- Change in management
- Change in scope
- Outcomes learned:
 - Enforce documentation standards, industrial standards like IEEE 830 can be used.
 - Value consistency, homogenise content using templates for easier documentation.
 - Budget for reviews

Best RE practices for Healthcare projects

- Use storyboards for clinical workflows
- Define feature hierarchy and dependencies
- Understand the market requirements clearly
- Develop specifications for problem and solution space
- Implement traceability
- Establish effective RE standards and review processes.

