
An Experience-Based Approach for Integrating Architecture and
Requirements Engineering #

B. Paech*, A.Von Knethen*, J.Doerr*, J.Bayer*, D. Kerkow*, R. Kolb*, A. Trendowicz*, T. Punter*, A. Dutoit+

*Fraunhofer IESE, Sauerwiesen 6, 67661 Kaiserslautern, Germany
+TU München, Institut für Informatik,

{paech, vknethen, doerrj, bayer, kerkow, kolb, trend, punter}@iese.fraunhofer.de, dutoit@in.tum.de

Abstract

Deriving requirements and architecture in concert
implies the joint elicitation and specification of the
problem and the structure of the solution. In this paper
we argue that such an integrated process should be
fundamentally based on experience. We sketch an
approach developed in the context of the EMPRESS
project that shows how different kinds of experience-
based artifacts, such as questionnaires, checklists,
architectural patterns, and rationale, can beneficially be
applied.

1. Introduction
The last few years have seen a growing awareness of

the requirements engineering community for architectural
issues and vice versa. Several authors have argued
convincingly for the tight interdependencies between
functional requirements (FRs), non-functional
requirements (NFRs) and architectural options (AOs) that
need to be made explicit early, e.g., [1], [2].

The design of an architecture aims at creating a
software solution for the problem given in the
requirements specification. In the requirements
specification, the problem is elicited and documented
using concepts from the problem domain. An architecture
sketches the solution at a high level of abstraction. This
means that the problem must be expressed in terms of
concepts from the solution domain (i.e., the programming
domain). This is a creative activity that is not well
supported by current software development approaches.

In this paper, we propose an approach that supports
the elicitation, specification and design activity by
providing experience in terms of questionnaires,
checklists, architectural patterns and rationale that have
been collected in earlier successful projects and that are
presented to developers to support them in their task.

The approach uses a refinement graph, checklists and
questionnaires to capture important NFRs more precisely.
In addition, it uses architectural patterns for reusing AOs
and for evaluating them against a specific set of
requirements. Furthermore, it uses traceability and
rationale management to make explicit the decision
making involved in a joint specification and design of
FRs, NFRs and AOs.
The paper is structured as follows: First, we sketch the
fundamental issues to be solved in integrating RE and
architecture development, and how these are covered by
related work. Second, we discuss the foundation of our
approach in terms of a metamodel that describes the basic
concepts we are dealing with, such as quality attributes,
metrics, and NFRs. Third, the integrated process with
input and output documents is described. We conclude
with a discussion of how well our approach deals with the
fundamental issues identified.

Figure 1: General process of integrating architecture and
requirements

2. Fundamental Issues
Figure 1 shows the general process of integrating the
architectural decision process into the requirements
engineering process.

It comprises the relevant activities of the software
engineering process, namely an iteration of requirements
elicitation, specification, and design that produces FRs,
NFRs and AOs. These are subsequently implemented.

#The research for this paper has been partly funded
by the EUREKA-ITEA projects “EMPRESS”
(ITEA 01003) and “CAFÉ” (ITEA 00004)

ElicitationElicitation

Functional
Requirements

Non-Functional
Requirements

Functional
Requirements

Non-Functional
Requirements

ArchitectureArchitecture

SpecificationSpecification DesignDesign

ImplementationImplementation

Figure 2: The metamodel

/influences/refined into

Quality AttributeQuality Attribute
1

*

Metric

1

*

Means

1

1
Stimulus

Response

Scenario

*

1

1

*

1

/has influence on

Requirement

Non-functional Requirement

Functional Requirement

/measured by

ValueValue

/achieved by

/instantiates

/expressed over

*

1..*

/satisfies

/uses/specializes
*

/conflicts

PatternPattern

*

/determines

*

1 *

/described by 1

1

As exemplified by the approaches presented at
STRAW 2001, there are many different ways to support
these activities. They mainly solve the following
fundamental issues:

• Issue 1 – Views of different stakeholders in the
elicitation of NFRs, FRs, and AOs: How to
identify the essential NFRs, FRs, and AOs and
different views of different stakeholders? How to
negotiate conflicts? What is a sufficient level of
abstraction for these discussions? One possible
support for negotiation is given by the WinWin
approach [2][3][4].

• Issue 2 – Identification of dependencies among
FRs, NFRs, and AOs: How to describe NFRs, FRs,
and AOs such that dependencies can easily be
identified? In several approaches, goal graphs are
used for specifying NFRs and FRs and their
dependencies. There is much less agreement on
describing AOs, e.g., Use Case Maps [5], agent-
oriented goal graphs [6], the CBSP approach [4], or
social organizations [7].

• Issue 3 – Assessment of how well different AOs
address a specific set of FRs and NFRs: How to
capture and support the decision making involved
in specifying FRs, NFRs and AOs? Typically,
concepts from rationale management [8] are used
to make explicit questions to be solved, options for
their solutions, criteria to evaluate the options and
assessments of the options against these criteria.
For example, goal graphs are used to capture
criteria (business goals) and issues (NFRs and
FRs), AOs and their assessments [5]. Another
example is the Concordance Matrix to capture
assessments of the architectural relevance of FRs
and NFRs [4]. Also, SEIs Architecture Tradeoff
Analysis Method (ATAM) captures criteria (quality
attributes, business goals), issues (risks), options
(architectural views), and assessments (utility tree).
The Cost Benefit Analysis Method (CBAM) is used
to refine the ATAM results with cost, benefit
(criteria, options) [3].

As argued in the introduction, however, the design of

an architecture is a creative task. It involves much
judgment and heuristics on the importance of NFRs and
FRs and different AOs. Thus, it is error-prone (e.g.,
guesses about how well an architecture meets a set of
NFRs can be wrong) or expensive (e.g., when using a
prototype realization of the architecture to experimentally
assess the suitability of the architecture). Moreover, it can
only be learned through experience and apprenticeship.
Hence, leveraging off past experience can help these
challenges to be addressed. This raises another issue:

• Issue 4 – Representation of past experience to
facilitate issues 1-3: How can one capture and use

experience on FR, NFRs, AOs, their dependencies
and their assessments? Such representations must
not only include the AOs under consideration, but
also sufficient knowledge for their selection and
application. This includes the context in which they
can be used and the trade-offs they entail.
Architectural styles, for example, are used to
capture typical AOs, a correlation catalogue to
capture typical assessments [7].

The last issue is rather implicitly treated in many

approaches. In contrast, we have put most emphasis on
identifying how experience can support the integrated
process.

3. Our Approach
In the following, we present our approach for

capturing experience to support the integrated elicitation,
specification of NFRs and FRs and design of architecture.
First, we explain the fundamental concepts in terms of a
metamodel. Second, we sketch the process and the
products. We illustrate the process and the products with
a case study dealing with a mobile, interactive application
to allow users monitor production activities, manage
physical resources and access information. This case
study is based on a real system and was provided by
Siemens in the context of the Empress project.

Figure 3: The experience-based process

3.1 Foundation
Our integrating approach is based on a metamodel that

describes the main concepts we are dealing with (see
Figure 2).

• quality attribute (QA) is a non-functional
characteristic of a software product or process. We
distinguish between high-level QAs (i.e.,
efficiency, maintainability, reliability, usability,
and portability) and refining QAs of these
attributes. The high-level QA “efficiency” can, for
example, be refined into “time behavior” and
“resource utilization”, “time behavior” can be
refined into “workload” and “response time“. In
addition, QAs can have positive or negative
influences on each other, e.g., if the “workload” is
higher, the “response time” will increase (negative
influence).

• To make explicit the distinction between
knowledge about QAs gained in experience and
the quality to be achieved in a specific project, we
use the term NFR to describe the latter. A NFR is
an instantiation of a QA that is created by
determining a value (range) for a metric associated
with the QA. For example, the NFR “The database
of our new system shall handle 1000 queries per
second.” instantiates the QA “workload of
database”. The value is determined based on an
associated metric “Number of jobs per time unit”.

The distinctive feature of this metamodel is that we
distinguish problem-oriented refinement from solution-
oriented refinement of QAs. The latter is made explicit in
terms of means which mediate between QAs and patterns.

• Means are principles, techniques, or mechanisms
that facilitate the achievement of certain qualities in
a software architecture. They are abstract patterns
that capture a way to achieve a certain quality
requirement, but are not concrete enough to be used
directly (i.e., they have to be instantiated as
patterns). Means are described by scenarios, which
consist of stimulus and response, and a metric. For
example, a scenario for the NFR mentioned above
is “object creation throughput must be fast”, where
the stimulus is “object creation”, the response is
“throughput” and the metric is “number of objects
created per second”.

• A pattern is used to document Aos. Pattern help
designers in creating architectures by providing
solutions for recurring problems in the design of
software architectures. The pre-defined solutions
have proven to be beneficial in certain situations.
As they have been applied repeatedly, their impact
on a software architecture is known. Patterns are
chosen to satisfy the scenarios. They can be refined
through specializations. For example, the pattern

“layered architecture” can be specialized into
“strictly layered architecture” and “loosely layered
architecture”. Furthermore, if a pattern uses another
pattern, the used pattern is applied to create the
using pattern. With this mechanism, collaborating
patterns can be used to form higher-level patterns.
Two patterns can also be in conflict, e.g., the “client
server” and “layered architecture” patterns cannot
be applied at the same time.

The following sections describe how these concepts
are used within our approach.

3.2 Experience-Based Process

Figure 3 gives an overview on our experience-based
process of integrating architectural decision making into
the requirements engineering process.

In the following, the different activities of our process
are listed. The overall process is iterative, that means
within each activity and between the activities iterations
are probable and necessary. Products consumed and
produced by the activities of the process are explained in
more detail and illustrated with examples in the
following. sections.

ElicitationElicitation

Functional
Requirements

Non-Functional
Requirements

Functional
Requirements

Non-Functional
Requirements

ArchitectureArchitecture

SpecificationSpecification DesignDesign

ImplementationImplementation

Rationales

Patterns

MeansMeans

Experience
Capture

Experience
Capture

Refinement Graphs,
Checklists

QuestionnaireQuestionnaire

ProductProduct ActivityActivity

• Elicitation: During the elicitation, the customer has
to prioritize the QAs at the highest level of
abstraction for the system to be developed. A
questionnaire is used for this purpose. Then, QAs
with the highest priorities are refined with the help
of checklists. Refinement graphs for the high level
QAs are the foundation of all checklists. We
distinguish different types of checklists. Each
checklist focuses on a certain refinement aspect
(e.g., problem-refinement, solution-refinement,
dependencies between QAs). The rationale for
specific estimates for the NFR (e.g. maximal load)
is captured.

• Specification: During the specification,
measurable NFRs will be documented in a
requirements document. Checklists guide this
activity. We use a requirements template that allows
different NFRs to be described at different places in
the document. NFRs, for example, that are
expressed over FRs are explicitly stated together
with the FR. We use Use Cases and Use Case
descriptions to describe FRs (our approach for
describing FRs for embedded systems has been
developed in the QUASAR project [9]). NFRs (e.g.,
response time requirements) are explicitly stated in
the Use Case descriptions.
Furthermore, concrete means to achieve the NFRs
are identified by using the assessments of their
suitability documented in a refinement graph. The
rationale for a chosen means is captured.

• Design: During the design, requirements that have
an effect on the architecture are selected. In
addition, the principal structure of the system is
refined based on the requirements and the means
and pattern catalogue. In the following, the existing
architecture is iteratively refined based on
requirements and the catalogue. After each
refinement step, the architecture is assessed
concerning their non-functional properties. The
rationale for chosen means and patterns is captured.

• Experience Capture: During the performance of a
project, experiences are collected and consolidated
to improve the questionnaire, refinement graphs and
checklists and the patterns and means catalogue.

3.3 Questionnaire for Prioritization

For the prioritization of QAs at the highest level of
abstraction, a standardized questionnaire is used. The
questionnaire elicits wishes and facts concerning the
development context of the customer and relates them to
a selection of the QAs defined by ISO9126 [10]: we
selected maintainability, efficiency, usability, and
reliability in our case study.

In the following, we describe at first how the
questionnaire was developed and then how it can be
applied.

To develop the scales of the questionnaire, in a first
step, potential scale items were generated. For this
purpose, we phrased a set of 120 statements containing
wishes and facts, which a person involved in a system
development project would express. The statements
covered the complete set of second level QAs (ISO 9126)
of the high level QAs mentioned above.

Once the statements were generated, they were
presented to eight software quality experts. These experts
judged, whether a customer that needs a certain QA
would agree to each statement. A 1-5 rating scale was
used for the judgment. The experts were – as usual in
scale development [11] – asked not to rate their own
project context, but rather to judge based on their
personal experience, how favorable each item is with
respect to the QA of interest.

In a next step, items with the highest mean and lowest
variance (high interrater reliability) were selected and
assembled to a 30 items questionnaire. As response scale,
a 1-5 Likert scale was chosen, of which 17 statements
covered facts of the current project (strongly agree –
strongly disagree), and 13 statements covered wishes for
future conditions (very important – very unimportant).

The determination of the mean value of the statements
affecting one QA enables to build a rank order of these.
The one with the highest ranking is the most important
attribute for the current system development project and
should receive the greatest deal of attention. The
prioritization is of special interest in case of limited
requirements engineering resources and allows focusing
the requirements engineers’ energies on the most
important high-level QAs. This priorization questionnaire
was applied in the case study. It did not confirm the prior
expressed expectations of the customers. A closer
analysis showed, that the customers tended to rate such
quality aspects as most important, that were difficult for
them to handle, namely “efficiency”, instead of naming
the most important aspects for the success of the project
in scope. The results of the prioritization questionnaire
ranked “maintainability” as most important. The customer
confirmed the correctness of this result.

3.4 Refinement Graph

A refinement graph (also called quality model)
instantiates parts of our metamodel. It describes typical
refinements of high-level QAs into more detailed QAs,
metrics, and means. In addition, it describes relationships
between different QAs. Therefore, it captures experience
of previous projects. Our refinement graph is similar to
the goal graphs of e.g. [6], but emphasizes dependencies.
Figure 4 gives an example for such a refinement graph for
the QA “efficiency”. White rectangles represent QAs at

different levels of detail. Ovals represent metrics that
measure certain QAs. Grey rectangles represent means to
achieve certain QAs.

Four types of relationships can be found in such a
refinement graph. The metamodel in Figure 2 describes
the general types of relationships.

• A QA, such as “efficiency” is refined into more

detailed QAs, such as “time behaviour” and
“resource utilization”.

• A means has influence on a QA, i.e., it is used to
achieve the QA, e.g., “load balancing” is used to
achieve “workload distribution”.

• A QA is measured by a metric. For example the
“workload” can be measured by the metric
“number of jobs per time unit”.

• A QA can be positively or negatively influenced
by another QA. If the “workload”, for example, is
higher, the “response time ” will increase (negative
influence).

Our approach provides a default refinement graph that
can be used without adaptations by a company. Reasons
for this can be a lack of time or money. We recommend
tailoring the refinement graph to the context of each
company and project. Alternatively, a company might
have an own refinement graph that shall be used. In this
case, it is very important to agree on the meaning of the
different QAs in this graph. Our recommendation is to
build a refinement graph together with the company in a
workshop. By doing so, the refinement graph benefits
from the already integrated experience of our default
refinement graph and it is tailored to the project and
company. So far, we defined default refinement graphs
for the QAs “efficiency”, “reliability”, and
“maintainability”. NFRs are elicited for each QA and
relationships between NFRs and FRs are established via
the checklists.

A mechanism to capture the experience of multiple
projects and store the various refinement graphs is also

developed as part of the ITEA EMPRESS project. This
so-called Prometheus approach (Probabilistic Method for
early evaluation of NFRs) is described in [12].

3.5 Checklists

Based on the information included in the refinement
graph, we developed checklists that focus on different
aspects of a high-level QA. We distinguish for each high-
level QA between: (1) initialization checklists, (2)
refinement checklists, and (3) dependency checklists. All
checklists are described in more detail in the following.
Again, in the other approaches for integrating RE and
architecture we have not found something similar to
checklists. They help to make the experience captured in
the refinement graph directly applicable in workshops.

Initialization checklists are defined that capture
everything that has to be decided before NFRs are
refined. There are two types of initialization checklists
that are used in our process: a general initialization
checklist and specific high-level QA checklists.

The general initialization checklist includes aspects of
the following categories:

• Organizational aspects (e.g., domain knowledge
required)

• Technical issues (e.g., notations required)

Figure 5 depicts an extract of such a general

initialization checklist.

Figure 5: Extract of general initialization checklist

Initialization checklists include a set of questions. To

support answering the questions, examples are given in
brackets. Italic formatted comments describe at which
place in the requirements document, the information
should be stated. Examples for NFRs concering
organizational experience are:

• “At least 3 years of experience in maintenance is
required (the longer the better).”

Efficiency

Efficiency
ComplianceTime Behaviour

Throughput
(network)

Response Time

Resource
Utilisation

Capacity

Workload
Distribution

Type and position
of devices

Boot / Start Time Workload

LocalityParallelism

Load Balancing

Mbit/sec. #jobs
/ time unit

% of resource
consumption

Cost /
unit

Figure 4: Refinement graph for efficiency

• “Project experience with wireless networks is
required.”

An excerpt of a specific initialization checklist for the
high level QA “efficiency” is given in Figure 6. This
structure of the checklist corresponds to the structure of
the other initialization checklist. In our case study, there
were no specific NFRs concerning the organizational
experience regarding efficiency.

After initialization checklists were used to elicit initial

NFRs, refinement checklists are used to elicit specific
measurable NFRs. Refinement checklists are specific for
high-level QAs (e.g., efficiency). In case of efficiency
and reliability requirements, we recommend creating Use
Cases to identify concrete NFRs. An excerpt for the
refinement checklist for throughput NFRs is given in
Figure 7. Again, text in italics indicates the place to
document the NFR in a given document structure.

Figure 7: Excerpt of refinement checklist for throughput

Measurable efficiency NFRs that were elicited by
using the refinement checklists in the case study are for
example:

• In a maximum usage, 8 people must be able to
download a document (about 1 MB) within 10 sec. via the
WLAN (6.4 Mbit/s).

• The PDA must be able to handle 60 alarms (coming
from machines) at the same time.

• The memory of the database server must at least
have a capacity of 512 MB.

While eliciting the NFRs, dependencies to other NFRs
and architectural decisions are checked by using a
dependency checklist. Figure 8 depicts an excerpt of the
efficiency dependency checklist.

After applying these checklists, conflicts between
NFRs and solution alternatives are documented. If
concrete solutions were specified, also the rationale for
the decision is documented. In our case study, a conflict
appeared between the following two NFRs:

• “In a maximum usage, 8 people must be able to download
a document (about 1 MB) within 10 sec. via the WLAN (6.4
Mbit/s).”

• “The WLAN supports 10 Mbit/sec.”
In this case, the net throughput of the WLAN might

be not sufficient for the first requirement. This conflict
was documented.

3.6 Means and Architectural Patterns
The general dependencies between means and patterns

are captured in a separate catalogue. This catalogue is
used as follows. A designer working on a certain
component or (sub-) system chooses the architectural
relevant FRs, as well as the NFRs. The NFRs are then
used to select appropriate means. This is done by
comparing the scenarios associated with the means with
the requirements. Once the means are selected, the
patterns that specialize the respective means are selected
from the catalogue. This is again is done by comparing
the scenarios related to the patterns with the requirements.
The selected patterns are instantiated to support the
design.

3.7 Rationale

The refinement graph and the catalogue capture
general relationships between QAs, means and patterns.
The choice of a specific pattern requires detailed
evaluation of the means and the patterns against the
relevant requirements. We capture this evaluation in
terms of rationale that can then be used to refine the
refinement graphs and the catalogue.

The designer documents the selection of means with
an assessment matrix for each subsystem under
consideration (see Table 1). The rows of the matrix

Figure 8: Excerpt from efficiency dependency checklist

Figure 6: Excerpt of efficiency initialization checklist

represent the selected means. The columns of the matrix
represent the requirements that are relevant to the
subsystem under consideration. Each cell denotes whether
a specific means makes it easier or more difficult to
realize the corresponding requirement with the symbols
“+” and “-“ and a reference to the scenario that was used
to generate the value. If the means has no impact on the
requirement, the cell is left empty. Once the matrix has
been filled out, the designer identifies potential conflicts
between selected means. While the designer can select
alternate means in order to reduce the number of
conflicts, in general, however, the potential conflicts
cannot be completely eliminated. The remaining conflicts
are documented by annotating the cells (i.e., means x
requirement x scenario) that are involved in the conflict
for further consideration during the next step.

 FR1 FRn Efficiency Maintainability
Locality - +
Load
balancing

 + -

Caching + -
Concurreny + -
Sharing + -

Table 1. High-level assessment matrix for detecting conflicts
among means

The patterns are selected by comparing the scenarios

related to the patterns with the requirements. For each
means, the designer builds a new assessment matrix. The
rows represent the candidate patterns selected with the
scenarios. The columns include the requirements
addressed by the means. When the means under
consideration is involved in a conflict, the columns in the
higher-level matrix that are negatively affected by the
means are reported into the lower-level matrices. The
designer uses the scenarios that result in negative
assessments in the higher-level matrix to select a set of
architectural patterns, hence addressing the relevant
requirements and resolving the potential conflict.

This two-level approach for documenting trade-offs
between options is similar to the rationale capture of
designing services from user tasks described in [13]. The
use of an assessment matrix enables the designer to
summarize the rationale behind the selection of means
and patterns and their evaluation with scenarios. Using a
two level selection process reduces the size of the
matrices that the designer has to work with and the total
number of cells that need to be considered. By identifying
conflicts in the higher-level matrix and reporting
conflicting columns in the lower-level matrices, the
designers focuses only on the relevant interactions
between means and attempts to address those during the
pattern selection and instantiation. Thus, the distinctive

feature of our rationale capture is the detailed guidance
we give for decision making.

4. Conclusion
We have presented a comprehensive approach

covering the issues identified in section 2.
• Issue 1: The different views of the stakeholders are

elicited and negotiated through the prioritization
questionnaire, different view-oriented checklists
and the rationale-based discussion. The distinction
between QAs and means helps to keep the
discussion on an adequate level of abstraction. This
is achieved by separating problem refinement from
solution refinement.

• Issue 2: Typical dependencies between QAs are
captured in the refinement graphs. Concrete
dependencies are elicited with the help of checklists
and are captured in the rationale matrices. We use
patterns to document AOs and Use Cases to
document FRs. We use a requirements template that
allows different NFRs to be described at different
places in the document. NFRs, for example, that are
expressed over FRs are explicitly stated together
with the FRs. However, we have not yet worked on
an intuitive representation of the dependencies
between patterns and Use Cases.

• Issue 3: The relationships between AOs, FRs and
NFRs are covered by our rationale matrices.

• Issue 4: As described in detail, we capture and use
experience in terms of the questionnaire, the
refinement graphs, the checklists, the patterns, and
the rationale.

Of course, there are still many issues to be solved, in

particular a full-scale case study. So far, we have used
this approach together with our cooperation partners from
Siemens to elicit and specify the FRs, NFRs, means and
metrics. In a 2 day workshop its was possible to define a
measurable and a more complete set of NFRs in
comparison to ad-hoc approaches. In addition, the
relationships between FRs and NFRs were clear. The
choice of the patterns will be performed in the near
future.

Till the end of the year, we plan to address the following
questions:

• Package experience for different QAs from
literature, in particular the catalogues for means and
patterns.

• Find suitable architecture descriptions that facilitate
the assessment of the dependencies between
requirements and AOs.

So far, we have not investigated the utilization of
problem frames (as a further instance of documented
experiences). That would correspond to capturing typical
FRs in the refinement graph. This would generalize our
work from the domain of embedded systems – which is
the focus of EMPRESS – to other domains.

Acknowledgements

We acknowledge the ITEA project EMPRESS for
partly funding our research. Furthermore, we want to
thank all partners in the ITEA project EMPRESS that
contributed to our research. In particular, we want to
thank Ricardo Jimenez Serrano (Siemens) for providing a
case study to validate our approach.

References
[1] B. Paech, A. Dutoit, D. Kerkow, A. von Knethen:
„Functional requirements, non-functional requirements
and architecture specification cannot be separated – A
position paper”, REFSQ 2002
[2] In, H., Boehm, B.W., Rodgers, T., Deutsch, W.,
"Applying WinWin to Quality Requirements: A Case
Study", ICSE 2001, pp. 555-564, 2001
[3] In, H., Kazman, R., Olson, D., “From requirements
negotiation to software architectural decisions”, STRAW
2001
[4] Egyed, A., Grünbacher, P., Medvidovic, N.,
“Refinement and evolution issues in bridging
requirements and architecture – the CBSP approach”,
STRAW 2001

[5] Liu, L., Yu, E., “From requirements to architectural
design – using goals and scenarios”, STRAW 2001
[6] Gross, F., Yu, E., “Evolving system architecture to
meet changing business goals: an agent and goal-oriented
approach”, STRAW 2001
[7] Kolp, M., Castro, J., Mylopoulos, J., “A social
organization perspective to software architectures”,
STRAW 2001
[8] Dutoit, A., Paech, B., “Rationale management”, in
Handbook of Software and Knowledge Engineering,
World Scientific Publishing, 2002
[9] von Knethen, A., Paech, B., Houdek, F., Kiediasch,
F., “Systematic Requirements Recycling through
Abstraction and Traceability”, Int. Conf. RE 2002
[10] ISO/IEC 9126-1:2001(E), “Software Engineering -
Product Quality - Part 1: Quality Model”, 2001
[11] Trochim, W. M. K., “The Research Methods
Knowledge Base”, Atomic Dog Pub Inc., Cincinnati,
2001
[12] Punter, T., Trendowicz, A., Kaiser, P., “Evaluating
evolutionary software systems”, PROFES 2002
[13] Dutoit, A., Paech, B., “Rationale-based Use Case
specification”, Requirements Engineering Journal, special
issue REFSQ 2001, 2002
[14] E. Dincel, N. Medvidovic, A. van der Hoek,
“Measuring Product Line Architectures”, in: Int.
Workshop on Product Family Engineering, Bilbao (S),
2001

