
TECHNION TECHNICAL REPORT, MARCH 1993)

Arabic formatting with ditroff/ffortid

JOHNY SROUJI (Õuj¢y Õ�¸u, י סרוג’ וני (ג’ AND DANIEL BERRY (k¢¹q f�¹�BN,

ברי (דניאל

Computer Science Department
Technion
Haifa 32000
Israel

SUMMARY

This paper describes an Arabic formatting system that is able to format multilingual scientific
documents, containing text in Arabic or Persian, as well as other languages, plus pictures,
graphs, formulae, tables, bibliographical citations, and bibliographies. The system is an
extension of ditroff/ffortid that is already capable of handling Hebrew in the context of multi-
lingual scientific documents. ditroff/ffortid itself is a collection of pre- and postprocessors for
the UNIX ditroff (Device Independent Typesetter RunOFF) formatter. The new system is built
without changing ditroff itself. The extension consists of a new preprocessor, fonts, and a
modified existing postprocessor.

The preprocessor transliterates from a phonetic rendition of Arabic using only the two
cases of the Latin alphabet. The preprocessor assigns a position, stand-alone, connected-
previous, connected-after, or connected-both, to each letter. It recognizes ligatures and
assigns vertical positions to the optional diacritical marks. The preprocessor also permits
input from a standard Arabic keyboard using the standard ASMO encoding. In any case, the
output has each positioned letter or ligature and each diacritical mark encoded according to
the font’s encoding scheme.

The fonts are assumed to be designed to connect letters that should be connected when
they are printed adjacent to each other.

The postprocessor is an enhancement of the ffortid program that arranges for right-to-left
printing of identified right-to-left fonts. The major enhancement is stretching final letters of
lines or words instead of inserting extra inter-word spaces, in order to justify the text.

As a self-test, this paper was formatted using the described system, and it contains many
examples of text written in Arabic, Hebrew, and English.

Ö� ¯�
Ó······� Ó±´� k¡�Bj Ö¹q¢¬�B Ö­³�B ¼¹�¸�� À���¢q Ì¨� f�¯ìB B¡�
Ö···¹q¢¬��q Æ� ë� Ö�¸��� ,G�­³�B lN ¬�� Ö¹´³� U¸¨� ¼¹�¸r
,Ö········¹��¹q G�··�¸yP ,G�··�¸yP ,m¢··wB G�··­³� Ö··���Û�q Ö··¹yP�®�Bj
Ó··¹¦�r ¸� À���¢��C .�¹�B¢�¸¹³�¹qj ,Ö¹�B¢�¸¹³�¹q PN�¨� ,fjB u
lN ·····¬�� Í···��sj ç Ö···�¢�¬�B Ö···���¬� ë···� háB PN�···¯�B ditroff/ffortid-�
À······��¬� ··¬qj (preprocessor)À··��¬� Ñ··�� Ó··� lP�··�� ditroff/ffortid .G�··­³�B
Device Independent Typesetter) ditroff ,UNIXç Ì······¨�B À······���¢�� (postprocessor)

Received 10 July 1992
 1993 by Johny Srouji and Daniel M. Berry Revised 1 February 1993

2 J. SROUJI AND D.M. BERRY

ë··� ¢·¹¹­r kB f�·wND hjN Ó·� Õ·µ�� ·� ��B À·���¢��B .(RunOFF

, ·······� u À·��¬� Ñ·�� Ó·� ¼·³�ÛB ë·� Ö·�¸±� Ö·���ßB .Ò·��¯�B ditroff

À······��¬� ¬q Ó� Öµ¦�� Ö�¦�j ,Ö¹¬�ªìB aj¢��B Ó� Ñ��� Ò¯�
.Ò���

Ö····q¸�±� ,Ö··¹q¢� Ö··¯¹s¸� Ö··¹»¹�¶��B lN�··ìB Ò··u¢�� À··ð��¬ìB Ñ··��
Ñ···�� .Õ··µ¹rÜ�B E�··q-Ì�ÝB ç (cases) a¢··vÝB Õ··��¸´�� f�··´¬�y�q
Ö·······��¶� ,Ñ···¨�� ¢···¹� ,Ö···´³±��q Ô···¬�¸� a¢···v Ñ···±� Ó···¹¬� À···ð��¬ìB
Ê········� Ñ¨��) Èyjj ,(i ¬q Ê� Ñ¨��) Ö�B q ,(Ô³�� Ê� Ñ¨��)
h�····±ìB P¢··¯�j (ligatures) G�··�¹�¢��B Ó··¹¬� �··©�C ¸··� .(i ··¬qj Ô··³��
�·····©�C Ê···¹ª�¦� À···ð��¬ìB Ñ···�� .(diacritical marks) G�···�¢�³� kN¸···��¬�B
Arabic) Ö····¹q¢¬�B a¢vÞ� Ö¹y�¹� Á¹r�®� Öv¸� Ó� lN�� Ñ�¯�¦� hC
,f�··v kB ë··� .Ö··¹y�¹¯�B ASMO l¢··®¹z Ñ··´¬�¦r Õ··��Bj ,(Keyboard

Ö····�¢v Ñ···±�j Ö···´³±�B ç Ö···�¹�¢r jB a¢···v Ñ···±� ,(output) J�···�µ��q
.a¢vÞ� k¢®§�B g�«µ�B ¼¦v l¢®¹z Ï��µ�

Ñ······¨�r a¢····vÛB hB ¾····¹�q Ö····´´¨� (font) È····��B G�····¹³±z
.m¢wÝB ¸³r l vB¸�B ¼�±r Ó¹v gj£³�B µ� �¶©¬�q

Ö········���� P¢·¯� k¡·�Bj ,ffortidÀ·���¢�� Ó·¹¦�r ¸·� À·ð��¬ìB ·¬q
Ó······¹´¹�B Ó� ¼�±r �¶�B ë� Ö�¢¬ìB a¢vÜ� P�¦¹�B êD Ó¹´¹�B Ó�
l¢··¹wÝB a¢·vÝB (stretching) ·� ¸·� Õ·¦¹�¢�B Ó·¹¦���B .P�·¦¹�B êD
Ó·········¹q l ···�B£�B G�···�B¢®�B f�···wND Ó···� Û ···q G�···´³±�B jB ¢···ªyÝ�q

.(justification) Æµ�B Å¹´¶r a ¶q G�´³±�B
,a¸·······�¸ìB Q�¶��B ÖªyB¸q ùÌï� f�¯ìB B¡� ,Õ¦®� Æ�®�
,Ö······�¢�¬�B ,Ö·¹q¢¬��q F¸·�±� Æ·µ� l ·� � Ö·³��C ë·� k¸·��� ¸·�j

.Ö�£¹³²�ÛBj
תקvיר

רב- mמדעיי mבמסמכי דפוס סדר המאפשרת בערבית דפוס סדר מערכת מתוארת זה במאמר

משוואות, ,mגרפי ,mיוריv אחרות, לשפות sבנוס ופרסית בערבית טקסט mהמכילי ,mלשוניי

שכבר ditroff/ffortid של הרחבה היא המערכת וביבליוגרפיות. ,mביבליוגרפיי מקורות טבלאות,

-mקד של sאוס הנה ditroff/ffortid .mרב-לשוניי mמדעיי mמסמכי jבתו בעברית לטפל מסוגלת

ARABIC FORMATTING 3

Device Independent Typesetter) ditroff ,UNIX של הדפוס מסדר עבור mואחר-מעבדי mמעבדי

בעיקר מורכבת ההרחבה הקיימת. ditroff את לשנות מבלי נבנתה החדשה המערכת .(RunOff
.mקיי אחר-מעבד של מעודכנת וגירסה ,mפונטי חדש, מקדm-מעבד

mהמקרי בשני רק בהשתמש הנכתב ערבי, טקסט של פונטי קלט mמתרג המעבד mקד

sסו לבד, עומד במילה, מיקומה את אות לכל קובע המעבד mקד הלטיני. האלs-בית של (cases)
liga-) הרכבות mג מזהה הוא .(mשניה (מקושר אמvע אחר), (מקושר התחלה ,(mקוד (מקושר

יכול המעבד mקד . (diacritical marks) הניקוד סימני של האנכי mהמיקו את וקובע (tures
בקידוד המשתמשת ,(Arabic Keyboard) ערבי טקסט של סטנדרטית ממקלדת קלט mג לקבל

יש נקודה ולכל במילה הממוקמות הרכבה או אות לכל בפלט, מקרה, בכל .ASMO הסטנדרטי

.(font) הפונט של קידוד לפי קוד

האחת מודפסות oה כאשר jורvה במקרה ביחד תתחברנה שהאותיות jכ mמתוכנני mהפונטי

השנייה. ליד

אותיות של לשמאל oמימי הדפסה הקובעת ,ffortid התכנית של הרחבה הוא המעבד אחר

(stretching) מתיחת היא העיקרית ההרחבה לשמאל. oמימי mכנכתבי mהמזוהי mהפונטי

ליvור כדי mהמילי oבי mנוספי mרווחי הכנסת mבמקו mבמילי או בשורות האחרונות האותיות

.(justification) הטקסט שולי את

דוגמאות מכיל והוא המתוארת, המערכת בעזרת דפוס מסודר הזה המאמר עvמית, כבדיקה

ואנגלית. עברית, בערבית, הכתוב טקסט של רבות

KEY WORDS Arabic Bidirectional Formatting Multilingual Troff

1 INTRODUCTION

With computers spreading all over the world, there is a clear need for word-processing
software to be made available in languages other than English.

Basically the history is as follows. The first computers were developed in English-
speaking countries, and the first mass-marketing of computers was in these countries.
Computers spread next to countries whose languages are written with the Latin alphabet,
but some minor fudging is needed for accents, such as ´, `, ˇ, ¨, and ¯, and for unusual
letters, such as ß, æ, Æ, ø, and Ø, which do not appear in English. Finally computers have
spread to countries with totally different alphabets, such as the Arabic-Persian family, the
Chinese-Japanese-Korean family, the Cyrillic family, Greek, the Hebrew family, and the
Hindi family. In some cases the alphabets are very large, so large that one byte is not
enough to encode all the characters. These include, of course, the Chinese-Japanese-
Korean family. In some cases, the languages are written in other directions. These
include the right-to-left languages from the Arabic-Persian family and from the Hebrew
family. These also include languages written from top to bottom from the Chinese-
Japanese-Korean family.

For word-processing software, there is a need for formatters and editors on the batch
side and WYSIWYG processors on the interactive side.

The goal of the research that yielded the software described in this paper is to pro-
duce a complete environment for preparation, proofing, and printing of technical and
non-technical multilingual documents. We need to be able to edit, preview, and typeset
documents with all the hallmarks of technical papers including bibliographies and cita-
tions, formulae, tables, indexes, program code, and pictures. The pictures can be either
filled, line-drawn figures or half-tones. Among the line-drawn figures are plots, flow
diagrams, flow charts, graphs, trees, and data structures.

The software should be able to handle text in a wide variety of alphabets in all the
known writing directions. These include the left-to-right languages written with the
Cyrillic, Greek, Hindi, and Latin alphabets, the right-to-left languages written with the

4 J. SROUJI AND D.M. BERRY

Arabic, Persian, and Hebrew alphabets, and the top-to-bottom languages written with the
Chinese, Japanese, and Korean alphabets. Any alphabet not specifically listed should not
be construed as excluded.

The software should work in the increasingly popular UNIX environment. The main
reasons for this requirement are that

1. the authors’ various organizations are all UNIX shops, and
2. there is a variety of existing software in source form that solves most of the problem

and that can be reused to provide significant leverage towards a full solution.

Software exists on UNIX environments that is capable of previewing and typesetting
technical and non-technical documents with bibliographies and citations, formulae,
tables, indexes, program code, and pictures, both line and half-tone, in all the known
writing directions, left-to-right, right-to-left, and top-to-bottom, with a wide variety of
fonts for Latin-based, Chinese-based, and Hebrew-based languages; some of this
software is used to typeset articles for this journal. The specific goal of the work
described in this paper is to extend this formatting software to be able to format such
documents containing text in the Arabic-Persian family of languages. Because the first
author is a native Arabic speaker, the focus of this work is on Arabic. Attention is paid to
handling Persian and Urdu when possible, and if not, then at least to not excluding later
extensions to handle them by native experts.

Given that a self-test has become de rigueur for formatting papers, this paper was
typeset using the software described herein, using the command lines

resolve bibliographical citations
refer -e -n -p ˜/.refsidx paper > paper.ref

run refer-processed paper through psfig and then
through a sed script that replaces symbolic names
with actual section, figure, and footnote numbers

psfig paper.ref | sed -f cross.reference | \
and then through chem and pic and through Arabic
transliteration with no line breaks between words
(-b), i.e., preserve original lines, with ligature
level 0 (-l0) and then through tbl and eqn, and

chem | pic | atrn -b -l0 | tbl | eqn | \
finally through bidirectional troff, reversing
(-r) fonts in positions 13, 17, 22 and 42 with
Arabic in position 42 (-a42), stretching all
words in lines (-sa) and Inclusion (-I) of fonts
hD and AN, sending PostScript version to paper.ps

troffort -r13 17 22 42 -a42 -sa -IhD -IAN -t > paper.ps

Most of the figures were done with pic, tbl, eqn, chem, or pure formatted text. Figure 4
was scanned in and converted to encapsulated POSTSCRIPT with the help of Adobe Illus-
trator. The Star Trek logo is also an encapsulated POSTSCRIPT document, obtained via
the internet from Michael L. Brown, the editor of the Star Trek, the Next Generation
Guide. Figures 5 and 6 and the example involving writing a complete word on top of a
stretched letter are manually programmed encapsulated POSTSCRIPT documents. All of
these encapsulated POSTSCRIPT documents are included into the paper with the help of

ARABIC FORMATTING 5

psfig. The document included in Figure 5 uses an experimental dynamic font. The reason
Figure 6 was included via psfig rather than typeset as normal text is that providing the
five Arabic fonts to typeset it normally makes the POSTSCRIPT document sent to the
printer too big. By doing it as a separate encapsulated POSTSCRIPT document, it was pos-
sible to whittle the fonts down to just what is necessary to make the figure. The second
and third of the stretching examples of Section 8.2.4 are typeset as separate documents
with the described software, because only one kind of stretching can be in effect for all
Arabic fonts in a single document. Their POSTSCRIPT outputs are interpolated into that of
the main document by use of an editor.

2 ARABIC LANGUAGE AND ITS FORMATTING PROBLEMS

2.1 Arabic Language and Computerization

The Arabic language is the main language in the Middle East, the mother tongue of about
200 million people in 21 countries, one of the five official languages of the United
Nations, and one of the two official languages in the state of Israel, where the authors
live. Moreover, the same alphabet is used, with minor changes, both additions and sub-
tractions, in several other languages including Persian, Kazak, Kirghiz, Malay, old Turk-
ish, Uighur, and Urdu. The geographic influence of the language is widespread.

There has been a large effort in recent years to bring the benefits of computerization
to the Arabic world. This Arabization effort, described in a variety of papers in recent
conferences in the Middle East and elsewhere [1–5], has yielded hardware that can store,
read, print, and enter Arabic, Persian, Kazak, Kirghiz, and Uighur text [6, 7]. It has also
yielded databases, spreadsheets, and word-processing applications, that can work with
the same [7, 8].

2.2 Arabic Alphabet and Implications for Processing

Arabic is an ancient language that originated from the Aramaic language that was used
by the Nabateans and, like the other languages of Semitic origins, such as Hebrew, it is
written from right to left. However, numerals1 are written with the most significant digit
to the left (i.e., what is commonly called from left to right).

2.2.1 Letters that Connect and Change Form

In Arabic and related languages, the shape of letters depends on their positions within
words. In Hebrew, in which characters are disconnected, only five letters change form
according to their position within a word, and they change form only when they are last
in a word. In Arabic, letters are written mostly connected and, as a consequence, nearly
all letters change form according to position within a word. There are up to four different
forms for each letter, namely, stand-alone, connecting-before, connecting-after, and
connecting-both. The forms adopted by the letters are quite natural for the hand to pro-
duce when the hand is writing in a continuous flow. Therefore, for a fluent writer, the

1 The designation of the standard numerals written in Latin alphabetic text as Arabic is misleading, as these
numerals bear no resemblance to those actually written in the Arabic language.

6 J. SROUJI AND D.M. BERRY

positions just happen as the letters are being written, much the same way as the lead
stems of Latin letters change to accommodate a preceding “o” without the writer really
having to think about it.

The Arabic alphabet consists of 31 letters and five vowels. See the table of Appendix
II. Because the letters alef, taa_marbouta, and alef_maksura are really other versions of
other letters, grammatically there are only 28 letters. Thus, the table of Appendix II
shows the Arabic alphabet as it must appear to any formatting software that is obliged to
treat different versions and forms of the same grammatical letter as different characters
and that is obliged to treat a diacritical mark as a character. It also has the additional
characters that are needed to print Persian and international text.

The table of Appendix II also shows the different forms for each of the letters. Most
letters have four forms. The four forms of the letter F, which are F, ¼, q, and �,

appear in the words F���, î¼î�î�, ¢�q, and h��u. There are letters, e.g., N, that

naturally do not connect to the following letter because of where they end. These letters
have only two forms, stand-alone and connecting-before. Operationally, it will prove
convenient to treat all letters as having four forms. In the case of a two-form letter, the
connecting-after form is made a duplicate of the stand-alone form and the connecting-
both form is made a duplicate of the connecting-before form.

2.2.2 Diacritical Marks

The use of diacritical marks or vowels in Arabic, as in Hebrew, is optional. In normal,
everyday text, a diacritical mark would be used only in the rare case in which it would be
hard to identify the intended word from the letters and the context. For example, consider

the word¼�� written without diacritical marks. It could be either î¼î�î� ((he) wrote) or

ò¼�ï� (book). Normally it is quite easy to distinguish which of these is intended by the

position in a sentence. The former is a verb and the latter is a noun. There is other text,
either poetry or books for children, in which a full complement of diacritical marks is
used. In the former case, word order is often inverted, and in the latter case, the young
readers do not know the contexts.

A diacritical mark is written either above or below the letter after which its vowel is
pronounced and also affects the accent or stress of that letter. Figure 1 shows the Arabic
letter N with all the possible vowels. Below each is its pronunciation expressed in Latin
letters. The input of diacritical marks should be allowed, and each should be printed
at the proper height above or depth below the letter that it follows in pronunciation. Here
the proper height or depth is determined by the bounding box of the letter itself.

A glance at the table of Appendix II shows that some letters differ graphically from
others only by the addition of some dots. These dots are part of the letters and should not
be considered diacritical marks. In fact, to the formatting software, these dots are
irrelevant. Only to the font software might these be relevant, as glyphs might be built by
calling subroutines that draw the different parts.

ARABIC FORMATTING 7

îN ïN ðN ñN òN óN ôN
da du di dan don den d

ùN úN ûN üN ýN þN õN
dda ddu ddi ddan ddon dden dd

Figure 1: Vocalizations of one letter.

2.2.3 Ligatures

Arabic has ligatures, i.e., characters created by merging at least two others. The most

common ligature in Arabic and its sibling languages is the Û (lam-alif) created by merg-

ing the f (lam) and the B (alif). Grammatically, the lam-alif is not a letter; it is two

letters, and words containing it are treated grammatically as containing a lam followed by
an alif. A ligature is created and used solely to improve the calligraphic appearance of the
text. Therefore, strictly speaking, forming ligatures is optional. The lam-alif is the most
common ligature and is used in place of the individual letters in sequence virtually every
time. It has become, for all practical purposes, obligatory. One section of the table of

Appendix II lists the ligatures supported by this software. The optional ligatures, e.g., í
(lam-mim), formed from the f (lam), and the g (mim) are used less frequently. Figure 2

shows, in the last steps of lines (a) and (c), words involving the ligatures lam-mim and

lam-alif. In the figure, the gf is recognized as a ligature in (a), and is not recognized as

a ligature in (b). Because the lam-mim is only an optional ligature, either is acceptable.

The Bf is recognized as a ligature in (c) as is required. Were it not to be recognized as a

ligature, as in (d), one would obtain an impossible word containing the unacceptable con-

struction ��.
Obviously, the formatter must treat a ligature as a separate character to be printed as

any other letter. Typeset Latin text has ligatures, the most famous being “fi” which is
used to avoid the two ugly, beady eyeballs staring at the reader when the ligature is not
used, viz. “fi”. While the reader reads the “fi” as two letters, “f” and “i”, the formatting
software considers the “fi” as another character. Of course, most formatting applications
that provide ligatures do so automatically; the user enters “f” followed by “i” and the
software replaces them, if they are still together after hyphenation, by the ligature charac-
ter “fi”. Any Arabic wordprocessing software worth its salt should provide a similar ser-
vice. Accordingly, Figure 2 also shows the steps in arriving at the final form of two
words involving the ligatures lam-mim and lam-alif.

8 J. SROUJI AND D.M. BERRY

g J P G g f B→ Ò u ¢ � ì B→ Òu¢�ìB
hh hh hh hh

(a)

g J P G g f B→ Ò u ¢ � ´ � B→ Òu¢�´�B
hh hh hh h hh

(b)

f S B f S→Ñ y Ü y→ÑyÜy
hh hh hh hh

(c)

f S B f S→Ñ y � ³ y→Ñy�³y
hh hh hh hh hh

(d)

Figure 2: Steps to ligature identification.

Arabic has an interesting property in connection with the optional ligatures. Assume
that it has been decided for a document to form a ligature for a particular ordered pair of
letters. Then sometimes, whether that ligature is formed in a particular place depends on
the positions of the two original letters in the word. Take, for example, the optional
lam-mim ligature formed from lam and mim. The lam and mim are joined into a unit only
when the lam stands in a connected-after position and the mim is in a connected-before
or a connected-both position. This is because the lam-mim is available only in
connecting-after and stand-alone forms. See Figure 3 for the four cases of the ordered

pair, lam and mim. gf is recognized as a ligature only in the first two cases.

Ò �→ í
´ �→ ì
Ò ³→ Ò³
´ ³→ ´³

Figure 3: Four cases of the lam-mim combination.

2.2.4 Justification, Hyphenation, and Stretching

In Arabic, typeset text is usually right and left justified. However, there is no hyphenation
that can be used to make the job easier. The reason that there is no hyphenation is that

ARABIC FORMATTING 9

hyphenation would mess up the whole positioning system causing two internal letters to
behave as ending and beginning letters of words, causing a very strange appearance of
the letters in what might be a very familiar word.

For languages with non-connecting letters, the usual method to achieve justification
on both sides of a line is to insert extra white space in between words so that the list of
words that will fit on a line are spread out to be flush at both ends. Usually the spacing
between words is constant for the line, but sometimes extra white space is put after the
end of a sentence. In addition, some algorithms, e.g., for TEX [9], try to make the spacing
uniform over larger units of text than just the line. In Arabic, in contrast, the more usual
treatment is to stretch the last letter or the approach to the last letter if that letter or

approach can be stretched. This stretching is called l ¹§� (keshide). “Keshide” is

actually a Persian word derived from the verb h ¹§� (keshidan), which means “to
stretch”.

There appear to be no formal laws specifying when, how, and how much to stretch
letters. Instead, calligraphers decide to stretch according to aesthetic considerations.
Basically stretching of last letters happens because a calligrapher writing with ink cannot
predict the spacing to use between words until he or she reaches the end of the line; at
that point there is nothing left to do but stretch the last letter. Someone who is writing
with ink does not have the lookahead that a computer does! Lack of lookahead notwith-
standing, examples in Section 8.2.4 later in the paper, show that stretching in Arabic is a
natural thing and yields a nicer appearance than does spreading the words.

There are two main ways to stretch. One way is to stretch the connection to the

letters. As an example, the word Ö········µ��B is obtained by stretching the connection to

the letter Ö in the word Öµ��B by 12 points. The other way to stretch is in fact to stretch

the letters themselves. Generally, only those letters with large, mostly horizontal, strokes,

such as d, e, a, c, b, F, G, H, d, I, f, S, T, U, V, h, k,

and m, are stretched. Figure 4, taken from an Egyptian text on Arabic calligra-

phy [10, 11], shows the lettersF,a, and a variation ofe, with and without stretching.

The unstretched versions of the letters are said to be 5 points wide (the point is the width
of the dot that appears in two of the letters), and the stretched versions are 11 points
wide. This figure also shows the importance of aesthetics in stretching, an importance
that precludes clear laws. Because the three letters that are stretched are structurally simi-
lar, for appearance’s sake, they had to be stretched the same amount rather than indivi-
dual amounts according to the needed justification. For this kind of situation, the human
calligrapher must exercise lookahead.

In manual calligraphy, the preference is for stretching letters themselves, but both

methods of keshide are used. Some letters, i.e., those with no horizontal part, e.g., B, are
just not stretchable. It is sometimes not aesthetic to stretch a particular letter. On the other
hand, sometimes the last letter is not connecting-before, so there is no connection to
stretch. If both happen in the last word of a particular line, then the next-to-last letter or
its connection might be stretched.

10 J. SROUJI AND D.M. BERRY

Figure 4: Non-stretched and stretched letters.

In electronic publishing with the standard kind of fonts that are available, the current
preference is for stretching the connection to a letter, because if the letters connect at the
same baseline, it is easy to provide a filler situated at the baseline, touching both vertical
boundaries of the bounding box and as wide as the standard stem of the letters. Figure 5
shows the connecting-after and the connecting-before forms of the letter F connected

without and with one such filler between them in lines (b) and (c) respectively. Line (a)
shows how a connecting form of a letter meets its bounding box on the connecting side
and how there is white space between a letter and the bounding box on the non-
connecting side. Stretching a letter itself requires a dynamic font in which the width of a
character may vary from showing to showing, even though its point size and stem thick-
ness may not change. André [12] shows how to make such fonts, and we are in the pro-
cess of making a dynamic version of the font used herein. lines (d), (e), and (f) of Figure
5 were printed using a dynamic, parameterized version of the connecting-before form ofF, for which the parameter of the glyph is the additional width. The three lines were

obtained with the parameter being zero, the width of one dot (the diamond under the
letter), and twice the width of one dot, respectively. Unfortunately, however, a document
filled with such characters takes forever to print, because character cacheing has to be
turned off to allow the bitmap of a character to be computed each time it is printed.

2.2.5 Calligraphic Styles

Arabic is famous for its various beautiful calligraphic styles. The differences between the
styles is in the way of writing the letters and in the amount of overlap between neighbor-
ing characters. Some of the styles even permit the writing of complete words on top of
the last letter of the previous word. A shining example of this is the assembly of the two

words b � followed by ÚB. It is customary to write the ÚB on top of a stretched b

ARABIC FORMATTING 11

¼ q
¼q
¼·q
q
q
q

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5: Connecting letters, fillers, and dynamic letters.

12 J. SROUJI AND D.M. BERRY

to yield:

b �ÚB

In electronic publishing, this sort of thing can be done if the font being used has the con-
struction available as a single, special character or if the characters making up the con-
struction can be algorithmically distorted to the right shape to be used as pieces to build
the construction.

Over the past thousand years, a number of calligraphic styles have grown in popular-
ity and are quite standard these days. These include the fonts listed in Figure 6. The main
Arabic font used in this paper is Naskh. In the figure, if we have a font available for the
calligraphic style, we use it to write its own name; otherwise we use Naskh. Such a
default use of Naskh is marked in the figure with an asterisk. The available fonts can be
used with ditroff/ffortid; it was required to reorganize these fonts to have the same
encoding for the glyphs as does the Naskh font.

Baghdadi — Íœ«bG�
Farsi * — ÕyP��
Diwany * — Õ�B¸�N
Geezah — …eO�
Kufi — w�u�
Nadeem — .b�

Naskh — Â¦�
Requ’ah * — Ö¬�P
Tholoth * — ¾³s

Figure 6: Calligraphic Styles.

2.2.6 Character Codes

In the computerization efforts for Arabic and Persian, standards have emerged for codes
for letters. Therefore, it is possible now to insist that the code for each letter in each
language accepted by any processor should be according to one of the standards for that
language. For Arabic, this code should be ASMO, for Persian, this code should be ISCII,
for Hebrew, this code should be ESCII, and for English, this code should be ASCII.

3 GENERAL REQUIREMENTS FOR ARABIC FORMATTING

On the basis of the above discussion, it is possible to state the requirements for a

ARABIC FORMATTING 13

multilingual formatting system that formats Arabic.

1. Solve all of the Arabic processing problems mentioned in Section 2.
2. Be user-friendly.
3. Produce book-quality output.
4. Whatever processing, e.g., identifying positions of letters, can be automated should

be automated. Whatever should be left to the user, e.g., deciding on the level of
ligaturing, is left to the user.

5. Permit formatting of scientific and technical text and all of the document entities
that go with them, including formulae, tables, graphs, etc.

4 SOFTWARE ENGINEERING ASPECTS

Our motto is, “A good software engineer is a lazy one!” An existing formatting system
should be used as much as possible. It is good if the new software is user-level compati-
ble with the old; it is better if existing code is modified to obtain the new software; it is
best if existing code is externally extended to obtain the new software.

Given that the authors’ preference is a UNIX environment, then the question to ask is
what complete formatting environments exist on UNIX platforms? These can be divided
into two classes: WYSIWYG (what you see is what you get) and batch. Examples of
UNIX-based WYSIWYG formatters with the most functionality are Interleaf [13] and
FrameMaker [14]. The problem is that WYSIWYG formatters are of necessity monoli-
thic programs. All their processing must be in the main program. They are interactive and
must compute a new image of the document after each editing change. As a consequence
they cannot make use of pre- and postprocessors to do some of their work. Adding new
features requires opening up the main program and adding the new features in the midst
of all existing functionality, and we do not have access to their source code.

The serious candidate batch systems were ditroff [15] and TEX [16, 17]. They have
sufficient basic functionality for doing scientific documents, although, for reasons to be
explained later, there is a serious deficiency in the latter. Both ditroff and TEX have been
extended, albeit in different manners, to handle bidirectional text.

Figure 7 shows the flow of the current ditroff System with all pre- and postprocessors
known to these authors. See References 18 through 36 for more details on each. This
system offers hope of implementing new functionality simply by inserting new pre- and
postprocessors. This hope arises from the UNIX philosophy of having separate language
processors for each language, each understanding part of the job, and leaving all the rest
to the others. Here, “language” means not only natural language, but also a notation for
expressing some unit of the document, such as a formula. Each processor is easily
modified independently of the others. Best of all, existing pre- and postprocessors and
macro packages continue to work as each new processor or macro package is added!
There is also an economic issue involved. By adding new features via new, separate pro-
cessors, no source license is needed for ditroff. All that is needed to write a pre- or post-
processor is the specification of the input or output of ditroff.

The bidirectional version of ditroff, ditroff/ffortid, was built in this modular manner
by adding a postprocessor, ffortid, to an unchanged ditroff. ffortid is responsible for print-
ing right-to-left text from right to left, while ditroff treats all text as if it were written
from left to right. Because ditroff was not modified at all, all ditroff preprocessors and

14 J. SROUJI AND D.M. BERRY

file psfig refer et_al grap pic tbl eqn alg*
dotchart

scatmat

drag

dformat

dag

chem

flo

music

swizzle

dtroff

macros

indx

index
terms

ffortid bditroff pm psdit laser
printer

screen

photo
type-
setter

Figure 7: Flow of ditroff System.

macro packages work for ditroff/ffortid. Moreover, since ffortid output looks like ditroff
output, all ditroff postprocessors work for ditroff/ffortid.

The question is, “Why not TEX?” Why do we insist on using old-fashioned, brain-
damaged troff technology? TEX also suffers from the same sort monolithism as are
suffered by WYSIWYG systems; all of the table and formula processing are part of the
main program. TEX is not really pipeable, so use of pre- and postprocessors is incon-
venient. There are more serious problems, problems of inadequate information, that are
discussed fully in Section 10. As a result of these problems, TEX’s bidirectional version,
TEX/XET [37] has to be built as a modification of TEX and not simply by adding a post-
processor to an unmodified TEX, as was done to obtain ditroff/ffortid from ditroff.

5 EXISTING SOLUTIONS

A number of word-processing and computing systems have been built for Arabic and
related languages. The work that has influenced ours is described here.

1. An experimental bilingual, Arabic and English, system called IAS (Integrated Ara-
bic System) was built on the IBM PC by a group led by Murat Tayli at King Saud
University [38, 39, 6]. The IAS system was built around the kernel of the IAW
(Intelligent Arabic Workstation) and its operating system with the addition of
software tools that assist in writing new applications.

2. A WYSIWYG system for processing Arabic, Hebrew, English, and a host of other
languages was built by Becker [40, 8] to run on the Xerox desktop publishing sys-
tem. The system identifies the type of each character as it is being printed and

ARABIC FORMATTING 15

chooses its printing direction on that basis. In other words, the system knows from
the beginning that Arabic and Hebrew are printed from right to left and English is
printed from left to right. There is the choice of two document directions, from left
to right and from right to left. The document direction is that of the language in
which most of the document is written or the language designated as the main
language of the document. The screen appearance is calculated on the basis of the
directions of the characters displayed and the current document direction.

3. The TARIF system [41] was developed at the University of Montpellier, running on
an MC68000 microprocessor with a high-resolution graphic screen and a laser
printer, and was written in Pascal on an MS-DOS system. The system has two main
parts. The first part is the editor which has the job of accepting Arabic textual input
and showing it on the screen with each letter’s form changed to match its position in
its word. The second part is a formatter whose job is to arrange the text with
keshide. The stretching is not in the form of longer connections between letters, but
rather by use of long-form letters. This is accomplished by breaking each letter into
three parts, the right, the left, and the middle. The short form of the letter is made by
concatenating the right and the left part. The long form of the letter is made by
inserting one or more middle parts in between the right and the left parts. This
requires careful design of the pieces of the letters and works well only with fonts
whose letters have perfectly flat horizontal parts. This would not work well with
fonts whose characters have curved horizontal parts, such as that illustrated in Fig-
ures 4 and 5 above. It is not known from the available documentation if the system
is multilingual with bidirectional processing and whether it can handle scientific
text.

4. The IBM Scientific Center in Kuwait has developed a bilingual, Arabic and English,
word-processing system [42]. The problems are handled in two parts. The first part
was the generation of an Arabic font in the Naskh style in three different formats, an
outline font and two bitmaps for different resolutions. The second part is a bilingual
text processor that includes an Arabic language editor that sets the lines with
keshide and takes care of placing vowels correctly. The system is not for preparing
scientific text.

5. Y. Haralambous [43] has developed an Arabic TEX system composed of the stan-
dard unidirectional TEX and a preprocessor called yarbtex. yarbtex transliterates
phonetic Arabic text into the input format required by TEX augmented by J.
Goldberg’s bidirectional style [44] that reverses the printing of text surrounded by
pairs of special symbols. Haralambous uses a Naskh font which is in a format
acceptable to TEX and its dvi postprocessors. This system is multilingual and
bidirectional to the extent that TEX and Goldberg’s system are. However, there is no
provision for keshide.

6. The most ambitious TEX-based project aimed at formatting Arabic is the TEX/XET
program developed at the initiation of P. MacKay by modifying TEX itself to be
bidirectional [37]. The program does the same reversing of text in designated
right-to-left fonts that ffortid does, but inside the modified TEX using the internal
data structures of the program rather than the dvi output. It assumes separate letters
as TEX does and does nothing about stretching. TEX/XET was designed to be
language-independent, and is in fact being heavily used for Hebrew processing in
universities in Israel. It has become a strong competitor for ditroff/ffortid in this

16 J. SROUJI AND D.M. BERRY

respect. Clearly, TEX/XET can handle all the scientific text that TEX can. It was
always intended by MacKay that TEX/XET be used for Arabic and it in fact appears
to be the version of TEX upon which Haralambous’s latest system is based.

7. Haralambous upgraded yarbtex into a full-scale multilingual formatter called
SCHOLAR TEX that comes with a very complete set of fonts. Besides being able to
format Arabic, it can format Persian, Ottoman Turkish, Pashto, Urdu, Malay, classi-
cal Hebrew, modern Hebrew, Yiddish, Syriac, and others, both left-to-right and
right-to-left [45]. It appears to be based on TEX/XET and is thus fully bidirectional.

TEX/XET and the current ditroff/ffortid are only partial solutions to the requirements
for Arabic word-processing laid down earlier. Neither system is able to handle all of the
requirements that stem from Arabic’s connecting, changing, and stretchable letters.

6 DITROFF/FFORTID

The current version of ffortid, which has been used for years for formatting Hebrew, is
quite a simple program. ffortid is stuck into the ditroff pipe between ditroff and whatever
device driver is being used. ditroff has already formatted all the input on the assumption
that all input is in left-to-right languages. The input has been broken into lines and pages
according to the commands embedded in the input. Generally the lines are both left- and
right-justified with words spread farther apart on a line-by-line basis to achieve the dou-
ble justification. Whether or not the output is justified is controlled by user-issued com-
mands.

The main job of ffortid is to take as input the output of ditroff and rebuild an output in
the same format. The output is to be a formatted document in which all text in designated
right-to-left fonts is printed in what appears to be from right to left. The right-to-left font
positions are indicated by command-line options on the command invoking ffortid. At
any time, there are two independent state variables that govern the rebuilding process of
ffortid. One is the current document direction, which is either LR (left-to-right) or RL
(right-to-left). It is settable at any time via the “x X PL” and “x X PR” commands,
respectively, in the ffortid input. There are ditroff macros, “.PL” and “.PR”, respec-
tively, that cause the right commands to be left in the ditroff output, which is the ffortid
input. Initially the current document direction is LR. The other variable is the current font
direction, i.e., the writing direction of the current font. It is RL if the current font of the
text is one of the fonts that has been designated right-to-left to the current run of ffortid
and is LR otherwise.

The heart of the ffortid algorithm is a layout algorithm that operates on a line-by-line
basis.

for each line in the file do
if the current document direction is LR then

reverse each contiguous sequence of RL characters in the line
else (the current document direction is RL)

reverse the whole line;
reverse each contiguous sequence of LR characters in the line

fi
od

ARABIC FORMATTING 17

An RL (LR) character is a character in any RL (LR) font. This algorithm is also the basis
of processing right-to-left text in Becker’s multilingual Xerox desktop publishing system,
in Knuth and MacKay’s TEX/XET, in Habusha’s vi.iv [46], and in Allon’s
MINIX.XINIM [47]. The algorithm is now accepted as the way to handle horizontal
bidirectional text in software originally designed for strictly unidirectional processing and
in new software designed for horizontal bidirectional processing on the assumption that
all text is stored in time order, i.e., the letters are stored in the order they are heard when
the text is read aloud.

Note that this algorithm preserves line breaks and the nature of indentation and
justification on each line, relative to the current document direction. That is, if the current
document direction is LR, then indentation and justification is exactly as in the original,
and if the current document direction is RL, then the indentation is on the opposite side
and justification is flipped, e.g., if the original is right-justified, then the result is left-
justified. For the purposes of this algorithm, a space is regarded as a character and its
font, and thus direction, must be identifiable. In addition, formulae, tables, and pictures
are considered LR subdocuments that may contain RL text internally. That is, even if a
table contains Hebrew text, the table skeleton itself is an LR unit.

7 STILL TO BE SOLVED

By using ditroff/ffortid as the basis for the solution, many aspects of the requirements are
already satisfied. Specifically,

1. There is horizontal bidirectional formatting and proper treatment of paragraphs,
pages, and documents. It is possible to turn off hyphenation over any portion of the
formatted text.

2. The system is user-friendly, at least insofar as ditroff and its pre- and postproces-
sors, and macro packages are considered user-friendly.

3. The system does produce book-quality output when used with a printer of sufficient
resolution.

4. The system permits formatting of scientific and technical texts and all of the usual
document entities that are found in them, including formulae, tables, diagrams,
graphs, bibliographical citations, etc.

Yet to be solved are those requirements related specifically to Arabic and Persian format-
ting, including

1. connecting letters,
2. different forms for each letter,
3. position identification,
4. ligature identification,
5. vertical placement of diacritical marks, and
6. keshide.

It was decided to handle these as follows.

1. An Arabic font would provide the different forms of each letter as independent
characters and each character that is to be connected on any side would be designed

18 J. SROUJI AND D.M. BERRY

to be flush to the bounding box on that side at precisely the same place relative to
the baseline. lines (a) and (b) of Figure 5 show how letters in such fonts connect.

2. A preprocessor, called atrn, would do letter form and ligature identification on
letter-only input to yield output with each glyph to be printed, be it a form of a letter
or a form of a ligature. The letter-only input would be according to a standard
encoding for the language being processed, and the output would be according to
the font’s encoding for the glyphs. Thus, ditroff would format input consisting of
the glyphs to be printed. If the input to the preprocessor has diacritical marks, then
they will be translated into their glyph codes surrounded by instructions to place
them in the proper vertical position with respect to the character with which it is
associated.

3. The ffortid postprocessor would be modified to stretch connections to last letters of
words and/or lines in order to achieve one kind of keshide.

8 SOLUTION

As mentioned, the solution consists of creating a new program, atrn, and modifying an
existing program, ffortid.

8.1 The atrn Transliterator

The new program, atrn, is a ditroff preprocessor. Its main function is a mapping from
pure spelling into a string of properly vertically and horizontally placed glyph codes,
each one representing a letter or ligature, positioned within its word, or a diacritical mark.
The pure spelling input is either in the standard encoding of the language or in some
Latin, possibly phonetic, rendition of the same.

For Arabic, the input would be a string of letters in the ASMO code minus the lam-
alif, plus codes for the vowels that are distinguishable from the codes for the letters.
Since the ASMO code has only one code for each letter as opposed to up to four for each,
it is clear that ASMO is intended to support automatic position identification and assign-
ment. Because it does have a lam-alif, it does allow a user to force the use of a lam-alif.
However, we insist on fully automated ligature identification based on user-selected
options and on giving the user a way to prevent the ligature from being formed in any
particular case. ASMO does have codes for some vowels but not for all, so we have to
add codes, in the form of ditroff two-character special characters, for the other vowels.
For uniformity, such codes are introduced for all the vowels, even the ones that happen to
be represented in the ASMO code. Thus, for Arabic input in the extended ASMO code,
atrn does position identification, ligature identification, and diacritical placement.

For each language supported by atrn, the mapping translates its standard encoding to
glyph codes according to the fonts being used. Of course, this means that all the fonts for
each language should use the same glyph encoding. Sometimes assuring this uniformity
requires changing the Encoding vector of POSTSCRIPT fonts from different font foun-
dries. As specified, atrn should accept input from standard input devices for the
language. However, such devices are not always available, and no Arabic, Persian, and
Urdu keyboards were available to the authors at any place that they worked. Therefore, it
is convenient for atrn to also provide for translation from Latin keyboard input based on
some phonetic or other mapping from Latin letters to the standard code for the language.

ARABIC FORMATTING 19

This feature permits input of the pure spelling and vowels phonetically using the univer-
sally available Latin keyboard.

The flow of atrn is shown in Figure 8.

Latin
text

ligature
identification

ASMO
coded text

transliteration
to alphabet

code
if necessary

ASMO
coded

text with
ligatures

vowel
placement

position
identification

translation
to glyph
codes

output

Figure 8: Flow of atrn.

The section below explains the order of the translations, in particular why ligature
identification must come first. Each translation in the atrn flow is table-driven to allow
the actual codes used to be changed easily.

Each language and each translation step is considered in more detail.

8.1.1 Input to the Transliterator

The transliterator is structured to be a general transliterator for all kinds of phonetic input
for languages in the Arabic-Persian family. If a table defining the transliteration can be
built, then it can be integrated into the transliterator, which selects which table it uses as a
function of the argument to the %S command described below. At present, however,
only Arabic translation is supported.

The purpose of the transliteration phase is to allow someone who does not have an
ASMO code generating Arabic terminal to prepare input to be formatted. Therefore, the
code used for the alphabet to which the phonetic input is transliterated is ASMO. There-
fore, a user with an ASMO-generating keyboard needs to skip only this phase; the other
phases that determine positions, ligatures, and vowel placements cannot be skipped.
Thus, one of the options to atrn is not to translate its input at all. This scheme can be
used to provide any pre-formatting processing to any input language regardless of the
input keyboard.

The word ¼�� for example, is represented by the phonetic input ktb. Below is the

phonetic input of the Arabic abstract of this paper. %Sar marks the beginning of
phonetic Arabic text, and %Ear marks its end. The text is shown with all of the

20 J. SROUJI AND D.M. BERRY

embedded ditroff commands: .OA means “other abstract header”, .lp means “left
adjusted paragraph”, .PP means “indented paragraph”, *(AN means “switch to AN
font and change size as necessary”, *P means “switch to previous font and change size
as necessary”, *H means “switch to Helvetica font and change size as necessary”, and
*R means “switch to Times Roman font and change size as necessary”.

.OA %Sar*(AN\s+2mqdmt‘\s-2%Ear

.lp

%SarHZa almqal ySf brnamj ltwDyb allR‘t‘ alerbyt‘ walZy ymkn mn

twDyb nSwS elmyt‘ mteddt‘ allR‘at, mhtwyt‘ elA‘ nS balerbyt‘

walfarsyt‘ balaDaft‘ llR‘at axrA‘, rswmat, rswmat byanyt‘,

jdawl, mSadr byblywR‘rafyt‘, wbyblywR‘rafya. Albrnamj Hw thsyn

lI-%Ear*Hditroff/ffortid*(AN%Sar alqadr ala˜n elA‘ mealjt‘

alebryt‘ fy wcaY‘q mteddt‘ allR‘at.

%Ear*Hditroff/ffortid*(AN%Sar ebart‘ en qbl mealj

%Ear*R(preprocessor)*(AN%Sar wbed mealj

%Ear*R(postprocessor)*(AN%Sar lbrnamj alSf fy

%Ear*HUNIX*(AN%Sar, %Ear*Hditroff *(AN%Sar(%Ear*RDevice

Independent Typesetter RunOFF*(AN%Sar). albrnamj aljdyd mbny

mn dwn idxal ay tR‘yyr elA‘ %Ear*Hditroff*(AN%Sar alqaY‘m.

aliDaft‘ mkwnt‘ elA‘ alaR‘lb mn qbl mealj jdyd, Tqm kaml mn

alhrwf almTbeyt‘, wnsxt‘ mhsnt‘ mn bed mealj qaY‘m.

.PP

qbl almealEj ytrjm almadt‘ altHjyY‘yt‘ lwcyqt‘ erbyt‘, mktwbt‘

bastemal mjmwety alAhrf (%Ear*Rcases*(AN%Sar) fy alAlf-ba‘

allatyny. qbl almealEj yeyn lkl hrf mwqeH balklmt‘, R‘yr mtSl,

nHayt‘ (mtSl me qblH), bdayt‘ (mtSl me bedH), wwsT (mtSl me qblH

wbedH). Hw AyDa yeyn altrkybat (%Ear*Rligatures*(AN%Sar) wyqrr

almkan aleamwdy llhrkat (%Ear*Rdiacritical marks*(AN%Sar).

qbl almealEj ystTye AyDa An ystqbl madt‘ mn lwht‘ mfatyh qyasyt‘

llAhrf alerbyt‘ (%Ear*RArabic Keyboard*(AN%Sar), walty tsteml

Cyfrt‘ \&%Ear*RASMO*(AN%Sar alqyasyt‘. elA‘ ay hal, balntaj

(%Ear*Routput*(AN%Sar), lkl hrf aw trkybt‘ fy alklmt‘ wlkl

hrkt‘ Hnalk Cyfrt‘ hsb alnZ‘am alCfry llAhrf.

.PP

Cklyat alxT (%Ear*Rfont*(AN%Sar) mSmmt‘ bhyc an alahrf ttSl

bbeDHa end allzwm hyn tktb alwahdt‘ tlw alAxrA‘.

.PP

bed almealEj Hw thsyn lbrnamj %Ear*Hffortid*(AN%Sar, walZy

yqrr Tbaet‘ mn alymyn ilA‘ alysar llahrf almerft‘ elA‘ anHa tktb

mn alymyn ilA‘ alysar. althsyn alrY‘ysy Hw md

(%Ear*Rstretching*(AN%Sar) alAhrf alAxyrt‘ balAsTr aw alklmat

bdla mn idxal alfraR‘at alzaY‘dt‘ byn alklmat bHdf tHmyC alnS

(%Ear*Rjustification*(AN%Sar).

.PP

kfhS nfsy, HZa almqal Suf˜˜’ bwasTt‘ aljHaz almwSwf, wHw yhtwy

ARABIC FORMATTING 21

elA‘ Amclt‘ edydt‘ lnS mktwb balerbyt‘, alebryt‘,

walanQlyzyt‘.%Ear*R

The Latin letter chosen to represent any Arabic letter is one whose pronunciation reminds
the user of a pronunciation of the Arabic letter. It would be best to have a unique one-
for-one mapping. However, this is impossible. From the point of view of accurately
representing what the user must choose, there are 42 letters and 17 diacritical marks
(vowels) to be represented by 52 characters (upper and lower case). Moreover, there are,
in some instances, more than two Arabic letters that can be feasibly represented by the
two cases of one Latin letter. As a consequence, it is sometimes necessary to map two
ASCII characters to one Arabic letter. When more than one Arabic letter is feasibly
represented by one Latin letter, the lower-case letter goes to the most frequent Arabic
letter, the upper-case letter goes to the next most frequent, and the two-letter codes go to
the least frequent, etc. The idea is to minimize typing time. When a two-letter code is
used, it is critical to make sure that the second letter be chosen so that it is not a valid
representation of any letter in its own right, so as to insure unambiguous recognition. In
other words, since h is the code for a letter, it cannot be used as the second letter of
another letter’s code, e.g., kh for khaf, as is commonly used for phonetic renditions of
Arabic for human consumption. The table of Appendix II shows the phonetic mapping
implemented by atrn for Arabic and Persian letters.

8.1.2 Output of the Transliterator

Our system prints the Arabic text on a laser printer with high-quality POSTSCRIPT outline
fonts. The first font that we had available for use was the Naskh font produced by Draper
and Parkins. It was necessary to make a few modifications and additions. The main
modifications were to give new codes to the glyphs and to make the internal names of the
characters more mnemonic than the standard Adobe names given to the codes. For exam-
ple, taa_SA is more meaningful than Adieresis. The names given to the glyphs were
the same used in the second table of the transliterator. While these names are in the last
analysis merely internal to the programs, making this agreement helped the first author
keep his sanity when debugging the software. It was also necessary to add seven new
characters to the font to give it the capability of printing the standard international punc-
tuation that appears in nearly every standard coding of an alphabet, the ASMO code as
well! The characters &, @, ˆ, {, }, |, and ˜ were added by lifting outlines for them from
a public domain Hebrew font whose other international characters looked most like the
international characters that the Arabic font did have. The new codes were assigned so
that the international standard characters kept the code that they have in nearly all stan-
dard code sequences. Then the glyphs for Arabic, in all forms of all letters, were assigned
to the rest of the table so that within the section of glyphs for one position, all the glyphs
are in alphabetical order. Thus, the

1. stand-alone glyphs got codes 102–160 (octal),
2. connect-after glyphs got codes 161–224,
3. connect-both glyphs got codes 225–273, and
4. connect-previous glyphs got codes 274–331.

22 J. SROUJI AND D.M. BERRY

The ligatures got the codes 322–355, and the diacritical marks got the codes 356–376. In
order that the output be acceptable as input to ditroff, the transliterator used the absolute
index escape to name each glyph by its code. That is each glyph is addressed by the
escape \N’xxx’ where xxx is the decimal code of the glyph.

8.1.3 Steps of the Transliteration

The transliteration accepts a mixture of phonetic or ASMO text together with other
languages, English or Hebrew for example. The phonetic text can be in any language for
which a translation table is defined. If the transliterator reads a phonetic letter, it transli-
terates the letter into one of the alphabets’ letters, determines the position within the
word, and on the basis of this position, translates the alphabetic letter into the ditroff
escape sequence that causes printing of the correct form of the letter. Figure 9 shows the

steps to transliterate the phonetic letter t in the phonetic word ktb (¼��). Figure 10
shows the steps to translate the ASMO code equal to the ASCII code for g in the ASMO

(not phonetic) word gPG (B¡�). The word written above an arrow gives the name of the
procedure that implements the translation represented by the arrow, and the word written
under an arrows gives the name of the main table that is involved in the translation.

t

transliteration

input_to_alph.h

taa

Position Identification

connect.h

taa_CB

translation to glyph code

alph_to_out.h

\N’153’

Figure 9: Steps of Transliteration phonetic t.

g

asmo_to_alph

convert.h

ASMO_hea

Position Identification

connect.h

hea_CA

translation to glyph code

alph_to_out.h

\N’146’

Figure 10: Steps of Transliteration of ASMO g.

If the transliterator reads text written in its phonetic language, it translates it accord-
ing to the tables before outputting to the standard output. Otherwise, it just copies the
input to the standard output. For this reason a method is needed to announce when to start
and when to end the transliteration. The mechanism is defined according to the following
laws:

1. In the beginning, the transliterator finds itself in the Latin environment and the
transliterator does not work on any of the input.

2. The % character is defined as an escape character to announce to the transliterator
that a command to start or end a transliteration is coming up. A different character
can be selected as the escape character by using it with the -e command-line flag.
The string %Sll indicates the start of transliteration according to the table for the
language ll and %Ell ends that transliteration. In the present implementation of atrn,

ARABIC FORMATTING 23

the possible values and the designated language for ll are as in the table below:

ar Arabic
fr Persian (Farsi)
ur Urdu

While the program has hooks for all of the designated languages listed above, the
only transliteration currently supported is for Arabic. Neither of the authors knows
any of the other languages. The use of ll is compulsory only after the %S in order
for the transliterator to know which language table to use. The ll is optional after
%E. If it is not explicitly specified which language environment is ended by a %E,
atrn assumes that it ends the most recently started but not ended environment. The
scheme below indicates which transliteration is in effect for each region

%Sar ... Arabic ... %Sfr ... Persian ...
%E ... Arabic ... %E

3. It is thus possible to nest language environments. The transliterator enforces strict
nesting and complains if environments are being ended in an order which is not the
reverse of that in which they were starting. Thus,

%Sar ... %Ear ... %Sfr ... %Efr is legal, while

%Sar ... %Efr is illegal.

4. Closure of the transliteration of one language’s environment, E, by the use of an
explicit ll argument for %E closes also the transliteration of all language environ-
ments nested inside E. Note the different environments in effect at the ends of the
two examples.

English ... %Sar ... Arabic ... %Sfr ... Persian ...
%Sur ... Urdu ... %Ear ... English

English ... %Sar ... Arabic ... %Sfr ... Persian ...
%Sur ... Urdu ... %E ... Persian

5. It is forbidden to nest the same language. In the case

%Sar ... %Sar ... ,

the transliterator ignores the second beginning.
6. When the transliterator enters the environment of a ditroff command, in a line that

begins with a . or ’, or into an escape sequence, which begins with \ anywhere in
the text, then the current global translation environment is interrupted while the
translator moves to a local non-translating environment, which ends automatically
when the command or escape sequence ends. This implies that the transliterator
knows the syntax of ditroff commands and escape sequences. Thus, transliterations

24 J. SROUJI AND D.M. BERRY

can be applied to arguments of commands and escape sequences that happen to be
text.

7. Leaving the local environment causes the transliterator to revert to the global
environment state that was in effect upon entry to the local environment.

This is an English global environment. %SarThis should
be Arabic Phonetic text. %SfrNow this should be Persian.
This is a global Persian environment nested within an
Arabic environment.
.tl ’local-English’%Sarlocal-Arabic’%Surlocal-Urdu’
Now we’re back in a Persian environment. A labeled exit
from a command or escape closes all of the language
translation environments inside it. %EarNow move back
to the English global environment. Note that closing the
Arabic global environment also closes all its internally

nested language environments.

8.1.4 Determining Position of Letters in Words

As mentioned before, the form of a letter in the Arabic and related languages depends on
its position within the containing word. The atrn preprocessor has the job of determining
the position of each letter, because it is required that the form of the letter be known
before submitting the text to the formatter. The formatter needs to know the width of
each letter. The width of a letter, in turn, depends on the form of the letter, because the
different forms of a letter are of different widths.

The beginning and end of any environment, even nested, are the beginning and end of
words. The letter before the beginning of a nested global environment is the end of a
word, and the letter after the end of a nested global environment is the beginning of a
word. Presumably, no one will switch languages in the middle of a word. The hard
question is what to do about text found in escape sequences and command arguments,
both of which are considered local environments. Oftentimes, but not always, escape
sequences and command arguments are applied to interior portions of a word. For exam-
ple, to get the French word “élève”, the input “\o’e\(aa’l\o’e\(ga’ve” can be
given to ditroff. In addition, if one has a macro .BB for emboldening its argument and
connecting directly to the next word, one way to get the letters “por” in “subportion”
emboldened is to say

sub\c
.BB por
tion

Therefore, it was decided that position determination in a global environment is not inter-
rupted by an embedded local environment. For example, if an escape sequence is in the
middle of a global environment word, then the escape sequence does not end the word,
and the first character after the escape sequence is also in the middle of the word. Note
however, that the beginning and end of the text of an escape sequence or command argu-
ment are the beginning and end of a word embedded inside another word. This is,

ARABIC FORMATTING 25

admittedly, a strange effect, but it can be avoided if so desired by use of the I character
described below.

In general, the user of atrn must be careful about introducing excess blanks into the
text that ends up delimiting words. However, the care needed for atrn is no more than
that which must be exercised in using ditroff itself, in which extra spaces in the input will
break words and lines and will cause the printing of ugly extra spaces on output.

Because of the possibility that words may contain arbitrarily long embedded escape
sequences, position determination requires lookahead with a range large enough to get
through any escape sequence. Before the form-finder determines the position of a letter l
that precedes a \, it looks ahead to the next textual character and only then can it deter-
mine with certainty the position of l. The consecutive escape sequences that appear after
the l remain in a buffer that is written to the output only after l-cum-position is written.
Figure 10a shows a pseudo-code description of the position-finder.

In spite of the fact that the transliterator determines letter forms automatically from
the position of the letter in its word, the user has the possibility to intervene and force the
algorithm to determine whatever position he or she desires. The capability is needed, for
example in this document or in a grammar book, of exhibiting all the forms of the letters
in a table of forms, in which each form actually stands alone. This capability is achieved
by defining two dummy characters whose appearance in the text causes no output, but
instead influences the position of its neighbors. The two dummy characters are I and M.

An appearance of the character I causes the previous letter to be connected-after to
the following letter. This character is used when it is desired to print a solitary letter as
one which is connected after. For example the phonetic input b causes printing ofF, the

stand-alone baa, because there is nothing before it or after it. The phonetic input bI
causes printing of q, the connecting-after baa. Figure 11 shows an additional use of the I

to force the printing of a connecting-after lam instead of a stand-alone lam.
An appearance of the character M in the middle of a word causes splitting of the con-

nection between the preceding and the following letter. This character is used when it is
desired to force a letter to be in its stand-alone form even when it appears in the middle

of a word. For example, the word Ñ�³q is obtained by the phonetic input blbl, while

the sequence of its letters,fFfF is obtained by the phonetic input bMlMbMl.

8.1.5 Ligatures

Ligature identification requires lookahead. Because the input may, and most likely will,
be a pipe, the re-reading of a character after a lookahead cannot be implemented by back-
ing up in the input and re-reading the previous character. The consequence of this limita-
tion is that there is a ligature buffer to hold characters read in for ligature determination.
If the buffered characters turn out not to be a ligature, then it is arranged that the next
characters are read from the buffer rather than from the normal input.

The transliterator checks each letter l it reads to see if it could be the first letter of a
ligature pair, and if so, it looks at the next letter to see if it is the second character of a
ligature that begins with the first character. If so, it looks at the next letter to see if is the
next character of a ligature that has started already. It continues in this manner until it

26 J. SROUJI AND D.M. BERRY

if current_character is a delimiter then
return(Connected_After)

fi;
if (not discard_ligatures) then

next_character := find_vowels(current_character);
next_character := getchar() after skipping through any escape sequence

elseif (ligature_buffer is empty) then
next_character := getchar();

else
next_character := next character in ligature_buffer

fi;
if previous_character was a delimiter then

Prev_Was_Connecting := FALSE;
elseif (Prev_Was_Connecting := Connect(previous_character)) =

NOT_FOUND) then
Prev_Was_Connecting := TRUE

fi;
if next_character is NOT a delimiter AND

(previous_character was a delimiter OR
not Prev_Was_Connecting) then

return(Connected_After)
elseif next_character is a delimiter AND Prev_Was_Connecting then

return(Connected_Previous)
elseif next_character is NOT a delimiter AND Prev_Was_Connecting then

return(Connected_Both)
elseif next_character is a delimiter AND

(previous_character was a delimiter OR
not Prev_Was_Connecting) then

return(Stand_Alone)
fi;

Figure 10a: Position Assignment Algorithm.

l"almjlt‘" → "Ö³�ìB"f
(a)

lI"almjlt‘" → "Ö³�ìB"�
(b)

Figure 11: Use of I to Force Correct Output.

ARABIC FORMATTING 27

finds some character that cannot extend the ligature built so far. At this time, there must
of necessity be only one choice left. If a ligature was, in fact, built up, then that ligature is
taken as the next letter, in place of l. This ligature is subjected to form determination as
is an ordinary letter. On the other hand, if the buffered characters do not form a ligature,
then a flag is set to tell the reader that the next n characters are to be found in the ligature
buffer, where n is the number of characters read while finding no ligature.

For example, if there are ligatures lam-alif and lam-alif-dal, then phonetically, they
are la and lad. If the input so far is la, then it has not yet been recognized as a liga-
ture. Assuming that these are the only ligatures beginning with lam-alif, then ligature
recognition comes only with the third letter. If the third letter is a d, then the lam-alif-dal
ligature is recognized, and the transliterator moves on to the input after the d. If the third
letter is something else, then lam-alif has been recognized and the third letter is con-
sidered as a separate letter.

As stated before, ligatures in Arabic are optional except for one, the lam-alif, Û, and

the other variations of it, based on the different variations of alif, Ý, á, and ß. The other

ligatures can be ranked into levels such that those of Level i include those of Level i + 1.
Figure 12 shows the three levels of ligatures, in which Level 2 denotes the minimal set of
lam-alif and its variations. Level 2 is the default and the user signifies the level of ligatur-
ing in effect for a run of atrn in a command line option of the form -llevel_no. Level 2
ligatures are mandatory and Level 1 and Level 0 ligatures are optional.

iiiiiiiiiiiiiiiiiiiiiiiii

Level 0 ê è
Level 1 ç í
Level 2 ß á Ý Û
iiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

Figure 12: Levels of Ligaturing.

The set of ligatures available at any level is captured in a table that is compiled into
ffortid. Clearly, all fonts should have the mandatory ligatures. The elements of the
optional levels depend on the ligatures that are supplied in the available fonts. As a new
font with new ligatures is made available, the table must be modified and ffortid recom-
piled. This is not a serious difficulty if the sources are available. Of course, there is the
annoying problem of a ligature that is in the table but is not available in the current font;
so far this must be avoided by the user turning off the problematic level of ligaturing or
using the I input character between the letters that might otherwise be formed into a liga-
ture. In retrospect, a better design would be to specify the ligatures available with each
font in the font’s ditroff width table, as is done for the standard “f” ligatures for Latin
fonts. This solution was avoided because the strict format of the binary ditroff width
tables does not permit the desired specifications. The new version of ditroff, which uses
only ASCII width tables, has provisions for fields to be ignored by ditroff, specifically to

28 J. SROUJI AND D.M. BERRY

allow placement of font-relevant information for use by pre- and postprocessors.
The dependence of the ligatures on the position of the component letters obliges atrn

to check, after the step of contextual analysis, if the identified ligature has a form for its
position within the word. If not, atrn must undo the ligature identification and output the
individual letters. Lam-alif has a form for all positions, but lam-mim does not. In particu-
lar it does not have stand-alone and connected-after forms. Thus, if the lam followed by
mim occur in a position in which the mim is not to connect after, while the lam is not to
connect before, thus making the combination stand-alone, or in which the lam is not to
connect before but the mim is required to connect after, thus making the combination
connecting-after, then the lam-mim sequence must be left as two separate letters.

8.1.6 Vertical Placement of Vowels

As mentioned, in Arabic and related languages, vowels are optional diacritical marks.
This is also the case in Hebrew. A diacritical mark is a sign that appears above or below
a letter and specifies only the vowel sound following the sound of the letter, which is thus
a consonant. The following issues are relevant to the treatment of diacritical marks.

1. The presence of diacritical marks does not affect the determination of the positions
of the letters in words, and therefore, atrn ignores diacritical marks during position
identification. This is indicative of the probable reason that the diacritical marks
have grown to be optional. The form of the letters comes from the natural continu-
ous flow of the hand. Diacritical marks either interrupt that flow or have to be added
after the fact, making them a nuisance. Since the meaning of the word is carried
almost entirely by the root consonants and prefix and suffix letters, vowels are not
necessary to understand the text. Once a word is understood, its pronunciation is
known to all native speakers. Thus, the nuisance becomes an option with avoidance
favored.

2. Thus, the transliterator must provide the option of not using diacritical marks at all.
3. The vertical placement of each diacritical mark depends on the height or depth of

the letter that it is placed above or below. For example, an above-placed diacritical

should be place higher over the letter B than over the letter F, and a below-placed

diacritical should be placed lower below the letter k than below the letter F.

For this purpose there is a table compiled into ffortid, mapping each letter in the
Arabic-Persian alphabet to a vertical distance above and a vertical distance below
the letter for placement of above-the-letter and below-the-letter diacriticals. As with
the ligature table, a better design would be for this table to be part of the font width
tables, for the heights and depths of letters do vary with fonts. Figure 13 shows
three lines with identical letters, the first with no diacritical marks, the second with
diacritical marks as placed by the font in which the above-letter marks clear the tal-
lest letter and the below-letter marks clear the deepest letter, and the third with
diacritical marks adjusted according to the table. The third clearly looks better than
the second. The inputs for the first and third of these lines are

aljnt‘ tht Aqdam alAmHat

ARABIC FORMATTING 29

G�¶�ÝB gB �C ½�r Öµ��B
(a)

ðG�î¶ù�ïÝB ðgBî ô�îC î½ô�îr ïÖùµî�ô�B
(b)

ðG�î¶ù�ïÝB ðgBî ô�îC î½ô�îr ïÖùµî�ô�B
(c)

Figure 13: Different Forms of Voweling.

and

a’lOj’n˜˜’t‘u t’hOt’ A’qOd’amE alAum˜˜’H’atE

respectively. The second line could not be forced out of atrn, because it tries to do
what it did with the third line. Therefore, it was obtained by inputting the glyph
codes directly with no added vertical movements.

There is a command-line option, -nv, to turn off vertical adjustment of diacritical marks,
but then it is off for the whole of a run of atrn. If this paper had been run with this
option, then the input for the third line would cause printing of the second line.

In addition to a phonetic representation given to each vowel, there is also a ditroff
two-ASCII-character code given to each vowel. This representation allows the vowels to
be accessed directly from ditroff; this way, the diacriticals can be used independently of
phonetic translation with exactly the same difficulty that accent marks are used in Latin
text in ditroff. This degree of difficulty is acceptable for something that is optional. In
order not to overload an already full table of two-character codes, for each diacritical, we
were able to find an existing code in use on our installation of ditroff that is mnemonic of

the name of the diacritical. Thus, the fatha, “ î ” is known both by its visual equivalent
“’” and by the quite acceptably mnemonic “\(ft”.

8.1.7 Other Features of atrn

The end-of-word indicators recognized by atrn are:

space newline tab , - _ . ; ? ! :) (] [} { > < + & | "

‘ (hamza) 0 1 2 3 4 5 6 7 8 9 (any digit) M (the “M” character)

The translation capabilities of atrn are generally used for the non-English portions in
a document. In most cases, then, when starting a portion of text to be translated by atrn,
it is necessary to turn ditroff’s ligature and hyphenation mechanisms off. Similarly, it may
be desired to turn them back on at the end of these portions of text. Therefore, as a con-
venience for the user, if the −g or −h arguments are specified, atrn automatically turns
the appropriate ditroff mechanisms off and on when it encounters the beginning and end,
respectively, of a translation region. Specifically, if present, the optional argument

30 J. SROUJI AND D.M. BERRY

−g[ligature-on-argument] causes atrn to issue

.lg 0

at the beginning of the output for each translation region in order to turn off Latin ligatur-
ing (e.g., ffi → ffi) and

.lg x

at the end of each such region to turn Latin ligaturing back on. If the optional
ligature-on-argument is present, it is used as x; otherwise x is 1. In addition, if
present, the optional argument −h[hyphenation-on-argument] causes atrn to
issue

.hy 0

to turn on English hyphenation at the beginning of any translated output and

.hy x

to turn English hyphenation back on at the end of any translated output. If the optional
hyphenation-on-argument is present, it is used as x; otherwise x is 1.

8.2 The Extended ffortid

When ffortid is placed in the pipe between ditroff and a device driver, the result is a
bidirectional version of ditroff in which all text in fonts designated as right-to-left is
printed from right to left. By use of two macros .PR and .PL, the document direction
can be specified as predominantly right-to-left or predominantly left-to-right. The effect
of these is to define on which side of the page is a line considered to begin, and thus,
from where indentation and other line-dependent transformations take place. All other
ditroff commands continue to work, relative to the newly defined line beginning.

ffortid accepts input from ditroff and reorders the contents of each line so that all the
text on the line is printed in its correct direction. Its output is identical in form to that of
ditroff so that any ditroff postprocessor can receive the ffortid output and be none the
wiser about the true source of its input. See Figure 14 for a flow schematic.

It is important to remember that the job of dividing the text into lines and pages is
done by ditroff and therefore, ffortid does not have to know at all about ditroff’s prepro-
cessors. The reader should recall the basic algorithm used by ffortid which is described in
Section 6.

The original ditroff/ffortid is not powerful enough to handle Arabic, Persian, and
Urdu text for two main reason.

1. It does not take care of changing the form of letters based on their positions within
their words.

2. It is not capable of stretching letters to justify the lines to the end, on the right.

The first problem is solved by the atrn preprocessor even before ditroff sees the

ARABIC FORMATTING 31

document

refer

(optional)

atrn

(optional)

grap/pic

tbl/eqn

(optional)

ditroff

-mmacro
ffortid

device

driver

Figure 14: ffortid flow diagram.

input. The second problem was a tough nut to crack. After all, ditroff itself does not
stretch any letters. It can be told either to adjust lines by inserting more white space
between the words, or to leave the lines unadjusted to create a torn flag effect!

We thought of the solution when we examined the code for ffortid. In the ditroff out-
put, an output line is represented generally by a list of (character, movement) pairs, e.g.,

c 1 m 1 c 2 m 2 c 3 m 3
. . . m n − 2 c n − 1 m n − 1 c n

in which each movement is the distance to the beginning of the next character. Recall
that ffortid’s job is to reverse the order of characters that are in right-to-left fonts. Assum-
ing that in the output line above, all characters are in right-to-left fonts, one might think
that it would suffice to simply flip the line to get

c n m n − 1 c n − 1 m n − 2
. . . m 3 c 3 m 2 c 2 m 1 c 1,

but then the movements would be applied to the wrong characters. The simplest way to
generate the correct movements is for ffortid to reformat the line itself using code dupli-
cated from ditroff. It reads the c is and notes the end-of-word markers to figure out what
text is in the line, then it fills the line in, with a guarantee that the length of the permuted
text of the line can be no longer than the original line length. Then if the original line was
adjusted, the excess space after the last word is divided by the number of inter-word
gaps, with a bit more for sentence boundaries, and then each inter-word gap gets its share
of the extra white space. Granted that this is repeated computation, but it is better to do it
in a postprocessor, which is so fast compared to ditroff that ditroff remains the
bottleneck, and to leave ditroff unchanged.

Once it was clear what ffortid is really doing, the solution to the stretching problem
jumped at us. Let ditroff format the Arabic text with hyphenation turned off and filling
and adjusting turned on, in order to determine what can fit on each line. Then let ffortid
do what it has been doing, except that it now takes all of the excess at the end of the line
and uses that as the length of the filler inserted into the connection to the last connecting-
before letter in the line or as the total length of all the fillers inserted if more than one is

32 J. SROUJI AND D.M. BERRY

to be inserted.
Yes, this solution in essence lets ditroff do some more work than is needed, throws

the result out and does the work again in a different way. The solution does make use of
important information generated by the work of ditroff, namely the words that can fit on
the line and whether the original line was adjusted. This last piece is important, because it
is not desired to stretch out the last word of a line, such as the last line of a paragraph,
that was ended before filling up the line and therefore, was not adjusted.

8.2.1 Solution to the Stretching Problem

The solution consists in a number of simple extensions to ffortid. The problem is divided
into three parts,

1. implementation of the stretching itself,
2. calculation of the total amount of stretching needed to adjust a line, and
3. distribution of the stretching among the words in the line.

8.2.2 Implementation of Stretching Itself

The method of stretching in the current new version of ffortid, as mentioned before, is by
lengthening the connection to a character. Thus, only connecting-before characters are

considered stretchable. For example, the character Ö is stretchable, but l is not. A word
is said to be stretchable if has a stretchable character; if it is stretched, then its last
stretchable character is stretched. Thus, a word containing no stretchable character is
considered not stretchable.

Once the amount of stretch that is needed is known, then the connection is lengthened
by putting in enough fillers to cover that length. The filler is given the two-character code
of the hyphen, because there is no real hyphen in Arabic, and the function of the stretch
is to avoid hyphens. Thus, the ditroff escape sequence for making a filler of length l is
\l’l\(hy’. As mentioned before, the filler is at the same baseline as the connection to
and from the letters, is the same thickness as these connections, and is flush to the left
and right boundaries of its bounding box. Thus, a sequence of fillers looks like a solid
line at the baseline of Arabic letters.

8.2.3 Calculation of the Amount of Stretch

The amount of stretch for a line is equal to the sum of the lengths of the spaces that
ditroff inserted between the words in order to justify the line. This value must include
only the space between the words beyond the minimum obtained if the line were not
adjusted. This sum has to be extracted from the ditroff output. There are at least two ways
of doing this calculation.

1. Compute anew the width of the line, ignoring the extra space that ditroff inserted
between the words. The difference between the new line length and the original line
length is the amount of stretching needed. This solution requires knowledge of the
length of the line, which needs to be computed by summing up the widths of the
characters and adding the sum of the movements.

ARABIC FORMATTING 33

2. Take the sum of the lengths of the inter-word gaps and subtract from it the sum of
the length of the same number of spaces. This difference is the total amount of
stretching needed! The minimum spacing between the words is the space, and if a
line has not been adjusted, its inter-word gap is precisely the size of the space.

The simplest solution is the second, and it is used.

8.2.4 Styles of Stretching

In the enhanced ffortid, four styles of stretching are supported when an Arabic-Persian
family language is used; that is, there is no stretching for languages outside this family.

1. The default option is no stretching at all. The original ffortid behavior is adopted.
2. The last stretchable word in the line is stretched by the excess amount calculated. If

no word in the line is stretchable, then leave the words spread.
3. The last stretchable word in the line is stretched by the excess amount calculated, up

to a maximum length equal to the current point size times the length of the connec-
tion filler. The left-over excess is given to the previous stretchable word in the line,
up to the same maximum, etc. If no word in the line is stretchable, then leave the
words spread.

4. Stretch all stretchable words by their share of the excess calculated. If no word in
the line is stretchable, then leave the words spread.

Of course, any other style of stretching can be programmed by the user by inserting the
\l’l\(hy’ construction wherever needed. In this manner, stretching, a capability that
ditroff does not offer, is achieved without changing ditroff itself!

The paragraphs below show the results of four different stretching options on the
same input. The stretched outputs look significantly better than the unstretched, spread
output, even to the non-Arabic eyes of the second author. A narrow column width is used
to accentuate the spreading and stretching effects and their differences. The presence of
English and Hebrew text is to show the effect of non-Arabic text on the stretching.

Extra spaces are distributed between words.

Ö­³�B Ì¹®¨rj Ö���ª� f��� B¡�
m¢wC G�­� Ê� Ö�¸y Ö¹q¢¬�B
(עברית). Ö�¢�¬�Bj (English) Ö�£¹³²�Ý��
Ñ� Ó¹q b¢®�B Á�¸r l�ª¬ìB Ö³��ÝC
 �j Ì¹®¨��B ¼¹��yC Ó� vBj

.G�´³±�B

Connections to last connecting-before letters in lines are stretched.

34 J. SROUJI AND D.M. BERRY

Ö····­³�B Ì····¹®¨rj Ö····���ª� f�····�� B¡····�
m¢·········wC G�······­� Ê······� Ö······�¸y Ö······¹q¢¬�B
(עברית). Ö···�¢�¬�Bj (English) Ö···�£¹³²�Ý��
Ñ·� Ó·¹q b¢·®�B Á·�¸r l�·ª¬ìB Ö·³��ÝC
 ·····�j Ì···¹®¨��B ¼···¹��yC Ó···� ···vBj

.G�´³±�B
Connections to last connecting-before letters in lines are stretched to

maximum amount, with remainder going to preceding words.

Ö····­³�B Ì····¹®¨rj Ö····���ª� f�····�� B¡····�
m¢·········wC G�······­� Ê······� Ö······�¸y Ö······¹q¢¬�B
(עברית). Ö···�¢�¬�Bj (English) Ö···�£¹³²�Ý��
Ñ·� Ó·¹q b¢·®�B Á·�¸r l�·ª¬ìB Ö·³��ÝC
 ·····�j Ì···¹®¨��B ¼···¹��yC Ó···� ···vBj

.G�´³±�B

Connections to last connecting-before letters in all words in lines are stretched.

Ö····­³�B Ì····¹®¨rj Ö····���ª� f�····�� B¡····�
m¢·········wC G�······­� Ê······� Ö······�¸y Ö······¹q¢¬�B
(עברית). Ö···�¢�¬�Bj (English) Ö···�£¹³²�Ý��
Ñ·� Ó·¹q b¢·®�B Á·�¸r l�·ª¬ìB Ö·³��ÝC
 ·····�j Ì···¹®¨��B ¼···¹��yC Ó···� ···vBj

.G�´³±�B
For the future, after we have developed dynamic Arabic fonts with actual stretchable

letters, it will be necessary to introduce more options to ffortid, among which are

ARABIC FORMATTING 35

1. using only stretchable letters
2. using only stretchable connections, and
3. using both

in all of the variations as to where in the line to stretch.

8.2.5 ffortid Command-Line Options

Now it is possible to summarize the behavior of ffortid by describing its command-line
options.

In the command line, the −rfont-position-list argument is used to specify
which font positions are to be considered right-to-left. A font-position-list is a
list of font positions separated by white space, but with no white space at the beginning.
ffortid, like ditroff, recognizes up to 256 possible font positions (0–255). The actual
number of available font positions depends only on the typesetting device and its associ-
ated ditroff device driver. The default font direction for all possible font positions is left-
to-right. Once a font’s direction is set, it remains in effect throughout the entire docu-
ment. Observe then that ffortid ’s processing is independent of what glyphs actually get
printed for the mounted fonts. It processes the designated fonts as right-to-left fonts even
if, in fact, the alphabet is that of a left-to-right language. In fact, it is possible that the
same font be mounted in two different positions, only one of which is designated as a
right-to-left font position. This is how a single font can be printed left-to-right and right-
to-left in the same document. This is also how it is recommended to obtain left-to-right
(in order of decreasing digit significance) printing of Arabic numerals without having to
input the digits backwards.

The −afont-position-list argument is used to indicate which font positions,
generally a subset of those designated as right-to-left, contain fonts for Arabic, Persian,
or related languages. For these fonts, left and right justification of a line is achieved by
stretching instead of inserting extra white space between the words in the line. Stretching
is done on a line only if the line contains at least one word in a −a designated font. If so,
stretching is used in place of extra white space insertion for the entire line. There are
several kinds of stretching, and which is in effect for all −a designated fonts is specified
with the −s option, described below. If it is desired not to stretch a particular Arabic, Per-
sian, or other font, while still stretching others, then the particular font should not be
listed in the −afont-position-list. Words in such fonts will not be stretched and
will be spread with extra white space if the containing line is spread with extra white
space.

The −r and the −a specifications are independent. If a font is in the −afont-
position-list but not in the −rfont-position-list, then its text will be
stretched but not reversed. This independence can be used to advantage when it is neces-
sary to designate a particular Arabic, Persian, or other font as left-to-right, for examples,
or to get around the above-mentioned limitations in the use of eqn, ideal, pic, or tbl.

The kind of stretching to be done for all fonts designated in the −afont-
position-list is indicated by the −s argument. The choices are:

1. −sn
Do no stretching at all for all the fonts.

36 J. SROUJI AND D.M. BERRY

2. −sf
Stretch the last stretchable word on each line. A stretchable word is a word contain-
ing a stretchable character (if the font is dynamic) or a stretchable connection to a
character (if the font has a straight baseline). If no stretchable word exists on the
line, then spread the words in the line as does ditroff.

3. −sl
Stretch the last stretchable word on each line. If the amount of stretch for that word
is larger than the current point size times the length of the filler piece, then stretch
the penultimate stretchable word up to that limit, and if necessary, then stretch the
stretchable word before that, etc. If no stretchable word exists on the line, or some
extra stretch is left after stretching all stretchable words to the limit, then spread the
words in the line as does ditroff.

4. −sa
Stretch all stretchable words on each line by the same amount (different amount for
each line). If no stretchable word exists on the line, then spread the words in the line
as does ditroff. This is the default for all −a designated fonts.

Owing to the difficulties mentioned in Section 1 in typesetting the stretching examples of
Section 8.2.4, it is now clear that it should be possible to specify a different stretching
style for each mounted Arabic font. Then, all of the examples could have been done as
part of the single document simply by mounting the one Arabic font in four different
positions, each with a different stretching style specified.

9 RESULTS

Appendix I contains a page showing an included POSTSCRIPT figure, the “Star Trek, the
Next Generation” logo together with the opening lines of Captain Jean-Luc Picard in
English, Hebrew, and Arabic. The Hebrew and Arabic translations are adapted from the
subtitles given on Israel TV and Middle East TV for the opening lines. Note how the
footnote about the registered trademark is printed from left to right even though it
appears physically among right-to-left text.

The same appendix shows some examples of the use of ditroff preprocessors together
with the new software. The first of these uses eqn to give a more scientific interpretation
of what was said when light was created in the midst of an Arabic translation of the
relevant sentences of Genesis. The second of these uses chem to show the structure of
compounds found in petroleum as they might be illustrated in a chemistry class in an
Arabic-speaking petroleum-exporting country.

Finally, the appendix shows the famous story, “The Rabbit and the Elephant” typeset
by the system described herein. This output should be compared to that from
yarbtex [43]. The two outputs use similar fonts, but the latter does not exhibit any
keshide.

10 CONCLUSIONS

It appears that software described herein has met its goals. In particular, when we show
the output of the software to native Arabic-speaking scholars of Arabic here, they seem
genuinely appreciative of the output.

ARABIC FORMATTING 37

Recall that the two main jobs of the new ffortid are to reverse right-to-left text line-
by-line, according to the algorithm described in Section 6 and to stretch one or more
words in these lines. The reversing algorithm requires the ability to determine the ends of
formatted lines, and stretching requires the ability to determine the ends of words in for-
matted lines. Therefore it must be possible to find ends-of-words and ends-of-lines in the
input ffortid, which is the output of ditroff.

ditroff output consists of a preamble describing the device, followed by a sequence of
page descriptions. The description of a page consists logically of a sequence of (position,
character) pairs, each describing exactly where on the page to print a character. The
actual form of the position information is as occasional absolute coordinates with inter-
vening horizontal and vertical movements. Thus a program, usually a device driver, read-
ing this output must keep a position state and follow the relative movements in order to
calculate the exact position of each character. Embedded among these (position, charac-
ter) pairs, and actually independent of them, are end-of-line markers, of the form nb a
(the important thing here is the n; the b and the a give the amount of space before and
after the line in the device’s units) and end-of-word markers of the form w. The ditroff
output of the line

This is an example of a line.

is

H576
V96
cT
49h40i22sw51i22sw51a36nw60e36x40a36m62p40l22ew56o40fw47aw
56l22i22n40e36.n96 0

Note the bold-faced end-of-word and end-of-line markers. Note that no w commands are
issued before hyphens generated by the formatter; they come only at the ends of input
words. Device drivers generally ignore the semantic markers, but the semantic markers
permit other analyses, such as that necessary to do reversing and stretching.

These markers are necessary and cannot be deduced from the movements. Not all
large movements to the left with small movements downward are ends of lines. One finds
such movements in tables, pictures, graphs, etc. Not all movements the size of a space or
a bit more are ends of words. They may be movements within equations, tables, pictures,
etc.

The lack of end-of-line and end-of-word markers in TEX’s output, in dvi [48] format,
prevents production of a bidirectional, stretching version of TEX using the simple scheme
of reorganizing the dvi output on a line-by-line basis. The only way to add reversing and
stretching is to modify TEX itself either to do the reversing and stretching internally or to
put more information in the dvi form output. The latter is probably worse, because then
none of the existing independently developed device drivers would accept the new out-
put. Therefore, MacKay and Knuth opted for the former in making the bidirectional
TEX/XET. For either approach, one cannot use the standard distributed TEX, and one
faces the problem of maintaining more than one version of TEX. This maintenance prob-
lem is immediate, because TEX/XET does not do stretching and would have to be

38 J. SROUJI AND D.M. BERRY

modified in order to do it.
The modularity of the ditroff system and the end-of-word and end-of-line markers in

the standard ditroff output made developing this software quite straightforward, in that
we could focus directly on the problems of Arabic-Persian formatting without having to
concern ourselves with other parts of the general formatting problem. However, once the
new software was available it was possible to use it in conjunction with all of the rest of
the ditroff system with very little bother.

The solutions developed for this software are now available to be incorporated into
other, less modular, systems.

The next step for the future is to complete the dynamic fonts with stretchable letters
and to develop a ditroff-to-device-driver interface for letters whose widths vary from that
given in the standard width tables. This will be done, as always, without modifying ditr-
off or its output language.

ACKNOWLEDGEMENTS

The authors thank Farhad Arbab for his comments on an earlier draft, Yannis Haralam-
bous for answering questions about his work and providing good friendly competition,
Anoosh Hosseini for answering questions about Persian formatting, Brian Kernighan and
Nils-Peter Nelson for answering questions about ditroff, Pierre MacKay for answering
questions about his work and about Arabic formatting in general, Lorinda Cherry for her
detailed reading-cum-comments of an earlier draft, and Murat Tayli for sending to them
copies of proceedings of computer Arabization conferences and teaching us modern Ara-
bic words for some computer science terminology.

This paper has used trademarked names strictly for the purpose of identifying the tra-
demarked products; there is no attempt herein to usurp the rights of their owners.

REFERENCES

1. Proceedings of the First KSU Symposium on Computer Arabization, Riyadh, Saudi Arabia,
1987.

2. Proceedings of the Ninth National Computer Conference, Riyadh, Saudi Arabia, 1986.
3. Proceedings of the Tenth National Computer Conference, Jeddah, Saudi Arabia, 1988.
4. Proceedings of the Eleventh National Computer Conference, Dharan, Saudi Arabia, 1989.
5. P.A. MacKay, Computers and the Arabic Language, Proceedings of the Arab School of Sci-

ence and Technology, The Hemisphere Press, New York, Washington, Philadelphia, London,
1990.

6. M. Tayli and A.I. Al-Salamah, ‘Building Bilingual Microcomputer Systems’, Communications
of the ACM, 33 (5), 495–504 (1990).

7. Z. Wu, W. Islam, J. Jin, S. Janbolatov, and J. Song, ‘A Multi-Language Characters Operating
System on IBM PC/XT Microcomputer’, in Proceedings of Second International Conference
on Computers and Applications, Beijing, PRC, pp. 579–585, (1987).

8. J.D. Becker, ‘Arabic Word Processing’, Communications of the ACM, 30 (7), 600–611 (1987).
9. D.E. Knuth and M.F. Plass, ‘Breaking Paragraphs into Lines’, Software—Practice and Experi-

ence, 11, 1119–1184 (1981).
10. Mahdi ElSayed Mahmud, Learning Arabic Calligraphy: Naskh, Requah, Tholoth, Farsi, Ibn

Sina, Publisher, Cairo, Egypt, 1987.

11. ,Ö¬�P ,Â¦� :Õq¢¬�B È��B Ò³¬�r Ì¹� ,N¸´�� ¹¦�B k ¶�

ARABIC FORMATTING 39

,¢� ¨��Bj Ê�Q¸��Bj ¢§µ³� ,�µ¹y ÓqD Ö��±� ,ÕyP�� ,¾³s
1987 ,¢¨�,l¢��¯�B.

12. J. André and B. Borghi, ‘Dynamic Fonts’, POSTSCRIPT Language Journal, 2 (3), 4–6 (1990).
13. Interleaf Workstation Publishing Software User’s Guide, Interleaf, Inc., 1986.
14. FrameMaker Reference, Frame Technology Corporation, San Jose, CA, 1990.
15. B.W. Kernighan, ‘A Typesetter-independent TROFF’, Computing Science Technical Report

No. 97, Bell Laboratories (1982).
16. D.E. Knuth, The TEXbook, Addison-Wesley, Reading, MA, 1984.
17. D.E. Knuth, TEX: The Program, Addison-Wesley, Reading, MA, 1986.
18. B.W. Kernighan and L.L. Cherry, ‘Typesetting Mathematics — User’s Guide (Second Edi-

tion)’, Technical Report, Bell Laboratories (1978).
19. M.E. Lesk, ‘TBL — A Program to Format Tables’, Technical Report, Bell Labora-

tories (1978).
20. B.W. Kernighan, ‘PIC — A Graphics Language for Typesetting, Revised User Manual’, Com-

puting Science Technical Report No. 116, Bell Laboratories (1984).
21. C. J. Van Wyk, ‘IDEAL User’s Manual’, Computing Science Technical Report No. 103, Bell

Laboratories (1981).
22. N. Batchelder and T. Darrell, ‘Psfig — A DITROFF Preprocessor for POSTSCRIPT Figures’,

Technical Report, Computer and Information Science Department, University of Pennsyl-
vania, Philadelphia, PA.

23. M.E. Lesk, ‘Some Applications of Inverted Indexes on the UNIX System’, Computing Science
Technical Report No. 69, Bell Laboratories (1978).

24. K.K. Abe and D.M. Berry, ‘indx and findphrases, A System for Generating Indexes for
Ditroff Documents’, Software—Practice and Experience, 19 (1), 1–34 (1989).

25. C. Buchman, D.M. Berry, and J. Gonczarowski, ‘DITROFF/FFORTID, An Adaptation of the
UNIX DITROFF for Formatting Bi-Directional Text’, ACM Transactions on Office Informa-
tion Systems, 3 (4), 380–397 (1985).

26. Z. Becker and D.M. Berry, ‘triroff, an Adaptation of the Device-Independent troff for Format-
ting Tri-Directional Text’, Electronic Publishing, 2 (3), 119–142 (1990).

27. B.W. Kernighan and C.J. van Wyk, ‘Page Makeup by Postprocessing Text Formatter Output’,
Computing Systems, 2 (2), 103–132 (1989).

28. TRANSCRIPT Software Package, Adobe Systems Incorporated, Menlo Park, CA, 1986.
29. GHOSTSCRIPT 2.4.1 POSTSCRIPT Previewer, Aladdin Enterprises, Menlo Park, CA, 1992.
30. J.L. Bentley and B.W. Kernighan, ‘GRAP — A Language for Typesetting Graphs, Tutorial and

User Manual’, Computing Science Technical Report No. 114, AT&T Bell Laboratories, Mur-
ray Hill, NJ (1984).

31. J.L. Bentley, ‘Little Languages for Pictures in AWK’, AT&T Technical Journal, 68 (4), 21–32
(1989).

32. J.L. Bentley, L.W. Jelinski, and B.W. Kernighan, ‘CHEM—A Program for Phototypesetting
Chemical Structure Diagrams’, Computers and Chemistry, 11 (4), 281–297 (1987).

33. E. Foxley, ‘Music—A Language for Typesetting Music Scores’, Software—Practice and
Experience, 17 (8), 485–502 (1987).

34. E.R. Ganser, S.C. North, and K.P. Vo, ‘DAG—A Program that Draws Directed Graphs’,
Software—Practice and Experience, 18 (11), 1047–1062 (1988).

35. H. Trickey, ‘DRAG — A Graph Drawing System’, in Electronic Publishing ’88, ed. J. André
and H. van Vliet, Cambridge University Press, Cambridge, UK, pp. 171–182, (1988).

36. T. Wolfman and D.M. Berry, ‘flo — A Language for Typesetting Flowcharts’, in Electronic
Publishing ’90, ed. R. Furuta, Cambridge University Press, Cambridge, UK, pp. 93–108,
(1990).

37. D.E. Knuth and P. MacKay, ‘Mixing Right-to-left Texts with Left-to-right Texts’, TUGboat,
8 (1), 14–25 (1987).

38. M. Tayli, ‘Integrated Arabic System, Technical Information and Programming Manual’,
Technical Report, King Saud University, College of Computer and Information Sciences,

40 J. SROUJI AND D.M. BERRY

Riyadh, Saudi Arabia (1988).
39. M. Tayli, ‘Integrated Arabic System’, in Proceedings of the First KSU Symposium on Com-

puter Arabization, Riyadh, Saudi Arabia, pp. 135–143, (1987).
40. J.D. Becker, ‘Multilingual Word Processing’, Scientific American, 251 (1), 96–107 (1984).
41. A. Khettar, M. Nanard, and J. Nanard, ‘High Quality Page Make Up For Arabic Documents’,

in Protext II, Proceedings of the Second International Conference on Text Processing Systems,
ed. J.J.H. Miller, Boole Press, Dublin, Ireland, pp. 162–167, (1985).

42. S. Sami and O. Alameddine, ‘Generation Of High Quality Arabic Computer Output’, in Com-
puters and The Arabic Language, Proceedings of the Arab School of Science and Technology,
ed. P.A. MacKay, The Hemisphere Press, New York, Washington, Philadelphia, London,
pp. 171–182, (1990).

43. Y. Haralambous, ‘Arabic, Persian and Ottoman TEX for Mac and PC’, TUGboat, 11 (4),
520–524 (1990).

44. J.J. Goldberg, ‘Approximate TEX for Semitic Languages’, in Conference Proceedings Ninth
Annual Meeting of the TEX Users Group, TEXNiques, ed. C. Thiele, Montréal, pp. 171–178,
(1988).

45. Y. Haralambous, ‘TEX and Those Other Languages’, TUGboat, 12 (4), 539–548 (1991).
46. U. Habusha and D.M. Berry, ‘vi.iv, a Bi-Directional Version of the vi Full-Screen Editor’,

Electronic Publishing, 3 (2), 3–29 (1990).
47. G. Allon and D.M. Berry, ‘MINIX.XINIM, Towards a Bi-Directional, Bi-Lingual UNIX

Operating System’, in Proceedings of the Soviet UNIX User’s Group Conference, Moscow,
USSR, pp. 8–21, (1991).

48. D.E. Knuth, ‘Device-Independent File Format’, TUGboat, 3 (2), 14–19 (1982).

ARABIC FORMATTING 41

APPENDIX I



Space — the final frontier.
These are the voyages of the starship Enterprise,
its continuing mission, to explore strange new worlds, to seek out new life
and new civilizations, to boldly go where no one has gone before!

הבא הדור -- mכוכבי oבי מסע

הסופי. הגבול -- החלל

”אנטרפרייז“, החללית של מסעותיה אלה

ותרבויות mחדשי mחיי לאתר ,mמוזרי mחדשי עולמות לחקר המתמשכת במשימתה

נודע! הבלתי עבר אל נועזת משימה חדשות,

gN�¯�B Ñ¹��B ··· ¼�B¸±�B Ó¹q Ö³v¢�B
.×¨�ÝB ��B ··· E�©®�B

,`£�B¢t¢��D' Ö¹��©®�B Öµ¹®¦�B GÜvP Õ� i¡�
l�··¹v a�·§��Bj ,Ö·��¢� íB¸·� Ó·� ¾·����q lù¢·´�¦ìB �·¶�´¶� ç
¾···¹v êD F��¡�D ç Ö»�¢u Ö´¶� ,l � u GBP�©vj l � u

!Ñ�� Ó� vB ¼�¡� í

STAR TREK and STAR TREK: THE NEXT GENERATION are registered trademarks of Paramount Pictures
Corporation.

42 J. SROUJI AND D.M. BERRY

eqn Examples

:ÚöB f��j
ε o ∫bE.dS = q

∫bB.dS = 0

∫bB.dl = µ o ε o dt

dΦ Ehhhhh + µ o i

∫bE.dl =
dt

− dΦ Bhhhhhh

∴

c =
√dddddµ o ε o

1hhhhhhh

P¸� h��j

chem Examples

:Öª¹¦q Ö�N�¬� .1
CH3 CH3 :Ö¹³¹±�C Ö³¦³y .2

CH3 C

O

CH3 :m¢wC G�¯³v .3

ARABIC FORMATTING 43

The Rabbit and the Elephant, from Kalila and Dimna

Ñ¹®�Bj ¼�PÝC
h¸····µ¦�B �····¶¹³� ½····¬q��r ,Ö····³¹®�B VPC Ó····� æ····�PC hC B¸····´�Q
F�······�Cj ,h¸·¹¬�B GP�·�j NÜ·��B Ï·³r ç E�·ìB ùÑ·¯� ,½·q uCj
Ï·····³ìB Ñ··yP�� .�··¶±³� êD Ï··�O ½··±§� . ··� z Å··ª� Ö··³¹®�B
Ç·····¬q Ô¹�D Êu¢� .Ö¹v�� Ñ� ç E�ìB S�´��B ç iNBjPj Ô³yP
×·······� r æ···µ¹� Ö···µ±�ÝB Ç···¬q ç j ···uj Ò···¶��q ij¢···�w�� Ô···³yP
Ó··¹¬�B Ï·³r êD Ô·�³¹®q Ö·³¹®�B Ï·³� Ô·u¸�� .E�·ìB l¢·¹�� ,Ö·�¢´¯�B
½·········»�¸� .¼····�BPC VPC VPÝB Ï····³r ½····���j .�····¶µ� Ó····q¢§¹�
Ê·····´�u�� .�···�¢��C Ó···±³��� �···¶r¢�u ç �···¶³uP�q ¼···�BPÝB Ö···³¹®�B
Ó··········� �··µq��C �··� ½··´³� ··� :Ô··� Ó··³¯� �··¶±³� êD �··¶µ� Ö··¹¯��B
G�·········¬uBP Ó···¶��� ;�···µ¹³� Ó···¶�¸uP Ñ···�� �···µ� Ñ···�v�� ,Ö···³¹®�B
Ñ·····� Õ··�¢©�¹� :Ó··¶±³� f�··¯� .�··�¢wã Ó··� G�··¹µ®�j Ó··�NP¸�
h�·� ·�j ,Qj¢·¹� Ô·� f�·¯� �·¶µ� P£·w g ·¯�� .Ô·�C¢q kCP kO
Õ·······µ�¬�� hC Ï·³ìB mCP hD :f�·¯� ,kC¢·�Bj hNÝ�·q Ô·�¢� Ï·³ìB
Ê·µ�C �·�j f¸·�C �·� Ê·´¦�j m¢·� æ·µ¹�C Õ·¬� ¾·¬��j Ö·³¹®�B êD
�·········�Cj ,Õµ¹�C ½�C :¼�BPÝB Ï³� Ô� f�¯� .Ñ¬®¹³� ,Ôq i¢���j
�········� Õµ� Ë³qj Ö³¹®�B êD Í³ª��� ;Ï�¸� b �Cj ,Ï�CP ×�PC
Ô·····qNCj Ô·�C¢qj Ô·q ,f¸·y¢�B hC Ò·³�Bj ,Ï·�C¢q Ñ·´�Bj ,½·��vC
;l�···rB¸ìBj Ó·¹³��q Ï·¹³�j .Ô·��z Ó·� ¢·¹��j Ñ·y¢ìB Ñ·¯� ¢·��¬�
BOD P ······¨�B Ó·§��j ,Í·�P BOD ¼·³¯�B Ó·¹³� ¸·� f¸·y¢�B h�·�
×········¶��B ×�v ,Ê��� �¶¹� ¢´¯�B ,Ö³¹� ç ¼�PÝB Í³ª��� .b¢w
hDj ,Ó······¶³uP�q Ô��ª¹� Ó¶µ� ¸� � hC i¢±� .Ö³¹®�B Ê�¸� êD
Ô······´y�q Ö··³¹®�B Ï··³� mN�··µ� Ñ··r ë··� a¢··z�� ,Ï··�O hN¢··� í
,ðg¸·³� ¢·¹� Ë·³�� f¸·y¢�Bj ,Ï·¹�D Õ·µ³yPC ¢·´¯�B hD :Ô·� f�·�j
?Ö·······��y¢�B �···�j :Ö···³¹®�B Ï···³� Ô···� f�···¯� .f¸···¯�B ç É···³�C hDj
E�··®¬©�B ë·� Ô·r¸� Ñ·©� a¢·� Ó·� Ô·�D ¢·´¯�B Ï·� f¸·¯� :f�·�

44 J. SROUJI AND D.M. BERRY

Ï·········�Dj ;Ô¹³� ñÛ�qj �µ¹v Ôr¸� ½��� ,E��¸�ÝB Ó� Ï�¡q ¢�����
G ··´¬� Õ·µ� Ï·�O d¢·­� FBj ·�B ë·� Ï·r¸� Ñ·©� ½·�¢� ·�
½·····�C Ô···rP �j �···�E�� ½···q¢§� Õ···´y�q ×···´¦r Õ···��B Õ···µ¹� êD
d¢·······¨q Õ§��� �¶¹r�r ÛC dP¡�Cj Ï¹�D g ¯rC Õ�Dj ;Ïq���Cj
êD Ò······³¶� ,Õ···���yP Ó···� Ï···z ç ½···µ� hDj .Ï···¦®� Ì···³rCj
Ó····� Ö·³¹®�B Ï·³� ¼·�¬� .�·¶q Ï·¹�B¸� Õ·��� ,Ï·���y Ó·� Ó·¹¬�B
mCP �········¶¹�D ¢··«� �··´³� .Ó··¹¬�B êD Ô··¬� Í··³ª�Bj ,Qj¢··¹� f¸··�
E�········ìB Ó� Ï�¸�¢�q ¡w :Qj¢¹� Ô� f�¯� .E�ìB ç ¢´¯�B E¸�
êD Ô·······�¸�¢w ÑwNC �ìj .Ñ¬®� .¢´¯�B �yBj Ï¶uj Ñ¦�Bj
�··�j :Ö³¹®�B Ï³� f�¯� , ¬r¢� E�ìB hC Ô¹�D Ñ¹w ,Ô�¢�� E�ìB
ç Õ······�³®�u f�···wND Ó···� ¼···©� iB¢···rC ? ···¬r¢� ¢···´¯�B h�···z
Ô··¹�D F�·rj ¢·´¯³� Ñ·¹®�B ·�¦� .Ô·� ·�y�� ,Ò·¬� :f�·� ?E�·ìB
êD Ô········�³¹� Ó··� ··vC Ûj ¸··� N¸··¬� ÛC Ô··� W¢··zj ,Ê··µ� �··´�

.Ó¹¬�B

ARABIC FORMATTING 45

APPENDIX II

Arabic-Persian Character Set

Stand- Connected-
Number Phonetic Name

alone both after beforeiicc
c
c

cc
c
c

cc
c
c

cc
c
c

cc cc

Principal Letters (Arabic & Persian)

1 ‘ hamza E _ _ _
2 a alef B � B �
3 b baa F � q ¼
4 t taa G � r ½
5 c thaa H � s ¾
6 j jeem J � u À
7 h haa K � v Á
8 x chaa L � w Â
9 d dal N N

10 Z thal O ¡ O ¡
11 r raa P ¢ P ¢
12 z zein Q £ Q £
13 s seen S ¦ y Ä
14 C sheen T § z Å
15 S Sad U ¨ � Æ
16 D Dad V © � Ç
17 T Tah W ª � È
18 Z‘ dhah X « � É
19 e ain Y ¬ � Ê
20 R‘ rain Z ­ � Ë
21 f faa a ® � Ì
22 q qaf b ¯ � Í

46 J. SROUJI AND D.M. BERRY

23 k caf d ± � Ï
24 l lam f ³ � Ñ
25 m meem g ´ � Ò
26 n noon h µ � Ó
27 H hea i ¶ � Ô
28 w waw j ¸ j ¸
29 y yaa k ¹ � Õ
30 t‘ taa_marbouta l Ö l Ö
31 A‘ alef_maksura m × m ×

hh

Hamza Letters

32 A hamza_on_alef C � C �
33 i hamza_under_alef D � D �
34 Y‘ hamza_on_yaa o » � Ø
35 H‘ hamza_on_hea p Ù p Ù
36 w‘ hamza_on_waw n º n º

hh

Persian Letters

37 p paa I � t ¿
38 G geem M � x Ã
39 g jeh R ¥ R ¥
40 v vaa c ° � Î
41 Q Gaf e ² � Ð

hh

Other Letters

42 a˜ madda_on_alef ã ä ã ä
43 U hamzat_wasel ö _ _ _

ARABIC FORMATTING 47

44 \(ak alef_kasira ø _ _ _
45 \(md madda ÷ _ _ _

hh

Ligatures do not have their own phonetic spellings.
They are recognized automatically as the combination of other letters.

Stand- Connected-
Number Name

alone both after beforeiicc
c
c

cc
c
c

cc
c
c

cc cc

Ligatures

46 lamalef Û Ü Û Ü
47 hamza_on_lamalef Ý Þ Ý Þ
48 hamza_under_lamalef ß à ß à
49 lamalef_maksura ê _ _ ë
50 madda_on_lamalef á â á â
51 madda_on_alef ã ä ã ä
52 tanweenfateh_on_alef å æ å æ
53 lam_meem í _ ì _
54 lam_yaa è _ _ é
55 faa_yaa ç _ _ _

hh

The rest do not have any form but stand-alone.

Stand-
Number Phonetic Name

aloneiicc
c
c

cc
c
c

cc
c
c

Vowels/Diacriticals

56 ’ \(ft fatha î
57 u \(dm dammah ï
58 E \(ks kasra ð

48 J. SROUJI AND D.M. BERRY

69 O \(sn sukun ô
60 ˜˜ \(sh shaddah õ
61 ˜˜’ ‘˜˜ \(sf fatha_on_shaddah ù
62 ˜˜u u˜˜ \(sd dammah_on_shaddah ú
63 ˜˜E E˜˜ \(sk kasra_under_shaddah û
64 ˜˜’’ \(st tanweenfateh_on_shaddah ü
65 ˜˜uu \(su tanweendamm_on_shaddah ý
66 ˜˜EE \(sv tanweenkaser_under_shaddah þ

hh

Special

67 L allah Ú
hh

International Characters

68 ! exclamation_mark !
69 $ currency_sign $
70 # number_sign #
71 % percent %
72 & ampersand &
73 \(lq left_quote `
74 \(rq right_quote '
75) left_parenthesis (
76 (right_parenthesis)
77 * asterisk *
78 + plus_sign +
79 , arabic_comma ,
80 - minus_sign -
81 / slash /
82 @ at @

ARABIC FORMATTING 49

83] left_bracket [
84 \ back_slash \
85 [right_bracket]
86 ˆ hat ^
87 _ under_score _
88 } left_brace {
89 | bar |
90 { right_brace }
91 > less_sign <
92 < greater_sign >
93 = equal_sign =
94 ? question_mark ?
95 ; semicolon ;
96 : colon :

hh

Digits

96 0 zero 0
97 1 one 1
98 2 two 2
99 3 three 3

100 4 four 4
101 5 five 5
102 6 six 6
103 7 seven 7
104 8 eight 8
105 9 nine 9

hh

