
A Pragmatic, Rigorous Integration of Structural and

Behavioral Modeling Notations�

Daniel M. Berry
GMD-FIRST

Rudower Chausee 5
12489 Berlin, Germany
dberry@�rst.gmd.de

normally at: Computer Science Department
Technion

Technion City
Haifa 32000, Israel

dberry@cs.technion.ac.il

AND
Matthias Weber

Research and Technology
Daimler-Benz AG
Alt-Moabit 96a

10559 Berlin, Germany

weber@DBresearch-berlin.de

work done while at: Fachbereich Informatik
Technische Universit�at Berlin

Franklinstra�e 28/29 10587 Berlin, Germany
we@cs.tu-berlin.de

August, 1997

�This paper is an expanded version of a paper of the same title published in the Proceedings of the

International Conference on Formal Engineering Methods, Hiroshima, Japan, 12-14 November, 1997

1

Abstract

This paper describes a pragmatic, rigorous integration of the mathematical speci�-

cation language Z with well-known object modeling notations and an object-oriented

variant of statecharts. The goal is to preserve the abstraction and
exibility of

widely-used design notations while being able to embed the precision and rigor of

mathematical speci�cation at selected places. The integration between the notations

is based on a mapping between entities of the three models.

1 Introduction

Formal methods have been seriously applied in recent years in various industrial and aca-
demic pilot projects as reported, for instance, in [6]. However, the breakthrough, by which
formal methods are routinely applied to software developments, has not yet been achieved.
Many companies involved in such projects are scaling down their use of formal methods
to a level that is in accordance with their current industrial relevance. For instance, they
have only small teams of highly trained research sta� working on selected critical aspects
of systems.

What are the reasons for the failure of formal methods to achieve broader acceptance?
From our own experience and from our analysis of experience reports ([6, 14, 19], for in-
stance), we believe that one major reason is that presently formal methods come with too
broad a goal. Often, they aim at a superior and uncompromising methodological frame-
work for the development of perfectly correct systems. They often presuppose idealized
circumstances, and they have usually been developed in academic environments where such
circumstances are thought to be guaranteed, but actually is not! Also, such a monolithic
approach does not leave much room for coexistence and interaction with other methods
that are in standard use in industry.

We believe that a more modest approach of integrating formal techniques into the cur-
rent system design process will lead to a more immediate application of such techniques [12].
Starting out from existing and accepted conventional design methods, one should investi-
gate at which points during the design process mathematical techniques can be smoothly
and usefully integrated. The rationale for the use of formal techniques at these points
should be convincing to the experienced engineer. Once experiments and case studies have
provided evidence that the formal elements introduced work, and they are preceived as
a net plus, one can start to investigate further possible anchor points for mathematical
techniques. This investigation can then be based on the experience gained during the �rst
phase and on the evolving formal literacy of the design team. Hence, in principle, by it-
erating this process, one obtains a method that has more and more formal elements. It is
important to note, that we do not attempt to embed conventional techniques into a formal
method, but rather, we proceed the other way around.

Indeed, Clarke and Wing, in their survey of the state of the art and future directions
of formal methods state, \Given that no one formal method is likely to be suitable for
describing and analyzing every aspect of a complex system, a practical approach is to use

2

di�erent methods in combination." [5] It is a case of the whole being greater than the sum
of its parts.

1.1 The Modeling Notations

A widely used technique in modern software engineering is to model a system by a com-
bination of di�erent, but semantically compatible, views of that system. The primary
bene�t of such an approach is to keep a very complex systems manageable and to detect
misconceptions or inconsistencies at an early stage. In the approach presented here, as is
shown in Figure 1, we divide the modeling into three views: the architectural model of the
system, the reactive model of the system, and the functional model of the system, and we
provide a mapping between those views.

Mapping

Architectural Model

class relations

system structure

object interaction

time control

detailed data structure

I/O value transformations

Reactive Model Functional Model

Figure 1: The three modeling views of an embedded system

The architectural model of a system describes the relationships between the types of
components used in the system as well as the actual con�guration of the system components
itself. For the description of this model, we adopt the object-oriented modeling paradigm
[3, for instance]. We understand an embedded control system as a hierarchically struc-
tured collection of objects that change state and interact with each other throughout their
lifetime. The relationships between object classes are described using well-known elements
of class diagrams, i.e. diagrams displaying classes and their structural relationships, such
as aggregation and inheritance. In this setting, we use notation from OMT [17] and the
Uni�ed Modeling Language [21]. However, this choice of notation is by no means essential
and it should not be di�cult for the experienced to express the information content of the
object diagrams in his or her favorite notation.

The two other views are primarily concerned with the behavioral speci�cation of the
embedded control system. We make a fundamental distinction with respect to the behavior
of system components. The functional model of a component comprises data de�nitions,

3

data invariants, and data transformation relations. In particular, for any component, it
encompasses its local state and the input/output relation of its operations. Constraints,
e.g. related to safety properties, about the components states can be derived based on these
descriptions. The reactive model comprises the life-cycle of components, i.e. interactions
with other components and the control of time during these interactions. Reactive behavior
is modeled by extended state machines specifying how, and under which timing constraints,
operations from external objects are requested, supplied, or both in the state changes of
objects.

We specify reactive behavior using an appropriate variant of timed hierarchical state
transition diagrams, i.e. a variant of statecharts [10]. There are two reasons for this
choice. First, statecharts have proved to be su�ciently expressive for modeling complex
component interactions and time control. Second, the use of statecharts, or close variants
of statecharts, is currently spreading in industry.

Often, functional behavior in state-based systems is speci�ed by textual or formal
descriptions of pre- and postconditions and of data invariants. In our approach, we specify
the functional behavior of objects using the state-based formal speci�cation language,
Z [20]. There are two main reasons for using Z. First, in our view, Z has proved to be
particularly useful for modeling complex functional data transformations, and second, both
in academia and industry, Z has become one of the most widely used formal speci�cation
notations. Since we aim at a practical approach when modeling functionality, we try to
stick to a constructive subset of Z, i.e. a subset that can be compiled into e�cient code,
whenever this is reasonable in a particular application. The use of a mathematical notation
for modeling functional behavior enables us to prove many abstract safety properties about
the control system, such as provisions that the system never enters certain hazardous states.
Safety conditions imposed on data structures and data relationships could, of course, be
speci�ed using the full expressive power of the Z language.

The mapping serves to explicitly relate the elements in each view that are intended to
be descriptions of the same entities of the system. For the bene�t of the humans reading
the di�erent views, it is useful to have a convention that reinforces the mapping, namely
that of giving identical names to each view's manifestation of a single entity. Regardless
of whether this convention is followed, the mapping establishes what are supposed to be
describing the same entities. If in some view, there is no correspondent to an entity de�ned
in another view, then in the �rst view, the semantics of the entity is that implied by its
de�nition in the other view and that de�nition's projection, by the mapping, on to the
�rst view.

Mappings are not a new idea. They are used extensively in automata theory to show
di�erent automata equivalent in power [13]; they are used in programming language se-
mantics to show equivalence of de�ninig interpreters [16, 1]; they are used in multi-level
formal development methods to show that a re�nement to be a correct realization of its
abstraction [25, 2]; and they are used in multi-view system design environments to establish
the relation between the views to enable analyses by tools in the environment [7, 8].

Early experimentation with a three-fold division of modeling using object modeling,
state machines and model-oriented speci�cation has already been reported in previous

4

work [23, 4]. The present paper extends this work by including a mapping between the
models and illustrating how it can serve as a basis for a systematic validation of consistency.

1.2 The Integration Approach

A major technical and methodological goal of the approach presented here is to rigorously
ensure consistent modeling of structure and behavior in the three di�erent system mod-
els. This problem is not trivial, as di�erent models may deliberately include overlapping
information, and one has to check that no inconsistencies are introduced. Conversely,
attempting to ensure consistency in the presence of overlapping information usually re-
veals a number of errors and misconceptions and, ultimately when these are corrected,
considerably boosts con�dence about the adequacy and robustness of the speci�cation.

As already mentioned, we study here a pragmatic but rigorous approach for ensuring
consistency between models by using a mapping to explicitly relate the elements in each
view that are intended to be descriptions of the same entities of the system. Based on
this mapping, the meaning of an entity in one view is then faithfully projected into its
corresponding meaning in a second view. However, as this second view may have its own
way of assigning meaning to entities, the projected meaning from the �rst view corresponds
to a set of properties about the second view. The consistency of this projected meaning
in the second view and the entities' own de�nitions in that view then amounts to the
veri�cation of proof obligations asserting these properties.

This rigorous, pragmatic approach for ensuring consistency between models should
ultimately be complemented by a formal mathematical foundation, i.e. a single integrated
model comprising all aspects of system behavior. Although the focus of this work is not on
mathematical foundations, we would like to refer here to recent work on such an integrated
mathematical model, called abstract object systems, which might, in the future, serve as a
mathematical foundation for our approach [24].

2 A Small Case Study

We consider a simple embedded control system, a controller for a heavy hydraulic press that
is operated manually. Hydraulic presses are devices for pressing workpieces into a certain
shape. The human operator, at the press, places the workpiece in the press and initiates
the closing of the press. The plunger of the press moves down, presses the workpiece and
subsequently moves up again. The workpiece can then be removed from the press and the
entire process may be repeated.

Hydraulic presses are dangerous, since the worker operating the press may hurt himself
by accidentally trapping his hand in the press. A typical safety device to prevent hand
injuries are two-hand controllers, i.e. control units with two buttons, located about 1 meter
apart, that must both be kept pressed while a potentially dangerous action is performed [9].
In addition, both buttons must be pressed within a small period of time, in our example
0.5 sec., in order to successfully initiate the closing of the press. The obvious intention

5

behind two-hand controllers is to keep both of the worker's hands out of the danger area. If
a button is released while the press is closing, the press will immediately stop and reopen.
However, after a certain point is reached, which we call the critical point, the closing press
can no longer be stopped physically, and hence cannot react to the release of a button.
It is hoped that in this case, the press is closed too much for a hand to even be inserted.
Finally, for reasons of reliability, the system should be capable of detecting sensor readings
that are incompatible with the physical properties of the press. In such a situation, which
might be due to a broken sensor or a failure in message transmission, the system should
immediately stop the press, if it is not past the critical point.

This very simple embedded system is a good example to introduce and explain our
approach, since it comes with interesting safety and real-time constraints, but is simple
enough to not clutter the presentation with technical details. It should be obvious that the
above informal speci�cation is far too sketchy to adequately specify the required system
behaviori, and thus a more complete speci�cation is needed.

2.1 Architectural Model

In the previous section, we have presented the informal requirements of the hydraulic press
control case study. Since this is a very small example, the analysis and architectural design
is straightforward. The results are summarized in the class and object diagrams presented
in Figures 2 and 4.

Sampler

Up,
Down,
Stop

Up,
Down,
Stop
Read

PressRight,
ReleaseLeft,
ReleaseRight,
AtTop,
AtBottom,
CrossPonR,
SignalError

2

ButtonPhysicalPress

Motor

Release
Press
Read

PressLeft,

TwoHandPress

Sensor

Read

NoOfValues

NoOfValues=3 NoOfValues=1

Figure 2: Class diagram of the press system

The class diagram describes a two-hand press-object as consisting of an aggregation
of objects of classes Button, PhysicalPress, and Sampler. Aggregation is denoted by links

6

adorned with a rhombus. Multiplicities may be speci�ed explicitly by giving numbers along
aggregation links. If some numbers are shown, then any missing number is assumed to be
\1". The multiplicities in the class diagram and the object diagram both show that, in fact,
the two-hand press object, THP has two button objects, B1 on the left and B2 on the right,
one physical press object, PP , and one sampler object, S . A button is a specialization
of a sensor. It o�ers an operation to read its only measured value. This value indicates
whether the button is currently pressed. A button also incorporates additional operations
for pressing and releasing a button. The specialization, i.e. inheritance, relationship is
denoted by links adorned with a triangle. In the context of this case study, the physical
press is modeled as an entity specializing both a sensor and a motor. In particular, besides
an operation to read the current state of the press, it includes operations to move up, down
and to stop. The physical press measures three values. These values are further described
below.

In Figure 2, the Sampler and TwoHandPress classes together constitute the software
part of the system. The PhysicalPress and Button classes model the behavior of physi-
cal objects, connected to the control by communication lines. From a more traditional,
software-centered point of view, they would be represented as the environment of the soft-
ware control component.

Since this is a very simple system and it has a severe real-time requirement, our main
architectural decision is to adopt a time-frame approach to specify its behavior, as shown
in Figure 3.

ProcessSample Sample Process

TimeFrame Frame

.

Figure 3: Time-Frame Processing

More speci�cally, the idea is to let the sampler periodically read the current values
measured by the physical press and the buttons and then, based on these values, to send
control messages to the press control itself. The sending of these messages can be inter-
preted as events a�ecting control. The press control processes these messages and converts
them into motor commands to move the press. In this sense, the purpose of the sampler
is to abstract from the low-level details of communication with the external devices and
to o�er an appropriate interface to the logical view of the controller. Of course, we must
be concerned that the control does not miss a relevant input, i.e. the maximum time for
the control to react to an input must be less than the length of sampling interval. The
controller requests the operation of individual buttons using natural number indices, e.g.
B1:Read reads values from the left button.

The communication relationships between objects of this system are summarized in
Figure 4.

Of course, there are many alternative approaches to this speci�c one, for example
the two sensors could themselves be active processes interrupting the control by signaling

7

PressLeft

PressRight

ReleaseLeft

ReleaseRight

AtTop

AtBottom

CrossPonR

SignalError

THP:TwoHandPress Release

Press

B2:Button

Down

Stop

Up

S:SamplerPP:PhysicalPress
Read

Read B1:Button

Release

Press

Read

Figure 4: Object diagram showing communication relationships

events to it. However, the advantage of time-frame based processing is that we can more
rigorously control the order of events. Furthermore, given the small number of sensors
in this case study, a concurrent solution would not be very realistic. In this example, all
communications links denote synchronous communication.

2.2 Reactive Model of TwoHandPress Class

The top-level reactive behavior of the TwoHandPress class is described by the statechart
in Figure 5. Initially, the control remains idle until the sampler signals that the press is

RunningReady

UnexpectedSignal

AtTop

Malfunction
UnexpectedSignal / PhysicalPress.Stop

TwoHandPressState

Figure 5: Top-level reactive behavior of the controller

in default position, i.e. at the top. The control then enters the Running mode. In case
of a malfunction, the motor is stopped and a special Malfunction state is entered. A

8

malfunction is recognized if the sensors deliver values that are not expected at any point
of operation. UnexpectedSignals is an abbreviation for a group of transitions. We return
to its de�nition below.

Following common conventions, we denote states by rounded boxes and indicate their
names on the upper left corner. As usual, we use a dot-anchored kind of arrow to point
to default substates to be entered when entering a complex state. In general we use two
kinds of transitions, operation transitions and timeout transitions.

The arrows for operation transitions are in general adorned as follows:

ProvidedOperations[Condition]=RequestedOperations

If the object is in the source state and one of the indicated provided operations, sep-
arated by or, is requested from an external object, then, if the condition is satis�ed,
the indicated operations are requested from the indicated external objects and the object
changes into the target state of the arrow. The condition is optional, an omitted condition
acts as a condition that is always true. Requested operations are optional too: if no re-
quested operations are indicated, the object just performs a change of the internal object
state. The other form of transitions, the timeout transition, is explained below.

Running

Open

Closing

Opening

AtBottom / PhysicalPress.Up

AtTop / PhysicalPress.Stop

 InitiateClosing / PhysicalPress.Down

/ PhysicalPress.Up
InterruptClosing

Figure 6: Re�nement of the Running state

The Running state is further re�ned in Figure 6. The press is operated in a continuous
cycle of closing and opening. Entering the state Closing is associated to a motor command
to move down. The Open state and the label InitiateClosing are further re�ned below.
The Closing state may be left by either releasing one of the buttons, or by reaching the
bottom of the press. Both cases lead to a motor command to move up. Opening then
continues until the sampler signals the press being again at the top. Following a common

9

convention about state transition diagrams, we use stubbed arrows to indicate transitions
originating from substates of not yet su�ciently re�ned states.

The behavior of the control in the Opening and Closing states has not yet been re�ned
to su�cient detail. First, we have to distinguish between those states in which the closing
press above or below the critical point, i.e. the point below which the press can no longer
be reopened before closing. This is clari�ed in the state transition diagram in Figure 7.
The two arrows leaving the re�ned Closing state correspond to the two arrows leaving the

Closing

ClosingAbove

ClosingBelow

CrossPonR

or ReleaseRightReleaseLeft
/ PhysicalPress.Up

AtBottom / PhysicalPress.Up

Figure 7: Re�nement of the Closing state

respective unre�ned state in Figure 6. Identi�cation of such arrows should be unambiguous
by graphical position and by label.

At this point, we have su�ciently exposed the state structure of the two-hand press,
to de�ne precisely the transition group labeled UnexpectedSignals in Figure 5.

UnexpectedSignals � AtTop[ClosingBelow]
or AtBottom[Ready _ Open _ ClosingAbove]
or CrossPonR[Ready _ Open]
or SignalError

The most complex aspect of the press behavior is obviously the transition from the
Open to the Closing state. This is described in detail in the state transition diagram in
Figure 8. According to the logic of the two-hand press, in order to initiate the closing of the
press, the two buttons have both to be released and subsequently both have to be pressed
within a speci�c time interval (MaxDelay milliseconds). Therefore, the SafetyPosition

state, which the system enters initially, can be left only when both buttons are released.
Now when, e.g. the left button is pressed after both buttons were released, the right
button must be pressed within a certain time interval, MaxDelay milliseconds, otherwise
a timeout occurs and the system re-enters the SafetyPosition state. If the right button is
pressed soon enough, the system requests the motor to move the press down and enters
the Closing state.

The transition groups labeled InitiateClosing and InterruptClosing in Figure 6 can now
be de�ned as follows:

InitiateClosing � PressLeft or PressRight

InterruptClosing � ReleaseLeft or ReleaseRight

10

RightPressed

after

Open

SafetyPosition

LeftPressed

ReleaseLeft

PressLeft
[BothReleased]

MaxDelay msec:
PressTimeOut

PressRight
[BothReleased]

ReleaseRight

PressLeftPressRight

InitiateClosing / PhysicalPress.Down

Figure 8: Re�nement of the Open state

This example has made use of the second kind of transition, the timeout transition.
The respective arrows are adorned as follows:

after TimeExpression : InternalEvent=RequestedOperations

If the system has been in the source state of such an arrow for the time speci�ed in the
time expression, then it requests operations from other objects and changes into the target
state of the arrow. As for operation transitions, the condition and requested operations
may be omitted. Timeout transitions are a very simple, but often su�cient, means to deal
with time constraints. If necessary, they could be generalized to timed transitions [15].

After modeling the reactive view of the global control of the hydraulic press system, we
have yet to describe the reactive behavior of the sampler: After initialization, the sampler
periodically samples the two button sensors and the press sensor. For each sensor, the
current values of its signals are read, and, depending on the values of these signals, a
certain operation from the controller is requested. We do not detail the corresponding
state transition diagrams at this point. The state transition diagrams for the motor, the
buttons, and the physical press are not part of the controller but part of its environment.
Since their discussion does not add anything interesting at this point, their treatment is
not further detailed.

A variety of formal semantics for statecharts have been developed [22]. The present
paper is more in the line of current work on embedding statecharts into an object-oriented
setting [18] [11]. Therefore, we would like to add two remarks about basic semantic concepts
of the statechart notation as used in this report:

� The basic communication mechanism is point-to-point communication rather than
broadcasting. Requesting an operation from an object can be interpreted as sending

11

a message to an object, and providing an operation to an object can be interpreted
as receiving a message from an object. As speci�ed in the architectural view, com-
munications can be synchronous or asynchronous. Following the approach in [18],
operation transitions are thus based on the concepts of request and provision of
operations rather than the concept of event.

� The execution of a transition is not timeless and external messages may arrive at
any time. As a consequence, the system may not be able to immediately react
to a message. Therefore, incoming messages must be queued and then worked o�
individually. By convention, if there is no transition for a particular message, then
the system does not change state.

Further experience with case studies should guide the evolution of the notation and the
semantics assumed here.

2.3 Functional Model

Following common practice when presenting Z speci�cations, we �rst specify the state space
of the hydraulic press and then the e�ect of the control operations on this space. The state
space is made up of appropriate data models of the relevant system components. These
models contain the information necessary for the control to decide which action to take.
In order to highlight semantic dependencies, we will stick a systematic naming convention:
The data model of a unit or a collection of units U is named UModel . Also, entities in
the Z speci�cation that are intended to give semantics to entities in the architectural and
reactive speci�cations have the same name as the corresponding entities, right down to
capitalization of the letters.

TwoHandPress: State

First, we de�ne the states of the button control. A button is an object that can be pressed
or released.

Button ::= pressed j released

Remember, that the requirements of the press control described situations in which both
buttons must be released �rst before they may be pressed again to initiate closing of the
press. To model this information, we use the following set:

DoubleRelease ::= required j notrequired

We do not explicitly mirror the full substate structure of the press control from the reactive
view, e.g. the various substates of open. Rather, in this functional view, we �nd it more
convenient to model the buttons explicitly and later de�ne the states of the state transition
diagrams in terms of our Z model.

12

ButtonModel

B1;B2 : Button

double release required : DoubleRelease

(B1 = released ^ B2 = released)) double release required = notrequired

This schema describes the button model as consisting of the two buttons and a
ag that
indicates whether a release of both buttons is required. The logical constraint dictates that
a double release is not required if both buttons are released.

We introduce an auxiliary schema for describing those situations in which the press
is correctly triggered to start moving, i.e. both buttons have been pressed within the
permitted delay after both have been previously released.

PressTriggered

ButtonModel

B1 = pressed

B2 = pressed

double release required = notrequired

Note, that in the functional view, we do not model real-time aspects, rather, these aspects
are delegated to the reactive view.

Next, we de�ne the press states. The press, without the buttons, may be ready, open,
closing above or below the point of no return, opening, or in a malfunction.

TwoHandPress ::= ready j open j closingabove j closingbelow j opening j
malfunction

The internal model of the press is de�ned by:

PressModel

THP : TwoHandPress

The initial state is speci�ed by convention in the schema for Create:

Ready

PressModel 0

THP 0 = ready

By means of the notions introduced so far, we can now specify the state space of the press
control as follows:

13

TwoHandPressState

PressModel

ButtonModel

PressTriggered) THP 6= open

THP = closingabove) PressTriggered

This schema describes the two-hand press model as consisting of the press model and the
button model all being subject to two constraining conditions related to functionality and
safety. The �rst condition states that the press, THP , can be open only if it has not been
triggered. The second condition states that above the critical point, THP can be closing
only if it has been triggered. These conditions must be satis�ed for any state of the system.

Note that the functional speci�cation of the state space reexpresses information that
is present in the state structure of the reactive view. For example, the de�nition of
TwoHandPress is closely related, but not quite identical, to the states used in the re-
active view. For example the states Ready and Open can be de�ned by the following
schemas.

Ready

TwoHandPressState

THP = ready

Open

TwoHandPressState

THP = open

A state can be de�ned by this sort of schema, for each state in TwoHandPress, and
we assume that such states have been de�ned. Thus, we now have de�nitions for the
Ready,Open, ClosingAbove, ClosingBelow , Opening, andMalfunction states. We therefore
need de�nitions only for the substates of Open, namely SafetyPosition, LeftPress, and
RightPress.

SafetyPosition

TwoHandPressState

THP = open

B1 = pressed _ B2 = pressed) double release required = required

The second condition states that in the safety position, if any button is pressed, a double
release is required before the press may begin to close.

The substate RightPressed can be de�ned as follows.

14

RightPressed

TwoHandPressState

THP = open

B1 = released

B2 = pressed

double release required = notrequired

The substate LeftPressed can be de�ned analogously, and we assume that it has been.
We do not need de�nitions for Closing and Running because these are composed

uniquely from their substates ClosingAbove and ClosingBelow on one hand and Opening,
Closing, and Open on the other hand. Strictly speaking, we do not need, in the functional
model, a de�nition of the Open and TwoHandPress states, because these are also com-
posed uniquely from their substates, but in writing the functional model independently of
the other models, it felt right to de�ne them.

In general, our primary intention is to specify each view, so that it makes maximal
sense by itself, e.g., in case of the functional view, we are interested in specifying clear and
crisp data invariants. As in this example, this may well lead to redundancies. If desired,
redundancy can be avoided by allowing, within the functional model, the use of states
and operations derived from the reactive model. The development of a notation for such
derived functional models is subject of current work.

TwoHandPress: Operations

We now turn to the speci�cation of the operations of the two-hand press controller. First,
we specify the e�ect of pressing the left button, B1. Local to the button model, the e�ect
of this operation can be speci�ed as follows.

PressLeftLocal

�ButtonModel

B1 = released

B10 = pressed

B20 = B2

double release required 0 = double release required

This operation can be extended to the two-hand press state by specifying how the press
state is a�ected by the pressing of B1. There are two cases. If the right button, B2, has
already been pressed and no double release is required yet, then the press begins to close.
If this is not the case, the press remains open.

15

PressLeft

�PressModel

PressLeftLocal

(THP = open ^ B2 = pressed ^ double release required = notrequired)

) THP 0 = closingabove

(THP 6= open _ B2 = released _ double release required = required)

) THP 0 = THP

This speci�cation captures very succinctly the normal behavior of the operation to press
B1. The e�ect of pressing the right button, B2, can be speci�ed analogously, and we
assume that it has.

Next, we turn to the release operations. Again, we begin by specifying the e�ect of
releasing the left button, B1, local to the button control.

ReleaseLeftLocal

�ButtonModel

B1 = pressed

B10 = released

B20 = B2

B2 = released) double release required 0 = notrequired

B2 = pressed) double release required 0 = required

Note, that the release of a button may a�ect the release
ag. Next, we extend this operation
to the state of the two-hand press. The interesting case here is to capture the e�ect of
releasing a button at a time when the press is closing and still above the point of no return.

ReleaseLeft

�PressModel

ReleaseLeftLocal

THP = closingabove) THP 0 = opening

THP 6= closingabove) THP 0 = THP

Analogously, we can specify the operation to release B2, and we assume that it has been
done.

After specifying the button operations, we now turn to the operations describing state
changes resulting from signals received from the physical press. For example, the e�ect of
the press indicating arrival at the top of the press can be speci�ed as follows:

16

AtTop

�TwoHandPressState

THP 2 fopening; readyg

) THP 0 = open

THP 2 fopening; readyg ^ (B1 = pressed _ B2 = pressed)

) double release required 0 = required

THP 2 fclosingabove; closingbelowg

) (THP 0 = malfunction ^

double release required 0 = double release required)

B10 = B1

B20 = B2

The �rst implication speci�es the normal behavior, i.e. the signal is arriving during ini-
tialization or opening of the press. Note, in this case, the change of the release
ag, i.e.
after arriving at the top, a full release of both buttons is required. The second implication
speci�es the abnormal behavior, i.e. the signal is arriving during closing of the press, in
which case the press stops the motor and goes into the malfunction state. The remaining
operations CrossPonR, AtBottom, and SignalError can be speci�ed in similar styles, and
we assume that they have been.

TwoHandPress: Conditions

The condition that both buttons are released can be de�ned as follows:

BothReleased

TwoHandPressState

B1 = released

B2 = released

TwoHandPress: Internal events

Finally, we specify the sole internal event that arises in the case that the press is open,
either one of the buttons was pressed, but the delay for pressing the other button has been
exceeded. In this case, the event changes the system back into its safety position.

17

PressTimeOut

�TwoHandPressState

THP 0 = THP = open

B1 = pressed , B2 = released

double release required = notrequired

double release required 0 = required

B10 = B1

B20 = B2

This completes the functional view of the control. At this point, the reader may argue
that this functional view of the system is redundant, since all behavioral aspects of this
�nite state system could have been adequately speci�ed using statecharts alone. We would
argue here that the functional view is useful in its own since it shows very explicitly
that the internal models of the physical components satisfy important safety conditions.
Admittedly, one could have expressed all details of the button logic with statecharts,
but this would have de�nitely obscured the speci�cation and the proof of its properties.
Furthermore, this is a very small example, and, in our experience, the data space and the
amount of data transformation tends to grow quickly in more complex control systems.

3 A Rigorous Integration

The integration of the models is made rigorous by establishing a mapping between the
entities de�ned and used in the three models.

3.1 Mapping Between Models

The straightforward idea is to establish a mapping between the entities of each model. In
the preceding sections, we have implicitly assumed such a mapping by using, within the
models, identical names for those entities to be mapped to each other.

Figures 9 and 10 give, in tabular form, the mapping between the three models, and
Figure 11 gives a legend explaining the notation used in the tables. When a given model
does not have a correspondent to an entity in another model, then \|" shows up in the
�rst model's entry for the entity. The indentation of the reactive model state names is
intended to illustrate the hierarchical structure of the states in the reactive model.

3.2 Reactive Model vs. Functional Model

The reactive and functional view of an embedded system can be checked against each other
by systematically and consistently relate the state hierarchy and the transitions introduced
in the statecharts with the state spaces and operations as de�ned by the Z schemas.

18

Architectural Reactive Functional

Identi�er Model Model Model

THP O | Of
TwoHandPress T | Tf
TwoHandPressState | Ss Sf

Ready | Sp Sr
Malfunction | Sp Sr
Running | Ss |
Opening | Sp Sr
Closing | Ss |
ClosingAbove | Sp Sr
ClosingBelow | Sp Sr
Open | Ss Sr
SafetyPosition | Sp Sf
LeftPressed | Sp Sf
RightPressed | Sp Sf

;/Create | Pu Pf
PressLeft P Pu Pf
PressRight P Pu Pf
ReleaseLeft P Pu Pf
ReleaseRight P Pu Pf
AtTop P Pu Pf
AtBottom P Pu Pf
CrossPonR P Pu Pf
SignalError P Pu Pf

UnexpectedSignal | GF |
InterruptClosing | GF |
InitiateClosing | GF |

PressTimeOut | Eu Cf
BothReleased | Cu Cf
MaxDelay | Nu |

ButtonModel | | Mf
PressModel | | Mf

Figure 9: Mapping between entities in the models, part I

19

Architectural Reactive Functional

Identi�er Model Model Model

Motor T | |
Up P | |
Down P | |
Stop P | |

PP O | |
PhysicalPress T Tu |
NoOfValues N | |
Up P u |
Down P u |
Stop P u |
Read P | |

S O | |
Sampler T | |

Sensor T | |
NoOfValues N | |
Read P | |

B1 O | Of
B2 O | Of
Button T | Sf
NoOfValues N | |
Read P | |
Press P | |
Release P | |
pressed | | Sp
released | | Sp
DoubleRelease | | Sf
required | | Sp
notrequired | | Sp
double release required | | Of
PressTriggered | | Cf
ButtonModel | | Mf

Figure 10: Mapping between entities in the models, part II

Figure 12 uses a schematic example to illustrate the basic issues with respect to the
relationship between the reactive and the functional model. It shows both models for a

20

Meaning Code

Object O
Class/Type T
Procedure/Operation P
State S
Condition/Property C
Grouped Transition G
Internal Event E
Number N
Model M

Primitive p
De�ned by Structure s
De�ned by Formula f
Formula renaming primitive r
Unde�ned u

Figure 11: Legend of mapping between entities in the models

simple class with two operations, two internal events and two conditions. It may be helpful
to study this example when following the subsequent de�nitions.

3.2.1 Relating State Structures

We assume that corresponding Z schemas have been de�ned in the functional model for
each of the states of the reactive model. Given such a mapping for a particular component,
the state structure semantics of the reactive view can now be projected into properties
about the corresponding Z schemas in the functional view. For an arbitrary state S of the
reactive model of this component, we distinguish between the following two cases:

� S is an elementary state, i.e. there is no decomposition of S in the reactive model.
This is denoted by the state S having an \Sp" entry in the reactive model column of
the mapping table. The semantics of primitive states then implies that the associated
Z state Sz must be nonempty, i.e.

Consistency: 9Sz .

� S is a hierarchically composed state, i.e. in the reactive model S is decomposed into
exclusive sub-states S1, S2, � � �, and Sn , where n > 0. This is denoted by the state
S having an \Ss" entry in the reactive model column of the mapping table and S 's
substates being listed below it indented one level. We assume that these substates
are mapped to Z-schemas S1z , S2z , � � �, and Snz . The semantics of hierarchical state
decomposition then implies the disjointness of these substates.

21

S1

S2 S3

S4

S5

Op1[C1]

T2 msec : Ev1
after

after

Initialization schema

Operation schemas

Internal event schemas

Condition schemas

State schema

Op1 Op2

C1 C2

Ev1 Ev2

S’

S S

Op1[C2]

S S

S S

i? : I; o? : O

...

... ...

... ...

... ...

... ...

Init :: S

S

S

Op2(i?,o!) / A.Op

T msec: Ev2 / B.Op

∆ ∆

∆ ∆

Figure 12: The reactive and the functional model of a component

Disjointness: : (Siz ^ Sjz) for all i ; j 2 f1; � � � ;ng, where i 6= j . This is
abbreviated as disjoint(S1z ; S2z ; � � � ; Snz).

If, in addition, S is mapped to Z-schema Sz , then one has to verify su�ciency and
necessity of the decomposition.

Su�ciency: S1z _ S2z _ � � � _ Snz ` Sz .

Necessity: Sz ` S1z _ S2z _ � � � _ Snz

Of course, the top-level statechart of a component must be related to the Z schema
de�ning the full state space of the component.

Hydraulic press example

In the case of the hydraulic press, to ensure consistency between these de�nitions, we have
to prove nonemptyness of primitive states,

9Ready, 9Malfunction, 9SafetyPosition,

9LeftPressed , 9RightPressed

9ClosingAbove, 9ClosingBelow , 9Opening

22

we have to prove disjointness of substates,

disjoint(ClosingAbove; ClosingBelow)

disjoint(SafetyPosition; LeftPressed ; RightPressed)

disjoint(Opening; Closing; Open)

disjoint(Ready; Malfunction; Running)

and we have to prove the necessity and su�ciency of the or-compositions:

Open ` (SafetyPosition _ LeftPressed _ RightPressed)

(SafetyPosition _ LeftPressed _ RightPressed) ` Open

and

TwoHandPressState ` (Ready _ Malfunction _ Running)

(Ready _ Malfunction _ Running) ` TwoHandPressState

3.2.2 Relating Computational Structures

We have to demonstrate that the set of computations, i.e., sequences of states starting with
an initial state and obtained from the previous by application of a transition or operation, in
the two models are consistent with each other under the mapping. The standard approach
is to use computational induction. That is, show �rst that the initial states in the two
models are consistent under the mapping; this is the basis of the induction. Then show that
if states S and Sz are consistent under the mapping, then the states S 0 and S 0

z obtained
by applying corresponding transitions and operations to S and Sz , respectively, are also
consistent under the mapping; this is the inductive step of the induction. If one can show
these two, clearly, all corresponding states in all corresponding computations in the two
models are consistent under the mapping.

3.2.3 Relating Initializations

We have to check whether the initialization schema is consistent with the initialization
as indicated in the state transition diagrams. If Create :: C is the name of Z schema
describing the initialization and S is the state reached after initialization in the reactive
model of an object, then we have to check the following proposition.

Initialization: Create :: C ` S

23

Hydraulic press example

In the hydraulic press example, in the reactive model, the initial state is Ready which maps
to the functional model Ready state which is de�ned as the same as the ready state into
which the Create operation puts THP .

3.2.4 Relating Operations

In the functional view, we have de�ned a Z schema for each service, internal event, or
guard in the statechart. Based on the association of a Z schema to each statechart box
in the mapping, one can verify conformance between the statechart transitions and the Z
de�nitions.

The idea is to consider an arbitrary state and an arbitrary operation and then to check
for consistency with respect to the semantics of transitions from that state. More precisely,
given an arbitrary operation Op and state S , we have to prove that each transition leaving
S and labeled with Op, and possibly some condition, behaves as expected, i.e. results in the
state speci�ed in the reactive model. We furthermore have to prove, that if the operation
or event Op occurs and neither one of the conditions of those transitions are true, the
application of Op preserves this state.

First, we distinguish the case that no transitions labeled with Op are leaving S . In
such a case, we have to show that application of S preserves this state.

Preservation: Sz ^ Opz ` S 0

z .

Sz and Opz are the Z schemes mapped to S and Op.
It remains to deal with the case that the transitions t1, � � �, tn (n > 0) are labeled with

Op and guards C1, � � �, Cn and move from S to states S1, � � �, Sn . We check for consistency
of these transitions as follows:

Applicability: Sz ` preOpz .

Explicit Correctness: Sz ^ Opz ^ Ciz ` S 0

iz , for 1 � i � n.

Implicit Correctness: Sz ^ Opz ^ : (C1z _ � � � _ Cnz)) S 0

z , if Sz is primitive.

Ciz and Siz are the Z schemata associated with Ci and Si under the mapping. Note the
applicability check, i.e. any state from which a transition labeled with Op is leaving must
imply the precondition of Op. Note also, that implicit correctness has to be checked only
for primitive states, as it induces implicit correctness for composed states.

Note that implicit correctness is trivial in those cases in which the disjunction of the
guards is complete, for example in the frequent number of cases in which n = 1 and
C1, true.

24

Hydraulic press example

Having carried out the basis for the induction in a previous section, we now consider some
example inductive steps. The inductive step has to be shown for each operation applied to
all possible states to which the operation is applicable by its pre-conditions. We consider
a few example operations.

First, we consider the operation PressLeft . It is necessary to �nd all transitions in
the reactive model in which PressLeft occurs as the provided operation. These are all in
Figure 8, giving the re�nement of the Open state. In this diagram, there are only two
relevant transitions, giving rise to the obligations:

SafetyPosition ^ PressLeft ^ BothReleased ` LeftPressed 0

SafetyPosition ^ PressLeft ^ : BothReleased ` SafetyPosition 0

RightPressed ^ PressLeft ` ClosingAbove 0

The precondition of PressLeft can be calculated in the functional model as THP `
prePressLeft , B1 = released . This means that an after-state of PressLeft is speci�ed
only if B1 is released in the pre-state. There are two states in which we know for sure that
the left button, B1 is not released, namely

LeftPressed , following from its own de�nition, and

ClosingAbove, following from the second condition of TwoHandPressState and the
de�nition of PressTriggered .

Therefore, the PressLeft is inapplicable in two states only, namely:

LeftPressed ` : prePressLeft

ClosingAbove ` : prePressLeft

For the other primitive states, we have to prove preservation, i.e.: for all states S ,

S ^ PressLeft ` S 0

A similar analysis can be done with the other press and release operations. Next,
we turn to the control event AtTop. By examination of the statecharts for the top-level
behavior and the re�nement of the Running state in Figures 5 and 6 and the de�nition
of the transition group UnexpectedSignal , it is clear that the the transitions to be veri�ed
are:

Ready ^ AtTop ` SafetyPosition 0

Opening ^ AtTop ` SafetyPosition 0

Running ^ ClosingBelow ^ AtTop ` Malfunction 0

Inapplicability is given in the states Open and Malfunction. The other control events can
be analyzed in a similar fashion.

25

Finally, there is one internal event PressTimeOut . From the statechart for the Open
state, it is clear that the following transitions must be checked.

LeftPressed ^ PressTimeOut ` SafetyPosition 0

RightPressed ^ PressTimeOut ` SafetyPosition 0

Inapplicability is given in the the remaining states. All these properties amount to very
simple checks of the given de�nitions. Nevertheless, checking these conditions is very
helpful for debugging a speci�cation.

4 Conclusions

This paper has shown a small example of using three di�erent speci�cation languages to
specify di�erent aspects of a system under design. Each speci�cation language is used for
its own strengths to specify what it can, leaving it to the other languages to deal with what
it cannot specify. Of course, it is hoped that every aspect of the system under design that
is in need of speci�cation can be speci�ed by at least one of the speci�cation languages
used. Each speci�cation is carried out somewhat independently in its own best method;
although, it is necessary to keep in mind the other speci�cations, if only to make sure
that all descriptions of the same entity have the same name and that all speci�cations are
specifying the same system under design.

Once the speci�cations are completed it is necessary to de�ne a mapping that makes the
identity of like named entities explicit. The purpose of this mapping is to show both when
an entity is de�ned in more than one speci�cation and when an entity is de�ned in only one
speci�cation. In the former case, it is necessary to prove that the multiple de�nitions are
consistent with each other under the mapping, i.e., that the di�erent views of that entity
do not imply di�erent behavior. In the latter case, if all the proofs have been carried out,
we get the right to assume the meaning of the single de�nition as it projects to all other
speci�cations, i.e., to inherit the single de�nition as applicable to all speci�cations. This
right is precisely what is needed when di�erent, complementary speci�cations are given of
the one system in order that all of its aspects are covered by at least one speci�cation.

Indeed, one can consider the models complementary only to the extent that there is
a mapping explaining how they complement each other and from which the meanings of
missing aspects in one model can be deduced by mapping from their meanings in the others.
To misquote Marshall McLuhan, \the proof is the massage", the massage that converts
one model into another.

In the example of this paper, the complementarymodels all have a similar conception so
it was quite straightforward to �nd a very simple, identi�er-to-identi�er mapping between
any two of the models. The referees of an earlier draft of this paper wondered what would
happen if the models were not of similar conception. As suggested by the experience in
automata theory, the theory of equivalence of interpreters, multi-level formal development
methods, and multi-view system design environments, cited in Section 1.1, the mapping can
be any collection of functions on any collection of state variables in one model to individual

26

variables in another. Of course, in this case, it will not be so easy and systematic to �nd
the mappings. However, one thing is clear; complete failure to �nd a mapping is a sign
that the models are not complementary and that more work needs to be done.

Alternatively, one can insist that all people designing one system work closly enough
together that the models do have similar enough conceptions that the mapping will be
quite straightforward.

The reader might also have objected at various points in the presentation of the exam-
ple, that one can often easily de�ne entities in one model in such a way as to automatically
satisfy the proof obligations with respect to their de�nition in another model. While we
admit that this is possible, we want to stress at this point, that our methodological guide-
line is to de�ne each entity as naturally and as independently as possible from di�erent
points of view, perhaps even by di�erent people. In some cases, the consistency between
views may follow by construction, in others, consistency must be ensured by a separate
nontrivial reasoning.

References

[1] D.M. Berry. The equivalence of models of tasking. Proc. of ACM Conf. on Proving

Assertions about Programs, SIGPLAN Not., 7(1), January 1972.

[2] D.M. Berry. Towards a formal basis for the Formal Development Method and the Ina
Jo speci�cation language. IEEE Trans. on SE, SE-13(2):184{201, 1987.

[3] G. Booch. Object-Oriented Analysis and Design with Applications. Benjamin Cum-
mings, second edition, 1994.

[4] R. B�ussow and M. Weber. A steam-boiler control speci�cation with Statecharts and Z.
In J.R. Abrial, H. Langmaack, and E. B�orger, editors, Formal Methods for Industrial

Applications: Specifying and Programming the Steam-Boiler Control, volume 1165 of
LNCS, pages 109{128. Springer, 1996.

[5] E.M. Clarke and J.M. Wing. Formal methods: State of the art and future directions.
Technical report, Carnegie Mellon University, 1996.

[6] D. Craigen, S. Gerhart, and T. Ralston. An international survey of industrial appli-
cations of formal methods. Technical Report NISTGCR 93/626, National Institute of
Standards and Technology, Gaithersburg, MD, 1993.

[7] G. Estrin. A methodology for design of digital systems | supported by SARA at the
age of one. In Proc. of NCC, pages 313{336. AFIPS, 1978.

[8] G. Estrin, R.S Fenchel, R.R. Razouk, and M.K. Vernon. SARA (System ARchitect's
Apprentice): Modeling, analysis, and simulation support for design of concurrent
systems. IEEE Trans. on SE, SE-12(2):293{311, 1986.

27

[9] Zentralstelle f�ur Unfallverh�utung und Arbeitsmedizin. Pressen { Sicherheitsregeln f�ur

Zweihandschaltungen an kraftbetriebenen Pressen der Metallbearbeitung. Hauptver-
band der gewerblichen Berufsgenossenschaften, Langwartweg 103, 5300 Bonn 1, zweite
edition, 1978.

[10] D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer

Programming, 8(3):231{274, 1987.

[11] D. Harel and E. Gery. Executable object-modeling with Statecharts. In Proc. of ICSE
18, 1996.

[12] M. Heisel, S. J�ahnichen, M. Simons, and M. Weber. Embedding mathematical tech-
niques into system engineering. In M. Wirsing, editor, ICSE-17 Workshop on Formal

Methods Application in Software Engineering Practice, pages 53{60, 1995.

[13] J.E Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages, and

Computation. Addison Wesley, Reading, MA, 1979.

[14] I. Houston and S. King. CICS project report: Experiences and results from the use
of Z in IBM. In S. Prehn and W.J. Toetenel, editors, VDM'91 Formal Software

Development Methods, volume 551 of LNCS, pages 588{596. Springer, 1991.

[15] Y. Kestens and A. Pnueli. Timed and Hybrid Statecharts and their Textual Represen-

tation, volume 299 of LNCS, pages 591 { 620. Springer, 1992.

[16] C.L. McGowan. An inductive proof technique for interpreter correctness. In R. Rustin,
editor, Formal Semantics of Computer Languages, Englewood Cli�s, NJ, 1972.
Prentice-Hall.

[17] J. Rumbaugh et al. Object-Oriented Modeling and Design. Prentice-Hall, 1991.

[18] B. Selic, G. Gullekson, and P.T. Ward. Real-Time Object-Oriented Modeling. John
Wiley & Sons, 1994.

[19] IEEE Software. Safety-Critical Systems. IEEE, January 1994.

[20] M. Spivey. The Z Notation, A Reference Manual. Prentice Hall, second edition, 1992.

[21] UML Partners Consortium. Version 1.0 of the Uni�ed Modeling Language. Technical
report, RATIONAL Software Corporation, 1997.

[22] M. von der Beeck. A comparison of statecharts variants. In Symposium on Fault-

Tolerant Computing, LNCS. Springer, 1994.

[23] M. Weber. Combining Statecharts and Z for the design of safety-critical control sys-
tems. In Marie-Claude Gaudel and James Woodcock, editors, FME'96: Industrial

Bene�ts and Advances in Formal Methods, volume 1051 of LNCS, pages 307{326.
Springer, 1996.

28

[24] M. Weber. Abstract object systems. Rote Reihe 97-12, TU Berlin, 1997.

[25] W.A. Wulf, R.L. London, and M. Shaw. An introduction to the construction and
veri�cation of Alphard programs. IEEE Trans. on SE, SE-2(4):253{265, December
1976.

29

