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Abstract. The flexible job-oriented program model and distributed top-layer architecture
described in this paper represent a novel top-layer approach to real-time software design
and implementation, which can achieve portable, adaptable, fault-tolerant, and predictable
high-value performance for a significant class of large-scale real-time systems with dynamic
requirements, resources and constraints. Following a brief introduction to real-time software
control issues and current layer-by-layer trends and limitations, we present an adaptive top-
layer alternative to program modeling and control which can efficiently guarantee dynamic
hard and soft requirements on a distributed platform, while providing best-effort system val-
ues for arbitrary system state sequences. Practical and scalable control algorithms have been
devised, analyzed, and tested, which strongly suggest that such an approach is viable even
for dynamic large-scale and complex systems where conventional layer-by-layer alternatives
fail. We also show how the proposed top-layer architecture might efficiently accommodate
known levels of non-deterministic behavior within the platform and the environment. A
musical ATLAS testbed is being developed to illustrate the feasibility of this approach.
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1. INTRODUCTION

A real-time system can be viewed as a collection
of interacting components at various hardware and
software layers, e.g. semiconductor components, the
hardware architecture, operating system, program-
ming languages, and compilers. The top-layer com-
prises the application program, while all underly-
ing layers are collectively referred to as the run-time
platform'. A conventional layer-by-layer approach as-
sumes that predictable real-time systems can be ob-
tained only by ensuring that all system components,
within all system layers, behave in an a priori known
predictable manner (Halang and Stoyenko, 1991).
Component interactions and worst-case characteris-
tics can then be analyzed to ascertain that all critical
program tasks will be schedulable under all foresee-
able circumstances. Unfortunately, current layer-by-
layer methodologies cannot efficiently accommodate
real-time systems which are complex, 1.e. systems
which must simultaneously cater to several dimen-
sions of real-time systems, such as multiple proces-
sors, tight and loose time constraints, hard and soft
deadlines, periodic and aperiodic tasks, static and dy-

1Platform layers do not include environment-dictated
system elements, e.g. sensors and actuators, which are
viewed as part of the application environment.

namic subsystems. In addition, these methods can-
not support real-time systems which operate in un-
certain environments, or real-time platforms which
contain non-deterministic elements with worst-case
characteristics which are too high. Many are con-
cerned that challenges posed by such systems are not
being met (Stankovic, 1988). The primary objectives
of this paper are to describe a job-oriented program
model and a software control architecture which fa-
cilitate a platform-independent top-layer approach,
which might be more appropriate for such systems.

A top-layer approach differs from a conventional
layer-by-layer approach, in that it attempts to achieve
predictable real-time behavior by focusing only on
the program layer. Such an approach was first pro-
posed by Stankovic and Ramamritham (1990), who
point out that even layer-by-layer methodologies are
not fool-proof, always requiring error handlers to deal
with unexpected input, inevitable hardware failures,
and probable software bugs. Even in a top-layer ap-
proach there are always system components, e.g. er-
ror handlers, which may still require layer-by-layer
techniques to maximize guarantees. They suggest,
however, that strict layer-by-layer requirements can
be relaxed for most system components, as long as we
can guarantee that error handlers or other alternative



actions will always bring the system to a safe state.
To date, no one has demonstrated how a top-layer
approach might be realized. Moreover, it has never
been shown that such an approach can indeed accom-
modate complex multi-processor systems, uncertain
environments, and non-deterministic platforms.

The top-layer approach, herein described, essentially
adopts a job-oriented RtTS scheme (Jehuda et al,
1995) originally devised for time-sharing systems with
dynamic sets of real-time jobs. The RtTS architec-
ture uses a divide-and-conquer strategy, most appro-
priate for complex systems. The strategy requires
that each job be internally responsible for the schedul-
ing of its own tasks, using arbitrary real-time schedul-
ing policies. Arbitrary sets of such jobs can then re-
liably time-share any given processor, subject to a
very simple joint schedulability test. Job sets, job
requirements, and processing resources, are assumed
dynamic, so the RtTS control architecture is designed
to simultaneously carry out best-effort job adapta-
tions and dynamic job load balancing in a manner
which automatically maximize the system value for
arbitrary system circumstances. Employing efficient
control algorithms, these decisions are made in frac-
tions of a second, making the strategy appropriate for
uncertain environments. When using platforms with
non-deterministic elements, a flexible control frame-
work and novel feedback mechanisms enable avoiding
worst-case assumptions and then quickly adapting to
avoid impending faults.

Whereas each RtTS job originally refers to an inde-
pendent application, the job abstraction is applied
here to loosely-coupled subsystems within a single
application. Each job may support several alter-
nate modes of operation to choose from, and may
also recognize various internal states which affect the
job’s current processing requirements and contribu-
tion to the overall system value. Scheduling poli-
cies employed by each job may also be mode and
state-dependent, enabling application of arbitrary de-
terministic or speculative scheduling policies to each
subsystem, wherever and whenever necessary. Addi-
tional control elements are introduced into the RtTS
architecture to enable porting an application from
one platform to another without source-level modifi-
cation. The result is a platform-independentreal-time
application which has been completely designed and
implemented with very few assumptions regarding the
platform layers. A musical ATLAS testbed (Jehuda
and Berry, 1994) is being developed to illustrate the
feasibility of this approach.

This paper is organized as follows. We begin with a
description of the job-oriented program model and
the real-time software control issues in Section 2.
Here we use a remote-controlled craft example to
demonstrate how it can be applied to complex sys-
tems targeted for uncertain environments, possibly
running on a non-deterministic platform. Current
layer-by-layer trends and limitations are briefly dis-
cussed in Section 3. The RtTS software control ar-
chitecture is then described in Section 4. To facilitate
the development of platform-independent programs,

Section 5 introduces additional elements into the ar-
chitecture, whereupon Section 6 suggests how the
subsequent top-layer architecture can accommodate
known degrees of platform non-determinism. Con-
clusions appear in Section 7.

2. THE RTTS PrOGRAM MODEL

The top-layer approach is appropriate only for real-
time systems which can apply the job-oriented multi-
processor program model, described below. In par-
ticular, it is useful only for programs which can be
decomposed into a set, J, of loosely-coupled sub-
systems, called jobs?>. The active set of jobs, J, is
assumed to be dynamic, running on a set of process-
ing nodes, C'. We also require that at any given mo-
ment, each job j € J have a set of selectable modes
modes of operation, M;. A typical example of such
a system might be the remote-controlled civilian or
military craft depicted in Figure 1. The wvideo job
is responsible for video acquisition and compression,
which can be carried out at various frame rates and
resolutions, using any of several compression algo-
rithms. The navigation job periodically determines
the craft’s current position and motion at appropri-
ate rates. The communication job transfers video
and navigational information to the remote control
system via radio, while catering to various interfer-
ence levels by using appropriate redundancy and er-
ror correction techniques. The guidance job controls
locomotion actuators to comply with remote control
directives at various speeds. Rates, resolutions, lev-
els, speeds, and techniques are all dictated by any
number of selectable modes per job.
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Fig. 1. A Remote-Controlled Craft

Besides requiring different processing capacities, each
mode also clearly provides a different quality of ser-
vice, referred to as the job reward, r;(m),m € Mj.
Thus, for example, a video mode with higher frame
rates ¢ and resolutions will have a higher reward than
other video modes. The total system valueis assumed
to be a function of the current job rewards. For best-
effort adaptation, job modes must be automatically
selected in a manner which maximizes the system
value without overloading available resources. Let-
ting m; € M; represent the currently selected mode
for job j, then the current system value, v, is assumed
to be a function of the set of all currently selected

?Each job might be a pre-existing software package, or
any self-contained system aggregate, naturally or artifi-

cially defined.



job rewards, {r;(m;)}. The workload associated with
each job mode, m € M;, comprises an arbitrary task
set, 7;(m), which may also be complez in the sense
that it might have to simultaneously cater to several
dimensions of real-time systems (Stankovic and Ra-
mamritham, 1990), e.g. state-dependent execution
times and job priorities, tight and loose time con-
straints, hard and soft deadlines, periodic and aperi-
odic tasks, and various forms of inter-task dependen-
cies. To be reliably scheduled, we require that each
job mode be already equipped with an arbitrary real-
time scheduling policy, m;(m), which can be deter-
ministic or speculative, static (off-line scheduling) or
dynamic (on-line scheduling). Common determinis-
tic schedulers for hard real-time task sets include the
static cyclic executive (CE) (Locke, 1992), and the
dynamic rate monotonic (RM) and earliest deadline
first (EDF) (Liu and Layland, 1973) policies. When
dealing with semi-hard and soft real-time tasks, we
might prefer more speculative best-effort scheduling
policies, e.g. those of Locke (1986) and Miller (1990),
which can provide higher value-oriented performance.
Each 7;(m) policy must also determine the minimal
processing capacity required by it to either satisfy all
7j(m) requirements (in a deterministic approach), or
to obtain a given ezpected value (when using a spec-
ulative approach). This minimal capacity is hence-
forth referred to as the job bandwidth, b;(m), often
measured by the minimal required processor clock fre-
quency in MHz units.

Once mode m; has been selected for job j, all job
tasks in each 7;(m;) must share the same processor,
but entire job task sets may migrate from one pro-
cessor in C to another. Job load-balancing therefore
comprises of finding a a partitioning of J into |C] dis-
joint job subsets, {J.}, J = Uc J., such that all jobs
7 € J. are schedulable on processor c¢. Letting . de-
note the processing speed or capacity or processor c,
and letting b;(m;) denote the currently selected band-
widths for each job, it can be shown (Jehuda and Ko-
ren, 1995) that a job set, J., is jointly schedulable on
processor ¢ by an appropriate real-time time-sharing
scheme, if

> bilmy) < fe. (1)
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Thus ten jobs can reliably time-share a processor with
a 10 MHz capacity if each job requires a 1 MHz band-
width.

To efficiently accommodate the dynamic needs of the
system, we require a variety of job modes with a wide
range of bandwidths. Mode workloads should also be
migratable, 1.e. node-independent, whenever possi-

ble.

Alternate job modes can be used to encapsulate
a wide variety of adaptation forms.
forms of adaptation include approzimationtechniques
which adjust time constraints to supportable lev-
els (Gopinath and Schwan, 1989), imprecision tech-
niques which use sieve functions to produce interme-
diate results when time runs outs (Liu et al, 1991),
and polymorphic techniques which provide alternate

Common

methods for accomplishing specific tasks (Kenny and
Lin, 1991), or use different scheduling policies (Ra-
mamritham and Stankovic, 1991). Modes which re-
quire hard guarantees will use deterministic layer-
by-layer methodologies to determine worst-case job
bandwidths for 7;(m) using m;(m). Other job modes
might use smaller bandwidths to provide less deter-
ministic accuracy or softer speculative guarantees.

Also to be considered are internal job states which
may affect current job rewards and bandwidths. In
the inertial navigation subsystem, for example, the
rate of navigational positioning must be higher when
the craft travels faster, thereby requiring a greater
bandwidth. In a similar fashion, dynamic rewards
may be used to reflect varying job priorities under var-
ious circumstances, e.g. navigation might be more im-
portant than video once a final destination has been
determined. The set of active jobs, J, may also vary,
e.g. the remote-controlled craft may also have radar
capabilities which are not always active. Runtime
platform characteristics may also vary with time, as
when processing nodes are upgraded, when they fail,
or when certain processing resources are diverted to
activities outside the application. Mode selection and
load balancing decisions must therefore be reconsid-
ered with each significant transition in the set of ac-
tive jobs, in the internal job states, in the external
environment, and in platform processing capacities.

3. PrEvVIOUS WORK

The primary contribution of the job-oriented top-
layer architecture is in its ability to address several
formidable issues, simultaneously: complex task sets,
hard multi-processor schedulability, best-effort adapt-
ability, uncertain environments, fault-tolerance, non-
deterministic platforms, source-level portability, and
scalability. Several subsets of these issues have been
treated in the past. Surveying them all would be be-
yond the scope of this paper, so we mention here only
a few and refer to (Jehuda and Berry, 1995) for more
details. Jo (1994) and Ramamritham et al (1990),
respectively, have devised centralized and distributed
approaches to dynamic load-balancing. A variety
of effective adaptation techniques have already been
employed in the experimental Spring (Ramamritham
and Stankovic, 1991), RESAS (Bihari and Schwan,
1988), GEM (Schwan et al, 1987), and Concord (Liu
et al, 1991) projects. Unfortunately, none of these so-
lutions can adequately support the integrated needs
of our program model.

We suggest that the primary difficulty in all of these
examples is that they attempt to tackle real-time
scheduling, dynamic load-balancing, and best-effort
adaptation at the individualtask level, using uniform
scheduling policies. Doing so at the task level is sim-
ply too complex. When assuming a uniform schedul-
ing policy, even a small number of hard tasks forces
us to making inefficient worst-case assumptions ev-
erywhere, all the time.

Rather than attempt to online generate new schedul-



ing solutions for dynamic sets of individual tasks, we
propose a job-oriented approach in which each job
must already be equipped with an arbitrary deter-
ministic or speculative scheduling policy which max-
imizes processor utilization for the tasks in that job.
The software control architecture can then use a di-
vide and conquer strategy to simultaneously facili-
tate real-time time-sharing, dynamic load balancing,
and best-effort adaptations for arbitrary sets of self-
contained jobs. As far as we know, the architec-
ture is unique in its generalized support for hybrid
scheduling solutions®, and in its ability to best-effort
adapt to arbitrary circumstances while guarantee-
ing predictable real-time performance for all active
tasks. Current heuristics for best-effort adaptations
can already respond within milliseconds while typi-
cally providing average 95%-98% performance levels.
Job-level adaptations also enable efficient accommo-
dation of varying sets of critical tasks as well as tasks
with varying criticalities. When load-shedding is nec-
essary, it can be done with a global perspective of
requirements and rewards, rather than resorting to
arbitrary FCFS arbitration.

4. RTTS SOFTWARE CONTROL

The job-oriented program model of Section 2 enables
encapsulating internal complexities and adaptation
alternatives in a manner which can be efficiently man-
aged by the RtTS software control architecture. Real-
time time-sharing, dynamic job load balancing, and
high-value mode selection can then be carried out
for an arbitrary set of jobs, J, on an arbitrary set
of processors, C, in an integrated manner. An inte-
grated approach is essential to critical real-time sys-
tems because decisions in each of realms are influ-
enced by each other, e.g. independent mode selec-
tion may produce a set of critical tasks which cannot
be load-balanced, and a load-balancing decision may
generate job subsets per processor which cannot be

reliably scheduled.

Control Le- Typical
Layer vel Function Rates
Policy- 4 when? method? mins
Making scope? depth?
Automated 3 mode selection secs
Meta-Control & load balancing
Real-Time 2 job time-sharing msecs
Teme-Sharing 1 job scheduling

Fig. 2. Time-Sharing Architecture

4.1 Real-Time Time-Sharing

For each job j € J, each job mode m € Mj, is inter-
nally responsible for the scheduling of its own task set,

3Young and Shu (1991) have proposed a hybrid schedul-
ing scheme for dealing efficiently with complex task sets,
but only CE and RM are reconciled, and it is done in a
manner which cannot facilitate dynamic load balancing.

7j(m), using an arbitrary real-time scheduling policy,
7;(m), found to be adequate when running on a pro-
cessor with a minimal processing bandwidth, b;(m).
Only one job mode in M; can be active at any given
moment, so we use m; € M, to denote the current job
J mode. As depicted in Figure 2, the internal =;(m;)
job schedulers constitute the bottom control layer in
the architecture. Each bandwidth can be viewed as
a virtual processor with a processing speed equal to
bj(mj), so any J. job set can reliably time-share a
processor ¢ with a capacity of ., subject to Equa-
tion (1). The job time-sharing control layer carries
out this time-sharing for each job set J. on each pro-
cessor ¢ € C using an EDVF interleaving policy. Each
7;(m;) job scheduler keeps the time-sharing layer up-
to-date regarding the earliest pending deadline, dj,
within its 7;(m;) task set. The time-sharing layer
on each processor ¢ always dispatches the job j € J.
with the closest d; value. Whenever Job 5 € J. is
dispatched, the job scheduling of the 7;(m;) task set
is carried out in accordance with the internal =;(m;)
scheduling policy. The outcome is that all ;(m;)
schedules are essentially interleaved without being al-
tered or violated. The b;(m) bandwidths are com-
puted in a manner which also accommodates worst-
case time-sharing overheads®. Together, the bottom
two layers facilitate a real-time time-sharing scheme
which enables each job to use an arbitrary and inde-
pendent real-time scheduling policy to best meet its
complex requirements.

It follows from Equation (1) that this time-sharing
scheme essentially maintains® the processor utiliza-
tion provided by each m;(m;) scheduling policy within
its own bandwidth. Thus, a primary design objective
in a time-sharing architecture is to decompose the
system into high utilization jobs, i.e. jobs with task
sets which have high utilization scheduling solutions
for them. Another design objective is to choose a
scheduling policy for each mode which will minimize
the bandwidth (maximize the utilization) for that
mode. Thus a static cyclic executive scheduler will
usually be applied to a set of strictly periodic tasks,
for which this method can successfully avoid resource
contentions, untimely preemptions, and unnecessary
context switching overheads. Dynamic schedulers will
usually be applied to task sets which cannot be effi-
ciently accommodated by static scheduling, e.g., tasks
with irregular arrival times, and tasks which are not
readily broken up into cyclic time frames. More ad-
vanced systems might eventually support automatic
scheduling, whereby the 7;(m) scheduling policy for
each job mode is determined automatically to mini-
mize the bandwidth. Once this is accomplished, we
are guaranteed that the time-shared processor utiliza-
tion will be equally high.

4Worst-case time-sharing overheads are shown to be of
O(N) complexity where N denotes the maximum number
of jobs in J., so that b; bandwidths can be computed
for arbitrary J. job sets and for any combination of
scheduling policies.

5Utilization losses due to time-sharing overheads are
typically low and they are usually compensated for by re-
duced average losses due to capacity fragmentation (Je-
huda et al, 1995).



4.2 Automated Meta-Control

Above the bottom two layers we find the meta-control
layer which must seek the most profitable job mode
selection and job load-balancing for a given system
state. The primary objective of the automated meta-
controller is to select job modes m; € M; which will
produce the optimal system value, v*, i.e. the high-
est obtainable system value which is still schedulable.
Let J. represent a job subset allocated to processor
¢ € C, and let . denote the processor ¢ capacity.
When using a time-sharing scheme, a given selection
of job modes is schedulableif and only if there exists
a partitioning of the job set J over the set of available
processors C' such that

Vee C: ij(mj)gﬁc. (2)

JEJe

Finding such a schedulable partitioning is the job
of the load-balancer, whereupon fully reliable time-
sharing is guaranteed for all jobs in J.

A meta-controller deciston consists, therefore, of a
set of selected modes and a schedulable partition-
ing of jobs over processors. Job sets are dynamic.
Job bandwidths and rewards are state-dependent. To
support fault-tolerance, processor capacities, 3., may
also vary. Thus meta-controller decisions must be
automatically made with each altered job set, each
state transition, and each change in the current plat-
form capacity. It can be shown that the meta-control
problem is equivalent to a composite binpacking and
zero-one multiple-choice knapsacking problem which
is strictly NP-hard. Nevertheless, we have devised
two very effective approximation algorithms, QDP
and G2, each of them typically requiring only frac-
tions of a second to produce system values which are
rarely suboptimal by more than a few percent. These
results enable us to reevaluate our decisions every few
seconds to accommodate varying job sets and states
with reasonable overhead. QDP relies primarily on
dynamic programming, while G? is gradient-greedy.
G? performance is generally only sightly lower than
QDP, and both provide significant improvements of
20% — 40% over conventional density greedy (Garey
and Johnson, 1979) methods. Both algorithms also
provide low time and space complexities so that the
RtTS architecture is indeed scalable to large-scale sys-
tems. G? advantages include being an iterative sieve
function, i.e. it always has a valid intermediate de-
cision which only gets better with time. QDP also
provides a simple mechanism for trading of precision
for quicker response times. An appropriate analytic
model has been devised for predicting expected QDP
system values for any given system. For detailed de-
scriptions of these algorithms, simulation results, and
analytic methods, the interested reader may refer to
(Jehuda and Israeli, 1994) and (Jehuda, 1995).

4.3 Policy Making

We recall that job mode bandwidths and rewards may
be internally state-dependent, so jobs must notify the
upper control layers when an internal state transition

is about to occur. When optimizing system value for a
given situation, the system control architecture must
also consider the dynamics of migrating jobs, chang-
ing modes, and other short-term consequences, such
as a possible loss of system stability due to frequent
adaptations. It is the policy-maker’s responsibility
to consider all anticipated possibilities in determin-
ing when automated meta-control decisions should be
made, which method should be used, what scope, i.e.
which jobs, processors, and mode sets should be con-
sidered, and to what depth, i.e. how fast and accu-
rate each decision must be. An automobile driver,
for example, will always slow down as he approaches
a crossing or any other situation which might require
a sudden change of speed and direction. In a sim-
ilar manner, the policy maker of the remote-control
craft may also take precautionary measures, e.g. al-
locating a larger job bandwidth than necessary when
a state-transition is imminent, or preparing a set of
instant local adaptations for emergencies. The policy
making layer must clearly be tailored to the specific
nature of each system. Nevertheless we anticipate
that a well-defined set of evolving policy-making con-
trol models, e.g., Markov-decision processes, (Jehuda,
1994), will eventually handle enough applications to
warrant packaging in a generic format.

5. A TorP-LAYER ARCHITECTURE

ATLAS Application

Policy Maker

| |
| Meta-Controller |
[ RT Time Sharing |
| |
| |

VAPoR

Virtual Platform
for Real-Time

Performance Profiler

Integrated Monitor

PReTSL Library

Distributed Platform

Fig. 3. The Top-Layer Architecture

Another significant design objective for any system
is the ability to accommodate long-term adapta-
tions, e.g. evolving run-time platforms and pro-
gram specifications which change with time and ex-
perience. As illustrated by Figure 3, we accomplish
this by extending the RtTS software control model,
to produce a top-layer architecture, capable of sup-
porting platform-independent real-time applications.
The performance profiler is charged with providing
the platform-dependent task attributes which are re-
quired for real-time scheduling. The integrated mon-
ttor primarily serves the performance profiler and it
also facilitates system validation and evaluation. The
VaPoR virtual platform supports appropriate abstrac-
tions which enable the provision of all necessary real-
time services by a variety of conventional distributed
platforms. All portable contingents of these compo-
nents are contained in a portable real-time support



library, PReTSL. Non-portable elements are isolated
within the VaPoR layer which mediates between the
application and the platform. Only the VaPoR layer
must be reimplemented and customized to accommo-
date each candidate run-time platform.

5.1 The Virtual Platform

VaPoR is designed to serve as a generic virtual plat-
form for real-time applications, and must therefore
support a comprehensive set of operating system ser-
vices typically required by such applications. As in
Chaos (Schwan et al, 1990), ARTS (Tokuda and Mer-
cer, 1989), RT Mach (Tokuda et al, 1990) and other
systems (Mukherjee and Schwan, 1992), a major Va-
PoR premise is that real-time applications consists of
cooperating processes which enable them to use light-
weight threads to implement concurrent tasks. On a
RT Mach platform, for example, job tasks would be
translated by VaPoR into native Mach threads. On
a non-threaded Unix platform, VaPoR might incor-
porate C or POSIX threads for basic timing, thread
synchronization, and message-passing. VaPoR pro-
vides a uniform interface to these services to maxi-
mize portability. As in MOSIX (Barak et al, 1991),
and other message-passing environments (McBryan,
1994), VaPoR must be designed to efficiently and reli-
ably deliver messages between node-independent jobs
regardless of their current placements. VaPoR ab-
stractions avoid dictating the mechanisms to be used
by these services so that the current platform archi-
tecture can be best exploited®.

Unlike most other experimental real-time platforms,
the VaPoR approach attempts to accommodate
widely accepted industry standards, rather than at-
tempt to supersede them. VaPoR adopts an Ada-like
strategy whereby various services are either internally
resolved within user-level run-time libraries or leased
out to the platform operating system in a manner
transparent to the application. It also provides all
the necessary hooks to the integrated monitor and
profiler so that program and platform behavior can
be monitored and profiled.

5.2 Performance Profiling

The performance profiler is charged with provid-
ing the RtTS control layers with all the platform-
dependent characteristics which they require. To
compute the minimal bandwidth b;(m) for a given
platform, each job Mode m in Job j requires various
task characteristics, e.g. typical or worst case execu-
tion time (WCET), for all tasks in 7j(m). As illus-
trated by the Concord project and the Flex program-
ming language (Kenny and Lin, 1991), safe WCET
estimates can be produced and perfected by com-
bining compile-produced data with accamulated run-

6Mach 3.0 with a Unix server was probably the first to
demonstrate that a portable virtual platform can outper-
form even a dedicated non-portable platform (Ultrix 4.0)
by using appropriate platform abstractions and by opti-
mizing each instantiation (Chen and Bershad, 1993).

time experience. The Concord project also shows how
calibrated WCET functions can be obtained which
provide tight WCET upper bounds for each task as a
function of predetermined state variables, so that job
mode bandwidths can be upgraded with each state
transition. The timing analysis for each job also re-
quires typical or WCETs for all VaPoR services used
by each job. All of these characteristics must be pro-
vided by the performance profiler.

5.3 The Integrated Monitor

The integrated monitoring subsystem plays a very
central role in a top-layer architecture, primarily serv-
ing system validation, performance analysis, perfor-
mance profiling, and job scheduling. The integrated
monitor relies on a dynamic combination of probes
and sensors, embedded within the VaPoR, Pretsl, and
program layers for, respectively, sampling variables
and for tracing execution. A job scheduler using mile-
stoning (Haban and Shin, 1989), for example, relies
on implanted milestone sensors, which monitor task
progress to appropriately reduce the WCET assumed
for that task for more efficient online scheduling. All
monitored data must be time-tagged, collected, fil-
tered, routed, processed, and recorded, while adapt-
ing to the dynamic requirements and resources of the
system. Integrated monitoring schemes have already
been devised for several dynamic and distributed real-
time systems, e.g. (Ogle et al, 1990).

6. ACCOMMODATING NONDETERMINISM

The VaPoR virtual platform acts as an interface to
any of several candidate run-time platforms. Un-
fortunately, most popular platforms have compo-
nents that do not comply with layer-by-layer require-
ments. Most popular high-level languages, have am-
biguous interpretations, e.g. as with case and multi-
ple conditions, or because they have inherently non-
deterministic statements, e.g. Occam guard com-
mands. Languages may also suffer from implicit non-
determinism, such as when Ada uses a delay state-
ment to implement periodic tasks. Fault handling for
arithmetic exceptions and the order of subexpression
evaluation are non-deterministic in all programming
languages.

Advanced hardware technologies, such as branch pre-
diction, pipelined execution, cache memories, and vir-
tual memories, are all problematic because they use
non-deterministic statistical models to boost perfor-
mance. Much of these performance gains are lost
when always assuming the worst-case scenario for
each element, as required by the layer-by-layer ap-
proach. For example, when carrying out a timing
analysis for a program running in a cache memory,
we always assume a cache miss for every memory ac-
cess, resulting in a task WCET which can be ten
times worse than the typical task execution times.
This results in actual processor utilizations which are
extremely low and wasteful. A top-layer architec-
ture can better exploit the performance speed-ups of-



fered by such non-deterministic platform elements, by
containing, reducing, and diffusing these utilization
losses in the following ways.

As already proposed by Stnakovic and Ramam-
ritham (1990), worst-case layer-by-layer timing anal-
ysis might be necessary only for certain subsystems
when in specific states. The job-oriented program
model enables us to apply different scheduling poli-
cies to each job mode in a state-dependent manner.
This enables us to contain WCET assumptions within
specific jobs, modes, and states. Rather than always
assume worst-case scenarios in all sub-systems all the
time, we can assume the worst-case only within crit-
ical subsystems, when they are critical. Even when
necessary, assumed WCETSs can be reduced based
upon actual observed behavior, as when using the
milestoning technique in Section 3.

We suggest that worst-case assumptions can be fur-
ther reduced by reserving a surplus capacity on each
processor for absorbing transient non-deterministic
overloads, and by monitoring its consumption to de-
termine when an emergency mode transition might
be necessary to avoid an impending fault. Emergency
mode transitions will always be made to lower band-
width modes prepared in advance with each meta-
controller decision, so that job load-balancing can en-
sure that an emergency transition is available in each
Je. Higher bandwidth modes provide higher system
values, but we assume that a penalty is paid for each
emergency mode transition. Therefore, surplus ca-
pacities must be substantial enough to guarantee that
emergency mode transitions will be infrequent enough
to justify the technique. Thus, surplus capacity con-
sumption must be monitored, and a minimal surplus
must be determined.

To facilitate such a technique, the performance pro-
filer must differentiate between job-triggered tran-
sient overloads, e.g. disk I/O, and job-independent
transient overloads, e.g. clock updates and mouse in-
put. When dealing with job-independent transient
overloads the same reserved capacity can serve any
number of jobs sharing an given processor, ¢, so inef-
ficiency due to worst-case assumptions is thus diffused
among all jobs in J..

In another variation, each job distinguishes between
hard and soft job bandwidths, and job load-balancing
is carried out in a manner which guarantees that each
processor has sufficient soft bandwidth to absorb the
transient overloads. Work on these techniques has
only begun.

7. CONCLUSIONS

The authors believe that the current top-layer pro-
gram model and control architecture can already be
applied, as is, to a very significant class of complex
real-time applications, provided that the program can
indeed be decomposed into several loosely-coupled
jobs, many of them node-independent, with a sig-
nificant number of job modes, and with a sufficient

variety of mode bandwidths. All that we require of a
platform is that it have capacities capable of accom-
modating the minimal bandwidth modes for the most
demanding job set anticipated.

As previously mentioned, the primary contribution
of the job-oriented top-layer architecture is in its
ability to simultaneously address several formidable
issues. The RtTS time-sharing scheme enables us
to accommodate dynamic and complex task sets,
while providing us with a very simple criteria for
hard multi-processor schedulability. The RtTS meta-
controller and policy maker facilitate automatic best-
effort adaptation to arbitrary circumstances, making
the architecture very appropriate for uncertain envi-
ronments and fault-tolerant platforms. Low QDP and
G? time and space complexities provide the scalabil-
ity necessary for handling large-scale systems as well.
The top-layer architecture also offers several possible
techniques for better utilizing non-deterministic plat-
forms.

Another major contribution is the inherent source-
level portability provided by the VaPoR virtual plat-
form and portable PReTSL library. Platform-
independent real-time software can extend longevity
and enhance reusability. Moreover, portability avoids
the need for prohibitive software revisions when plat-
forms are expanded or replaced to deal with inad-
equate performance; growing requirements, and ob-
solete hardware. Once portability is achieved, any
given real-time problem should ultimately disappear
as computers grow faster and more powerful. Porta-
bility can also improve reliability by allowing more
extensive system validation on a variety of more suit-
able platforms.

Skeptics may argue that a major top-layer drawback
is that it cannot fully exploit the architectural aspects
of the platform. This might be true today, but we
suggest that this is only a temporary obstacle. Simi-
lar arguments were used to delay the use of high-level
languages in real-time software. As with high-level
languages, we anticipate that advanced operating sys-
tems and optimization technologies will eventually
provide generic, application-independent, solutions
for maximizing the utilization of platform resources
without explicit directives from the application. Even
today, costs incurred by reduced efficiency can be rel-
atively insignificant when considering other aspects of
system development, deployment, and maintenance.
As with low-level languages, the inadequacy of layer-
by-layer designs will only grow more acute as real-
time systems expand in size and complexity. If viable,
a top-layer approach might be the only practical al-
ternative for many next-generation real-time systems.
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