
IEEE	Copyright	Notice	
Copyright	(c)	2003	IEEE	
Personal	use	of	this	material	is	permitted.	Permission	from	IEEE	must	be	obtained	for	all	
other	uses,	in	any	current	or	future	media,	including	reprinting/republishing	this	material	
for	advertising	or	promotional	purposes,	creating	new	collective	works,	for	resale	or	
redistribution	to	servers	or	lists,	or	reuse	of	any	copyrighted	component	of	this	work	in	
other	works.	

Published	in:	Proceedings	of	the	Sixth	ICSE	Workshop	on	Component-Based	
Software	Engineering	(CBSE'03),	May	2003	

“Run-Time Management of Feature Interactions”

Cite as:

BibTex:

Printed Proceedings Only

Yinghua Jia and Joanne M. Atlee. 2003. Run-Time Management of Feature
Interactions. In Proceedings of the Sixth ICSE Workshop on Component-Based
Software Engineering (CBSE'03), IEEE Computer Society, Washington, DC, USA.

@inproceedings{JiaAtleeCBSE03,
 author = {Jia, Yinghua and Atlee, Joanne M.},
 title = {Understanding and Comparing Model-Based Specification Notations},
 booktitle = {Proceedings of the Sixth ICSE Workshop on Component-Based Software
Engineering},
 series = {CBSE '03},
 year = {2003}
}

Run-Time Management of Feature Interactions

Yinghua Jia and Joanne M. Atlee
School of Computer Science

University of Waterloo
Waterloo, Ontario N2L 3G1, Canada
�ysjia, jmatlee�@se.uwaterloo.ca

Abstract

There is a push to develop feature-rich applications as
collections of interconnected feature modules. The problem
is that these modules are conceived as independent features,
but when strung together, they may interfere with each other
because they modify the same shared data (e.g., two features
may inconsistently update variables that are encapsulated
in a third module). We are studying how to support modu-
lar feature development via a framework that interconnects
features and that automatically detects and resolves fea-
ture interactions. In this paper, we propose a component
model for coordinating features and we describe a proto-
type framework that implements this model.

1 Introduction
The feature interaction (FI) problem—how to rapidly

add new features to an application without disrupting ex-
isting features—is rampant in feature-rich applications, like
telephony or insurance systems [2]. Integrating a new fea-
ture into an established application traditionally involves
analyzing how the new feature might interact (e.g., via
shared variables or inconsistent assumptions) with each of
the application’s existing features and then adapting the new
feature to behave appropriately in concert with the exist-
ing features. The time needed for interaction analysis and
feature adaptation—that is, to search for potential interac-
tions, to analyze their resolutions, and to implement the
resolutions—grows with the number of features, as the ad-
dition of each new feature aggravates the adaptation of the
next feature.

Worse, features are non-monotonicextensions of the sys-
tem [10]. In particular, two non-interacting features may
start to conflict when a new feature is introduced. As a re-
sult, the feature interaction problem is not amenable to com-
positional reasoning. Even an assume-guarantee approach
would be tricky, because it is impossible to foresee what
assumptions are needed to guarantee interaction freedom.

Instead, we are investigating how to detect and resolve
interactions at run-time via a component framework. Fea-

tures are designed and implemented as independent mod-
ules. The framework is parameterized to accommodate any
number and variety of feature modules. It includes special
feature interaction managers (FIMs) that are responsible for
monitoring the features’ actions at run-time, for detecting
interactions, and for dictating resolutions. The FIMs use
a general-purpose strategy for resolving conflicts. Hence,
features are implemented without knowledge of the other
features that will be executing, and the FIMs are imple-
mented without knowledge of the features they will be man-
aging. Because the resolution strategies are encapsulated in
the FIMs, they can be customized for different users or de-
vices. On the down side, general-purpose resolution strate-
gies do not produce ideal resolutions; it is an open problem
to determine whether such general resolutions would be ac-
ceptable to the user.

So far, we have designed a component model for coor-
dinating features and managing interactions [4] and have
implemented a prototype framework that implements this
model. Other members of our research group have built a
reachability analyzer that reports features’ interactions and
their resolutions, according to a particular resolution strat-
egy. This paper describes our prototype framework. As
background, we give a brief overview of our component
model: the information that a feature must provide to fa-
cilitate run-time detection of interactions, the type of in-
teractions our model is able to detect, and two example
general-purpose resolution strategies based on feature pri-
ority and on tolerance. We then describe the components
of our framework and the protocols they use to coordinate
their actions, and we provide some example scenarios. We
conclude with some non-technical questions about the prac-
ticality of this approach to managing feature interactions.

2 Features, Interactions, and Resolutions
In this section, we provide a summary definition of our

component model in terms of how features are modelled,
how feature interactions manifest themselves, and how a
general-purpose resolution strategy would realize desired
interactions and resolve undesired interactions. A formal

presentation of this work appears in [4].
We treat features as independent modules that provide

incremental functionality to an application. Each feature
consists of a set of rules that define the feature’s behavior.
Each rule consists of two parts: a pre-condition that speci-
fies the rule’s enabling conditions, and post-conditions that
describe the rule’s actions that change the system state.

To be specific, the system state is modelled by a set of
facts, expressed as tuples. Example facts about a telephone
system would include voice connections among users, calls
on hold, subscription information, call screening lists, etc.
A feature rule’s pre-condition is a logic formula over these
facts; if this formula is satisfied by the system state’s facts,
then the rule is enabled. A feature rule’s post-conditions are
changes to the system-state; these changes are expressed
as the addition of new facts (i.e., tuples) or the removal of
existing facts. A post-condition can also assert or retract a
constraint that represents a feature-imposed restriction on
the system state; constraints are expressed as formulae over
the facts. Example constraints in a telephone system would
include forbidden connections due to Call Screening, and
limits on what information is displayed due to Caller ID
Blocking.

A feature executes by examining the current state of
the system, determining if any of its rules is enabled in
the current state, and, if so, applying the enabled rules’
post-conditions, thereby updating the system state. These
steps are repeated until the feature terminates. Each appli-
cation session’s features execute synchronously, evaluating
and updating the system state simultaneously; application
sessions execute asynchronously.

A feature interaction occurs when features’ post-
conditions conflict with one another. Because post-
conditions may add/remove facts from the system state or
may add/remove constraints on the system state, there are
four types of feature interactions:

1. New facts are inconsistent with each other
2. New facts violate existing constraints
3. New constraint is violated by existing facts
4. New constraint is unsatisfiable with existing con-

straints

Constraints are logic formulae and facts make up a logic
model, so interactions of types 2 and 3 can be detected by
testing if the constraints evaluate to true with respect to the
new or old system state, respectively. New facts are simply
tuples that are added to or removed from the system state,
so interactions of type 1 can be detected by testing if added
facts are present in and removed facts are absent from the
new system state. Interaction type 4 is a satisfiability prob-
lem.

As an initial attempt at designing a general-purpose strat-
egy for resolving feature interactions, we proposed in [4]
to resolve interaction types 1 and 2 by feature priority

[5, 6] and to tolerate [9] interaction types 3 and 4. Resolu-
tion by priority works by assigning a total-priority ordering
on the features and resolving interactions in favour of the
higher-priority feature: given a conflict between the post-
conditions of two features’ rules, all of the post-conditions
of the higher-priority feature’s rule are applied and none of
the post-conditions of the lower-priority feature’s rule are
applied. Interaction types 3 and 4, both of which involve
newly asserted constraints, are tolerated because doing so
allows more enabled rules to react to a system state and be-
cause tolerating such interactions does not affect the sound-
ness of the algorithms for detecting and resolving interac-
tions. This way a violated constraint can continue to reject
new facts that re-violate the constraint. For example, the
Teen Line feature asserts a constraint at 16:00 that prohibits
calls made during homework hours, but this constraint af-
fects only new calls made after 16:00 and does not suddenly
terminate an established call. A side effect of tolerating in-
teraction types 3 and 4 is there is no need to detect these
interactions—which is a major benefit, given that it is ex-
pensive to detect interactions of type 4.

Given a set of interacting enabled rules, the resolution
strategies described above will approve for execution the
maximal subset of non-conflicting rules, such that every re-
jected rule conflicts (via interaction types 1 or 2) with some
higher-priority approved rule. Features are given priority
over those services and over older features that they are de-
signed to override. Enterprises can assign higher priority to
emergency features (e.g., 911 operator), and users can cus-
tomize how non-emergency features are prioritized. Hence,
our model relies on conflict resolution to realize desired in-
teractions, which are due to feature integration, as well as
to resolve undesired interactions.

3 Framework
In this section, we present a framework for feature in-

teraction management. The architecture of the framework
is shown in Figure 1. In the following two subsections,
we shall describe the functionalities of the components de-
picted in Figure 1 and the coordination protocol enforced
by our framework, respectively.

3.1 Components
In our framework, we refer to the instance of an exe-

cuting application as an application session, or simply ses-
sion. Each session in our framework is uniquely identi-
fied by a Session ID and is monitored by a Feature Inter-
action Manager (FIM). A session comprises several inter-
connected components. For example in a telephone system,
each user is represented by an Agent that includes the user’s
subscribed features and by an Interface module (IM) that
interprets inputs from and outputs to the user’s telephone
device. A call between a caller and a callee is an applica-
tion session that is realized by a dedicated FIM monitoring

Open Service Components�

Feature Interaction�
Manager (FIM)�

TupleSpace�

User Device�User Device�

Agent B�

Feature 2�

Feature 1�

Feature 1�

Feature 2�

Feature 3�

Agent A�

API� API�

FIM�
Factory�

IM� IM�

TCP/IP Stream�

Method Call�

Tuple Space Operation�

�

Figure 1. The Framework

this call. To detect and resolve interactions among the fea-
tures in a session, the session’s Agents announce the their
features’ intended actions to the monitoring FIM, which se-
lects for execution a subset of non-conflicting actions. The
communication protocol that coordinates these components
is presented in detail in Section 3.2. Here, we introduce the
functionalities of each individual component.

A Feature component (or simply Feature) stores a set of
rules, which specify the services provided and constraints
imposed by an application feature. These rules are param-
eterized by Agent ID and Session ID. A feature instance
is an instantiation of a feature component for a particular
user in an application session. Features behave as described
in the previous section: they iteratively examine the sys-
tem state (stored in the TupleSpace), determine which of
their rules are enabled, and write the enabled rules’ post-
conditions to the TupleSpace. Features never change the
system state directly. Instead, they propose changes via
their post-conditions, and the FIM approves the features’
proposed changes and directs the other components to real-
ize these changes.

The Agent component (or simply Agent) is a package
of Feature components. An Agent may represent a user, a
role, or a device. It always executes, either participating in
an application session or listening for a request to start a
new application session. At the start of a new application
session, participating Agents instantiate their feature com-
ponents with the appropriate Agent ID and Session ID.

Each FIM component manages one application ses-
sion. It collects the proposed actions from the participat-
ing Agents, decides which of these proposed actions can
be applied to the system, and changes the system state ac-
cordingly. Thus, the FIM component implements the inter-
action resolution strategy. By separating resolution strate-
gies from Features, our framework enables customization
of resolution strategies. It also enables Agents and Fea-
tures to be developed without knowledge of each other and
without knowledge of the resolution strategy. The conflicts
among Agents and Features are resolved at run-time, and

thus if resolutions affect features’ behavior, the features are
affected only by actual interactions.

The FIM Factory component can be viewed as an FIM
generator. Whenever it receives notification of a new appli-
cation session, it spawns a new FIM process to monitor the
new session.

The TupleSpace (TS) is a distributed shared-memory
mechanism for inter-component communication. In addi-
tion to ordinary read and write operations, the TS provides
a subscribe-notification mechanism whereby a component
can provide to the TS (subscribe) a tuple template, and
whenever a tuple satisfying the template is inserted into the
TS, the component is notified of this event (notification).
In our framework, the TS stores system-state information
comprising facts (including message), constraints, and fea-
ture instances’ post-conditions to be approved by the FIM.
The TS also contains actions (e.g., output message Tuples,
enable-voice Tuples and disconnect-call Tuples) for the In-
terface Module to perform, and it contains semaphore Tu-
ples that constrain components’ access to the TS (described
in Section 3.2).

The Interface Module (IM) component is responsible
for interpreting the external events from devices into Tuples
and placing the Tuples into TS. Conversely, the IM compo-
nent is also responsible for realizing features’ functionality
by monitoring the TS for approved feature actions and by in-
voking appropriate methods provided by the Open Service’s
APIs.

The Open Service component(s) manages multiple User
Devices and realizes the features’ actions. It behaves as a
bridge between the IM and the User Devices by notifying
the IM of any event of its interest and by providing to the
IM the API that operates on the User Devices. As such, ser-
vice functionality is implemented in the Open Service com-
ponent(s) and features act primarily as policies, specifying
when services execute. Because the FIM, and not features,
specifies which actions to be performed, features have to be
truthful to the FIM regarding their intentions.

3.2 Protocol

Because all Features, Agents, IMs, and FIMs share the
information stored in the TS, we need a communication pro-
tocol to synchronize their access to the TS.

In general, the components take turns accessing data in
the TS. First the Agents’ features evaluate their rules’ pre-
conditions with respect to the tuples in the TS. Then, they
insert into the TS the post-conditions of any enabled rule.
After all Agents have completed their analyses, the FIM is
enabled to evaluate the post-conditions and to detect and
resolve interactions. The FIM updates the TS with the ap-
proved actions from the resolution step, leaving the TS in
a state ready to be analyzed by the Agents again. At this
point, the IMs are notified of the changes to be reflected to

Agent�TS�

(1)�

(2)�

(3)�

FIM�

(4)�

(5)�

(6)�

(7)�

IM�

(8)�

Figure 2. Step by Step Protocol

User Devices through the APIs provided by the Open Ser-
vice Component, as shown in Figure 1.

This protocol is depicted as a message sequence chart
in Figure 2, whose explanation is as follows. Numbers in
the text correspond to numbers of the messages in the Fig-
ure. (1) The TS notifies all Agents in a session �� that the
system state is stable and ready to be examined. (2) Each
Agent involved in session �� compares the pre-conditions
of each of its feature rules with the Tuples in the TS. (3) For
each rule whose pre-condition is satisfied, the Agent writes
that rule’s post-conditions to the TS. (4) When the Agent’s
features have finished reacting to the current system state,
the Agent decrements by 1 the semaphore tuple’s �����

value. When all of the session’s Agents have finished, the
semaphore’s ����� value will be zero. (5) The session’s
FIM receives notification from the TS that the semaphore
tuple’s ����� value has reached zero. (6) Next, the FIM re-
moves from the TS all of the post-conditions related to ses-
sion ��, identifies the maximum subset of non-conflicting
post-conditions using the provided resolution strategy, and
applies the approved actions to the TS. (7) The IM compo-
nent is notified of the changes to the TS, which it translates
into appropriate calls to the Open Services’ APIs. (8) Fi-
nally, the FIM resets the semaphore tuple’s ����� value to
the number of Agents involved in the session, indicating
that the FIM has finished arbitrating among features’ inten-
sions.

These steps are repeated until the application session ter-
minates.

The mechanism that we used in our framework to syn-
chronize components’ access to the TS is a session-specific
semaphore tuple, which is also stored in the TS. The
semaphore tuple contains a field �������	, which indicates
the number of Agents involved in the session, and a field
�����, whose value indicates how many Agents have yet
finished their analyses. When the TS is ready to be eval-
uated by the Agents, the tuple’s ����� value is set to the
Tuple’s �������	 value. Each Agent decrements the tuple’s
����� value by one as the Agent completes its analysis of
the system state. This decrement operation is guaranteed
by the TS to be atomic, so that only one Agent is allowed
to access (read and write) the semaphore tuple at any time.

When the ����� value reaches zero, the FIM has exclusive
access to the TS. When the FIM has completed updating
the system state with the features’ approved reactions to the
previous system state, the FIM sets the Tuple’s ����� value
back to the �������	 value.

An Agent could at the same time participate in more than
one session. To synchronize all of the Agent’s feature in-
stances’ access to the system state, the Agent will not start
evaluating its feature instances until all of its participating
sessions are ready for analyses (i.e., the semaphore Tuples’
����� value for every participating session is greater than
zero).

Careful readers might have noticed that this communi-
cation protocol could deadlock, since an Agent or the FIM
could crash and not respond appropriately to the semaphore
tuple. This situation could be avoided by setting up a time-
out value for each Agent and for the FIM.

4 Examples

In this section, we describe a prototype implementation
of our framework that we use to manage features and fea-
ture interactions in an IP telephone system. In this system,
the basic telephone service is provided by Originating Call
Model (OCM) and Terminating Call Model (TCM) Feature
components, which represent caller and callee functionality,
respectively, and by Plain Old Telephone Service (POTS)
Feature component, which specifies the system behavior
once a voice connection has been established (i.e., once
callers and callees are indistinguishable from each other).
Agent components represent the telephone users (in our im-
plementation, the phones do not support features, so they do
not have their own Agents). Each feature instance contains
the rules for one feature, instantiated for one agent’s view of
one session. We use Meridian PBX Option 11c as our Open
Service component, which provides APIs for receiving ex-
ternal events, for controlling phones’ tones, and for switch-
ing voice channels. The IM components are responsible for
translating external events from the Meridian PBX into Tu-
ples and for realizing features’ proposed actions by invok-
ing appropriate methods provided by Meridian’s APIs. The
current implementation of our framework can detect and re-
solve interactions caused by conflicting actions; it can also
capture some constraint violations. In the subsequent sec-
tions, we first illustrate how the components involved in a
session are initialized to coordinate their access to the TS,
then we give two examples of capturing conflict and con-
straint violation interactions. Due to the space limit, the
steps related to semaphore Tuple manipulation (step 4, 5
and 8 in Figure 2) are omitted in section 4.3 and 4.4.

4.1 Starting A Call

In this example, we demonstrate how the Agent and FIM
components are initialized for coordination when a new call
session is started. These initialization steps are shown in

TS� Agent (caller)� FIM Factory� FIM�

(2)�

(3)�

(4)� (4)�

IM (caller)�

(1)�

(5)�

(6)�

(a) Starting A Call

Callee �Agent�TS�

(2)�

FIM�

(1)�

(b) Connecting Callee

Figure 3. Starting a call and connecting callee

Figure 3(a). As before, numbers in the textual explanation
correspond to message numbers in the Figure.

(1) The caller starts a call by going off-hook (e.g., by
picking up the handset), which is detected as an external
event and written into TS as a phone-off-hook event Tuple
by the IM of the caller. (2) The Caller Agent is notified of
this event, and (3) sends a request via TS to the FIM Factory
to spawn a new FIM for the call session. (4) The FIM Fac-
tory allocates an FIM for this new call session. (5) The new
FIM creates a semaphore Tuple with initial ����� 1 (since
only the caller is involved in the call at this point) and places
the Tuple in the TS, after which (6) the caller Agent is noti-
fied that the FIM is ready to manage the call (the semaphore
has been initialized). At this point, the Agent’s features may
start evaluating the current system state, and the Agent and
the FIM coordinate their access to the system state using the
protocol that we discussed in section 3.2.

4.2 Connecting the Callee
A callee Agent becomes involved in a call session when

it receives notification of an invitation message (a Tuple in
the TS) from the caller Agent. The callee Agent must enter
the same application session as the caller and be monitored
by the same FIM, for the FIM to detect and resolve inter-
actions involving the feature instances of the callee Agent.
There are two steps required to join the callee Agent to the
call session, as shown in Figure 3(b). (1) When the FIM
approves the caller’s call invitation to the callee, the FIM
increases the semaphore’s �������	 from 1 to 2 and sets
the semaphore’s ����� value to 2. This change reflects the
callee Agent being added to the call session, thereby by in-
creasing the number of agents involved in the call to 2. (2)
The callee Agent receives notification of the invitation mes-
sage from TS. The callee Agent strips the call session ID
from the invitation message, and use this call session ID and
its Agent ID to instantiate the features, after this, the Agent
participates in the same call session as the caller Agent.

4.3 CFB Overriding TCM
Telephone features such as Call Forwarding On Busy

(CFB) realize their functionalities by overriding the func-
tionalities of the basic telephony features (OCM, TCM and
POTS). In our framework implementation, we simulate this
overriding by assigning the features higher priority than the
services they explicitly override and by using a priority-
based resolution strategy. Suppose user Tom subscribes to

TS� Agent (Tom)�
(CFB, TCM)�

FIM�

(2a)�

(3)�

(2b)�

(4)�

(1)�

Figure 4. CFB Overriding TCM
TS� IM (TOM)�Agent (TOM)�

(TWC, 911)�
Agent (911)� FIM�

(1a)�

(2a)�

(a) 1st Iteration

Agent (TOM)�
(TWC, 911)�

Agent (911)� FIM� IM (TOM)�TS�

(1b)�

(3b)�
(2b)�

(b) 2nd Iteration

Figure 5. Constraint Violation

the feature CFB in addition to basic telephone features (see
Figure 4). (1) If Tom is already involved in a call when
a second call comes in, (2a) the TCM feature of Tom’s
Agent reacts to the call situation by proposing to send a
call-rejected message to the caller; at the same time, (2b)
the CFB feature of Tom’s Agent reacts to the call situation
by proposing to send a call-redirected message to the caller.
(3) The monitoring FIM collects the proposed actions, finds
these two proposed actions conflict with each other, and ig-
nores the TCM’s proposed action since it has lower priority.
(4) The FIM adds the call-redirected message action to the
TS.

4.4 TWC Violates 911hold Constraint

Suppose user Tom made a call to 911 emergency. Sup-
pose also that Tom subscribes to ThreeWayCalling (TWC)
feature, and he presses hook to start a three-way call,
thereby putting the call with 911 on hold. The TWC fea-
ture should not get executed because the action of putting
911 on hold violates a constraint asserted by 911 that for-
bids users from putting the 911 operator on hold.

Two iterations are involved in capturing TWC violating
911hold constraint as shown in Figure 5(a) and 5(b) respec-
tively. The steps involved are: (1a) once a call been made
to 911, the 911 feature of Tom’s Agent reacts to the call
situation by proposing to assert 911hold constraint; (2a) the
monitoring FIM collects the proposed actions, finds no con-
flicts, writes the constraint Tuple into TS; (1b) Tom flashes
hook trying to start a three-way call, and this action is in-
terpreted as flash-hook event and written into TS by Tom’s
IM; (2b) the TWC feature of Tom’s Agent reacts to the call
situation by proposing to put the call with 911 on hold, start
a new call, ... etc. ; (3b) The monitoring FIM collects the
proposed actions, finds the action of putting the call with
911 on hold violates the 911hold constraint, since 911 as an
emergency number prohibits anyone putting a 911 operator
on hold. Therefore, Tom cannot make the three-way call.

5 Related Work

A number of architectural approaches have been pro-
posed to resolve feature interactions. For example, [7, 8]
identify interactions as deviations from features’ “signa-
ture” behaviors stored in the FIM (one FIM per involved
party in a call). [3] proposes an architecture that sup-
ports separate logic for features and calls. Feature inter-
actions are represented as conflicting instantiated feature
execution states, and interaction detection requires a pri-
ori knowledge of features, thus violating feature modularity.
[11, 1] propose agent-based architectures that detect and re-
solve feature interactions through agent negotiation (event-
dispatching and precedence rules, fuzzy logic). None of the
above approaches detects or resolves constraint violations.

There are also approaches that focus on automatic off-
line analysis using formal methods (specification languages
and verification tools). These approaches detect and resolve
feature interactions by controlling explicitly how groups of
features behave together. As we discussed in the introduc-
tion, this effort grows exponentially with the number of fea-
tures, because feature introduction is non-monotonic and
thus new features have to be analyzed with all combinations
of existing features.

Our work is also related to rule-based systems. A key
difference is that rule-based systems tend to resolve interac-
tions by introducing new rules to cover the offending cases,
thus leading to a proliferation of rules. Such an approach is
analogous to the approaches described in the previous para-
graph, in which an application includes code that deals ex-
plicitly with how groups of features should behave when
executed together. Such approaches do not scale to systems
that have hundreds and thousands of features. Hence, we
are investigating the effectiveness of general-purpose reso-
lution strategies.

6 Questions and Future Work

There are some obvious questions about this approach’s
feasibility that need to be tested—most notably, questions
about performance, about the usability of the feature-rule
language, and about how best to allocate and coordinate dis-
tributed Feature Interaction Managers.

The approach also needs to be extended to deal with
a wider variety of interaction types. The approach cur-
rently handles conflicts and constraint violations that occur
in practice and that need to be resolved. There are temporal
types of interactions that we choose not to resolve and thus
do not need to detect; these interactions include data inter-
actions, whereby one feature reacts to data values written
by another feature, and race conditions. The next interac-
tion type we intend to address is features’ non-conflicting
reactions to the same input event, where the non-conflicting
reactions leave the system in an undesirable state. We be-
lieve we can address these interactions using invariant sys-

tem constraints.
A more fundamental question is whether we can identify

or create a general-purpose resolution strategy whose reso-
lutions will be acceptable to users. At least in the telephony
domain, users are accustomed to having interaction-specific
resolutions built into the system, as part of the feature inte-
gration process. As such, most users are not even aware of
the feature interaction problem and are used to high-quality
functionality. A general-purpose detection and resolution
strategy is likely to produce satisfiable resolutions most of
the time, sub-optimal resolutions some of the time, and no
resolution on rare occasions. Thus, with this approach to
feature integration, there is a tradeoff between users’ satis-
faction with overall system behavior vs. rapid feature de-
velopment and maintainability.

References

[1] M. Amer, A. Karmouch, T. Gray, and S. Mankovskii.
Feature-Interaction Resolution Using Fuzzy Policies. In
Feature Interactions in Telecommunications Systems, pages
94–112, 2000.

[2] E. Cameron, N. D. Griffeth, Y. Lin, M. E. Nilson, and W. K.
Schnure. A Feature Interaction Benchmark for IN and Be-
yond. In Feature Interactions in Telecommunications Sys-
tems, pages 1–23, 1994.

[3] N. Fritsche. Runtime Resolution of Feature Interactions in
Architectures with Separated Call and Feature Control. In
Feature Interactions in Telecommunications III, pages 43–
64, 1995.

[4] J. D. Hay and J. M. Atlee. Composing Features and Resolv-
ing Interactions. In Foundations of Software Engineering,
pages 110–119, 2000.

[5] S. Homayoon and H. Singh. Methods of Addressing the
Interactions of Intelligent Network Services with Embedded
Switch Services. IEEE Communications, 26(12):42–70, De-
cember 1998.

[6] D. Marples and E. Magill. The Use of Rollback to Pre-
vent Incorrect Operation of Features in Intelligent Network
Based Systems. In Feature Interactions in Telecommunica-
tions and Software Systems V, pages 115–134, 1998.

[7] S. Tsang and E. H. Magill. Detecting Feature Interac-
tions in the Intellingent Network. In Feature Interactions
in Telecommunications Systems, pages 1–23, 1994.

[8] S. Tsang and E. H. Magill. Run-Time Feautre Interaction
Detection. In Feature Interactions in Telecommunications
Systems, pages 254–270, 1997.

[9] A. van Lamsweerde and E. Letier. Integrating Obstacles in
Goal-Driven Requirements Engineering. In Proceedings of
the 20th International Conferenceon Software Engineering,
pages 53–63, 1998.

[10] H. Veldhuijsen. Issues of Non-Monotonicity in Featur-
Interaction Detection. In Feature Interactions in Telecom-
munications III, pages 31–42, 1995.

[11] I. Zibman, C. Woolf, P. O’Reilly, L. Strickland, D. Willis,
and J. Visser. Minimizing Feature Interactions: An Archi-
tecture and Processing Model Approach. In Feature Inter-
actions in Telecommunications III, pages 65–84, 1995.

	CBSE03.Copyright
	CBSE03

