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Abstract 

Certain classes of problems amenable to description 
using Problem Frames, in particular ones intended to be 
implemented using a distributed architecture, can benefit 
by the addition of a cardinality specification on the 
domain interfaces. This paper presents an example of 
such a problem, demonstrates the need for relationship 
cardinality, and proposes a notation to represent 
cardinality on domain interfaces. 

 

1. Introduction 

In a Problem Frames analysis [3, 4], domains share 
phenomena at their interfaces. One of the domains in the 
analysis is the machine domain, which represents the 
software to be constructed by the developer. Phenomena 
are the externally visible characteristics of the domains. 
The phenomena visible at the machine domain’s 
interfaces drive much of the analysis process.  

The existence of certain phenomena can be 
predetermined by purchased products to be used in the 
system [1] or by considering architectural implications 
early in the requirements cycle [6, 7]. Hall et al [2] argued 
for extending Problem Frames to take architectural 
considerations within the machine domain into account, 
thus incorporating domain knowledge into the analysis. 
This paper takes the argument one step further, arguing 
that there are architectural considerations that affect the 
propagation of phenomena between domains, and that it is 
helpful to explicitly note these considerations in the 
diagrams. 

In a ‘standard’ Problem Frames analysis, phenomena 
are considered shared and instantaneous. All domains that 
participate in a given interface share the phenomena; 
participation is a relationship. The question of cardinality 
of the relationship does not arise, because the phenomena 
are always shared by all. However, a class of problems 
exists wherein it is convenient to define more precisely 

how phenomena are shared over an interface. The case 
comes up when the implementation of a system is to 
contain redundancy or be partitioned into semi-
autonomous units, such as what occurs when using a 
distributed architecture. The originating domains may 
need to know about how phenomena are propagated, 
either for correctness or for efficiency. Using explicit 
connection domains can resolve the problem, but they 
introduce complexity. The author argues that by noting 
cardinality on the interfaces, appropriate information can 
be included in the analysis without a significant increase 
in complexity. 

Section 2 of this paper describe a small lighting 
control system using Problem Frames. Section 3 presents 
one possible implementation, showing a case where the 
current shared phenomena notions do not expose certain 
difficulties. Section 4 proposes an extension to Problem 
Frames notation to correct the problem, and Section 5 
presents conclusions. 

2. The Lighting System 

2.1. The Problem Statement 

A lighting control system is to be built that conforms 
to the following problem statement, provided by the firm 
constructing the building. 

The architect wishes to have a lighting control system 
for a building. From the user’s perspective, the system 
consists of switches and lighting units (lights) associated 
with a room. When a user actuates a switch, the 
associated light or lights in the room are turned on or off. 

The architect requires the use of up/down momentary 
contact switches. A momentary contact switch must cause 
its lighting units to change to the state indicated by the 
switch’s motion, if needed: up turns the lights on if they 
are not already on and down turns the lights off if they 
are not already off. 

The system is to be built using networked components 
and to include redundancy where appropriate. 



Discussions with the architect and the vendors of the 
lighting equipment establish the following facts: 
1. Switches and lighting units are connected by a 

network. They are not able to converse directly with 
each other. 

2. A room is a logical concept, covering from part of a 
‘real room’ to multiple floors of a building. 

2.2. The Problem Diagrams 

The following is the context diagram for the 
environment. It appears to describe a straightforward 
commanded behavior problem. 

Lighting 
Units Switches   Machine 

 
The problem decomposes into two commanded 

behavior subproblems1. The first maps switch events to 
the rooms that they control, using a lexical domain as a 
Switches  Rooms map. The second maps room events to 
the lighting units in that room, using a Rooms  Lights 
map.  

The first subproblem, Control Room Lights, is: 
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1 The simple workpiece problems needed to maintain the lexical 

domains are not discussed in this paper. 

The second subproblem, Control Lighting Units, is: 
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Looking at the diagrams, we see that lifting or 

lowering a switch causes an event that is a phenomenon 
shared with the Switch Machine. The machine determines 
which logical room is to have its lights changed, and is 
the source of a phenomenon shared with the Lights 
Machine, as shown in the second diagram. The second 
machine determines which lighting units are involved, 
and then is the source of phenomena shared with the 
appropriate lighting units. 

3. A Possible Implementation 

One can imagine constructing this system using a Jini-
like distributed architecture [5]. In a Jini-based system, 
when a switch is actuated it uses a name service to find an 
appropriate service to process the event. Maintaining 
correspondence with the problem diagrams, the switch 
will next find the switch machine. The switch machine 
will use its map to determine which rooms need to know 
about the switch actuation, and then use the name service 
to find the lights machine to contact. A diagram of a 
simple implementation would be: 
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If we consider the name service to be part of the 

network, then the above implementation corresponds very 
closely to the subproblem diagrams. 



However, one might choose a different implementation 
for a larger building. If the building has multiple floors, 
then for performance we might put switches and lights 
machines on each floor. To improve reliability, we might 
put multiple machines of the same type on each floor, 
where any instance of a machine type can substitute for 
any other (i.e. introduce redundancy). Such an 
implementation might look like: 
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To complicate things a bit more, assume the existence 

of a logical room consisting of lights in all three of the 
vestibules. 

Assume that the architect specifies the following two 
rules: 
1. A switch on a given floor can select either of the 

switch machines on its floor, choosing at random. If 
that machine does not answer, another machine is 
tried. 

2. Either of the lights servers on a floor can control the 
lights on that floor. The server to use is chosen at 
random. If that machine does not answer, another 
server is tried. 
 

Therefore, when a user lifts a vestibule switch on the 
ground floor, the switch chooses either of the switch 
servers on the ground floor. That switch server 
subsequently must contact either one of the two light 
servers on each floor, requesting that the lights be turned 
on. 

The problem diagrams shown in Section 2.2 do not 
express the added complexity of the multiple servers, and 
thus it is difficult to reason about the system’s behavior 
under certain conditions. For example, analyzing the 
effects of particular concerns such as initialization, fault 
recovery, and component maintenance pose problems. 
Adding explicit connection domain subproblems to the 

problem can show the missing behavior, but the domains 
also add significant additional complexity. 

4. Extension of Problem Frames Notation 

The deficiency in Problem Frames notation exposed by 
the above example is the inability to accurately specify a 
limited many relationship on an interface. In the example, 
from the point of view of the switch there are many 
candidates for the switch machine, but only one of them is 
to be used. From the point of view of the switch machine, 
there are many candidate lights machines, where 
potentially many of them are to be used. These 
relationships have a form of cardinality.  

Relationships on an interface are directed. All 
phenomena have a source domain and some number of 
destination domains. From the point of view of a source 
or a destination, there can be from one to N domains on 
the other side of the relation. Thus, the cardinality of a 
relationship can be described as follows: 

N(b)  M(c): there are N sources of phenomena on 
an interface where b sources are to be considered 
interchangeable, and M destinations for the 
phenomena where c destinations participate. 

For convenience, if the parenthesized portion is 
omitted, it is assumed to be identical to the number that 
would be in front of it. Thus 1  N is the same as 1(1)  
N(N). 

Referring to the more complicated example above, the 
cardinality of the switch to switch machine interface is 
N(1)  2(1). The left side is N(1) because only one of the 
N switches participates in a given switch actuation. 
However, the example specifies that there are two 
interchangeable switch machines available to the switch, 
and the switch must choose which one to use. Thus, the 
cardinality of the switch machine is 2(1). 

Still referring to the example, the cardinality of the 
switch machine to lights machine interface is 6(1)  6(3). 
There are six switch machines on three floors, but only 
one of them can be the source of a phenomenon on the 
interface. There are three groups of two identical light 
machines, thus three of them participate as destinations of 
a phenomenon. 

Finishing the example, we see that the cardinality of 
the lights machine to lighting units interface is 2(1)  
M(M) (or 2(1)  M). Two lights machines can share 
phenomena with any given lighting unit, but only one at a 
time. Each lighting unit is an individual, meaning that all 
M lighting units must share phenomena with the given 
lights machine. 

Clearly one would not use such specific notations on a 
problem diagram unless the numbers are fixed in the 
problem statement, which is not the case in this example. 
The switches to switch machine cardinality is better 



written as N(1)  M(1). The switch machine to lights 
machine cardinality is N(1)  M(c s.t. c≤M) and the 
lights machine to lighting units is N(1)  M. 

Applying these cardinality notes to the subproblem 
diagrams, we arrive at: 
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and 
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5. Conclusions 

Adding cardinality notations to Problem Frames 
diagrams conveys information about how phenomena are 
to propagate. The engineers responsible for implementing 
the system would use this information to ensure that the 
system behaves as desired and to verify correctness in the 
face of errors, such as partial loss of power and machine 
failure. Using cardinality avoids the complexity of adding 
connection domains to provide equivalent information. 
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