
A Top Layer Design Approach to

Complex Real-Time Software

Jair Jehuda Daniel M. Berry

RAFAEL Electronic Systems Division (80) Department of Computer Science
P.O.B. 2250, Haifa 31021, ISRAEL Technion - Israel Institute of Technology

jehuda@tx.technion.ac.il Technion City, Haifa 32000, ISRAEL
dberry@cs.technion.ac.il

January, 1995

Abstract

In this thesis we introduce a top-layer design approach to complex

real-time software, so called because it is designed to produce and
support platform-independent software for extremely complex system
requirements, e.g., concurrent, best-e�ort hard real-time systems run-
ning on shared-memory multi-processor platforms.

The keys to our approach are simple, yet
exible platform and
job-oriented program models that enable decomposing larger, gener-
ally highly complex, scheduling problems into several smaller, gener-
ally simpler, scheduling problems, called jobs. Internal job schedul-
ing problems are independently resolved o�ine and encapsulated in
a platform-independent manner, creating reusable real-time software
objects. A hard real-time job time-sharing scheme is then used to
incorporate these jobs into programs without having to deal with the
scheduling details within them. An additive schedulablility criteria
suÆces for determining whether a given set of jobs can reliably time-
share a given processor, thereby greatly reducing the complexity of
load-balancing over available platform resources.

To best utilize any given platform, each job may also support
several modes of operation, each mode requiring a di�erent measure

1

of resources and contributing a di�erent reward to an application-
speci�c system value function. Job mode alternatives, required mode
resources, and contributed rewards may also be state-dependent, vary-
ing with computational circumstances. An appropriate softwaremeta-

control algorithmmust therefore occasionally recompute the job modes
which maximize the system value per time unit for evolving runtime
circumstances without overloading the system resources, i.e. without
jeopardizing any hard deadlines within any of the jobs on any of the
platform processors. This multi-mode job-oriented program model
thus introduces a novel notion of best-e�ort meta-control in a hard
real-time context. The same model can also be used to enable several
concurrent hard real-time applications to reliably share appropriate
multi-processor platforms.

Appropriate algorithms have been devised, several policy mak-
ing issues have been addressed, and all of the above have been in-
corporating within a comprehensive top-layer architecture. A real-
istically complex musical real-time application has also been imple-
mented to demonstrate the feasibility of our approach. Results are
very promising, clearly indicating that platform-independent, best-
e�ort hard real-time software is a viable and realistic goal for many
products, with great potential for signi�cantly reducing real-time soft-
ware development and maintenance costs.

1 Introduction

As hardware costs shrink and software requirements grow, the unwavering
high cost of software development and maintenance has become a very power-
ful driving force behind the development of \write once, run anywhere" tech-
nologies such as Ada, Postscript, HTML, SQL servers, OpenGL, Java [Nil95],
CORBA and many others. Such open system technologies essentially enable
the programmer to concentrate on the top application layer only, with lower
�rmware and hardware layers requiring only minimal attention, thereby sig-
ni�cantly cutting costs by substantially simplifying the software development
and maintenance process. But perhaps even more important, the software
produced by these technologies is essentially platform-independent, enabling
it to run on a wide variety of available platforms, to be readily ported to new
platforms when old ones get obsolete, and to consistently perform better as

2

newer platforms grow faster and more powerful.
Unfortunately, the impact of these rapidly developing platform-independent

software technologies has hardly been felt in the area of real-time computing.
It is widely assumed that real-time software and platform-independence are
inherently mutually exclusive. After all, real-time systems are those which
must interact with their environment in a timely manner. Untimely interac-
tions in hard real-time systems, e.g. those found in defense, transportation,
aerospace, energy, and health care, can be very hazardous and costly, and
are therefore not to be tolerated. The real-time software within such systems
is typically responsible for carrying out a substantial set of ongoing activities
which must be appropriately scheduled to complete their functions within
carefully crafted time intervals. The reliable scheduling of these perpetual
activities clearly requires complete a priori knowledge of the available run-
time resources as well as the computational and other resource requirements
for each activity. Typical scheduling solutions are therefore thought to be
inherently platform-dependent.

There are, of course, exceptions to this rule. In very simple real-time
systems, such as those in which all activities are purely periodic, completely
independent of each other, and all running on a single processor, relatively
simple schedulability criteria and dynamic real-time scheduling policies can
be applied uniformly to all candidate platforms. The hard real-time applica-
tions which we wish to address in this thesis are typically much too complex

to be scheduled in a platform-independent manner, thereby causing them to
be prohibitively expensive to develop and maintain.

This paper hopes to convince the reader that appropriate models, con-
trol algorithms, and software architectures can indeed produce platform-
independent software even for hard real-time systems which are quite com-
plex. To this end, we have developed a novel notion of best-e�ort hard real-
time systems, i.e. systems which have hard real-time requirements and are
also required to dynamically adapt their behavior to best exploit whatever
run-time resources are currently available to them. As we will show, when
running on shared-memory, multi-processor platforms, the requirements of
such best-e�ort hard real-time systems are so complex that there are no
known methods for addressing these complexities even when the runtime
platform is a priori known and �xed. The top-layer design approach intro-
duced by this thesis shows how such complexities can realistically be ad-
dressed, and in a platform-independent manner. Furthermore, we show that

3

hard real-time applications which have adopted the approach can then run
concurrently and reliably on appropriate multi-processor platforms. We thus
demonstrate that platform-independent complex real-time systems are not
only possible, but that a top-layer design approach can also help resolve
complexities which would otherwise be computationally intractable.

The scope of our research includes

� developing appropriate platform and aggregate job-oriented program
models, including a novel notion of platform-independent best-e�ort
meta-control in a hard real-time context, which can also be applied to
concurrent real-time applications,

� devising practical job load-balancing, hard real-time job time-sharing,
and best-e�ort meta-control algorithms,

� addressing several policy making issues, e.g. how to select an optimal
suite of algorithms for a speci�c application,

� incorporating the above within a comprehensive top-layer architecture,

� demonstrating the feasibility of the approach by using it to implement
a realistically complex real-time application which is portable and best-
e�ort, and

� producing a comparative tradeo� analysis of the top-layer approach
with existing approaches regarding cost, overhead, the ability to meet
scheduling constraints and more.

Results are very promising, clearly indicating that concurrent, platform-
independent, best-e�ort hard real-time software is a viable and realistic goal
for many systems, with great potential for signi�cantly reducing real-time
software development and maintenance costs. True, in its current form, the
top-layer approach developed here does not serve as a solution for all real-time
applications. Nevertheless, by showing how it can be applied, as is, to a very
challenging class of real-time systems, and by suggesting how current models
and algorithms can be extended to embrace a wider class of applications, we
hope to pave the way for future developments which will ultimately increase
the portability and adaptability of real-time software.

4

First, we establish the setting by introducing the complex real-time prob-
lem domain in Section 2, and listing primary motivations in Section 3. Sec-
tion 4 then brie
y introduces the top-layer approach, describing the assumed
platform and program models, outlining the software control elements re-
quired by these models, and using a few brief examples to illustrate how the
top-layer architecture might be applied di�erently to di�erent applications.
This is followed by Section 5 which introduces ATLAS, a realistically com-
plex real-time application which has been successfully implemented using the
top-layer approach.

This paper is based on the �rst author's Ph.D. dissertation which contains
all th details not presented herein due to space limitations. It can be obtained
at ftp://ftp.technion.ac.il/....

2 Complex Real-Time Systems

The problem domain of this paper is a class of real-time applications which
we call complex real-time applications because the online decisions that they

require are of such complexity that optimal decisions are intractable. More
speci�cally, we wish to address real-time applications which have hard (tight)
timing constraints, diÆcult-to-schedule task characteristics, and dynamic,
state-dependent, task sets and execution times. We further require that these
applications reliably run, as is, on any of several platforms, each platform
having a di�erent number of shared memory processors, and each processor
possibly running at a di�erent machine cycle rate. When provided with
various alternate mode of behavior, we require that these applications should
also online adapt their behavior to best accommodate each platform and each
application state. Finally we require that they should also be able to reliably
run concurrently alongside additional complex real-time applications on any
of these designated platforms. As we later show, conventional task-oriented
design approaches are not equipped to deal with such complexities even in a

sub-optimal manner.
The following subsections introduce real-time systems, describe the schedul-

ing and meta-control decisions required by such systems, and better de�ne
the targeted complexities and assumed limitations.

5

-e eeinstance 1 instance 2 instance i

R1 D1 R2 D2 Ri Di

task A

-e eeinstance 1 instance 2 instance i

R1 D1 R2 D2 Ri Di

task B

CPU dispatched to this task

t

t

Figure 1: EDF Task Scheduling

2.1 Real-Time Systems

Real-time systems are those that must interact with their run-time environ-
ments in a timely fashion. Such systems are typically modeled as running
perpetually, comprising a well-de�ned set of software modules called tasks,
many of these tasks being invoked periodically or sporadically an in�nite
number of times to carry out their particular functions. As depicted in Fig-
ure 1, each task invocation is called an instance. Each time a task instance
i is invoked, it must usually complete its function within a well-de�ned time
interval, the beginning of that interval being referred to as the task release

time, Ri, the end of that interval being referred to as the task deadline, Di.

2.2 Scheduling and Schedulability

Intervals for several concurrent tasks will often overlap, so an appropriate
real-time task scheduler must determine when each of the invoked tasks in-
stances will be provided with the resources needed for task execution. The
computational resources required by each task are usually provided in units
of time, indicating how much time it would take for the current run-time
processor to complete the task. Given the task computation times, release
times, and deadlines, the real-time scheduler attempts to dispatch the pro-
cessor to the various task instances in a manner which enables them to meet
their deadlines. One e�ective policy for doing this is to always dispatch the
task which has the earliest deadline. Such a policy is referred to as EDF
(earliest deadline �rst) scheduling and Figure 1 demonstrates how such a
policy would successfully dispatch a shared processor to the sample tasks, A

6

and B without missing any deadlines.
Given a set of tasks, a schedule is feasible if all tasks can be scheduled

such that all timing constraints and resource requirements are met. Major
scheduling issues include whether a feasible schedule exists for a given task
set, whether such a schedule will be found by a given scheduling policy, and
whether these questions can be resolved by a reasonable schedulability test
or criteria.

2.3 Periodic and Sporadic

As depicted in Figure 1, task release times, deadlines, and computation times
can be quite irregular, but this complicates scheduling and schedulability.
Periodic tasks, on the other hand, greatly simplify scheduling, so real-time
systems are modeled as sets of periodic tasks whenever possible. Periodic

tasks are invoked repeatedly at �xed time intervals, i.e., letting T denote the
�xed time period between instances, then Ri+1 = Ri + T for such periodic
tasks. Periodic task instances must typically complete before their next
instance release, so we also assume that Di = Ri + T for such tasks, unless
otherwise speci�ed.

Real-time systems, however, must almost always react to aperiodic events
as well, e.g., external interrupts and internal signals. Such events invoke
the execution of event-driven tasks which are referred to as sporadic tasks.
Sporadic task release times are therefore not a priori known, but they can
still be analyzed for schedulability, if they are invoked at rates which never
exceed a speci�ed upper-bound. Thus we require that all sporadic tasks in
our applications have a known lower-bound, T , such that 8i : Ri+1�Ri � T .

2.4 Hard and Soft, Values and Gain

Deadlines may be hard or soft, whereupon tasks are referred to as hard or soft
in accordance with the nature of their deadlines. Hard deadlines are those
for which the system fails to meet its requirements if a deadline is not met,
while missed soft deadlines merely cause system degradation. The measure
of degradation is often de�ned by a time-dependent value function attached
to each soft task, which represents the contribution of each task instance to
an aggregate system value as a function of when the task instance completes
relative to its deadline. A common scheduling criteria for such soft tasks is

7

to maximize the aggregate system value per time unit, henceforth referred
to as the system gain.

2.5 Processor Utilization

When seeking a cost-e�ective processor for a given set of perpetual real-
time tasks, the primary criteria is the schedulability of hard tasks and an
acceptable system gain for the soft tasks. A common secondary criterion is
to maximize the processor utilization. When dealing with a set of purely
periodic tasks, � , each task i 2 � having a task period Ti, and a �xed com-
putation time, Ci, for all instances of task i, then the processor utilization,
u(�), is readily computed by

u(�) =
X

i2�

Ci

Ti

: (1)

2.6 Real-Time Applications

We de�ne a real-time application as one comprised of arbitrary mixtures of
perpetual periodic and sporadic tasks. In a hard real-time application, all
tasks are hard, while in a soft real-time application, all tasks are soft. The
real-time systems we wish to address will usually contain a mixture of both
hard and soft tasks. A major challenge for the successful implementation
of such real-time systems is �nding a cost-e�ective platform and a practical
algorithm for scheduling these tasks in a manner that always guarantees the
hard deadlines while ensuring that the soft tasks contribute an acceptable

system gain.
Practical real-time scheduling algorithms have been studied extensively

in recent decades, e.g. [SC88], and it is generally well-known whether a given
scheduling policy can reliably schedule a given task set on a given run-time
platform. The easiest case to handle is when all tasks are periodic, preemp-
tive, independent, and with �xed computation times per task. Preemptive

tasks are such that their execution can be interrupted at any point of execu-
tion to execute a higher priority task. Independent task are those which have
no precedence constraints and lack shared resources which require synchro-
nized access, so that no task can be blocked by another task and therefore each
task can be scheduled without considering how other tasks are scheduled.

8

2.7 Optimal Hard Scheduling

In a hard real-time context, a given scheduling policy is considered optimal if
it always �nds a feasible schedule if such a schedule exists. It is well known
that when using conventional priority-driven scheduling, then EDF is opti-
mal for the above systems when task priorities can be dynamically altered
in accordance with the scheduling policy [Der74]. RM scheduling, on the
other hand, is optimal for the above systems when the scheduling policy
must determine a �xed-priority for each task [LL73]. As already mentioned,
both policies have very simple utilization-based schedulability criteria. Both
policies are also practical in the sense that online scheduling overheads are
generally proportional to the number of tasks. RM scheduling overheads are
lower, thanks to the �xed priorities, while EDF-scheduled processor utiliza-
tions are generally higher. No wonder that both policies are quite popular
in hard real-time systems.

2.8 Best-E�ort Soft Scheduling

In a soft real-time context, a given scheduling policy might be considered
optimal if it maximizes the expected system gain. When dealing with inde-
pendent sporadic tasks and �xed task priorities, allocating higher priorities
to tasks with the higher value densities is known to be optimal [Whi92],
the task value density being equal to the task value divided by the aver-
age task execution time. Due to their sporadic nature, task release times
may vary from one run to another, so there may very well be a di�erent
allocation of priorities which would provide a higher system gain for spe-
ci�c runs. Nevertheless, given that these task release times are random, the
above density-based priorities should maximize the mean system gain over a
signi�cant enough number of runs. Scheduling policies which maximize the
expected gain are generally referred to as best-e�ort policies.

2.9 Speculative Soft Scheduling

When dealing with non-independent soft tasks, e.g. tasks which require
synchronized access to shared resources, density-based priorities might not
maximize the expected gain due to the blockage of higher density tasks by
lower density tasks. A less greedy policy, on the other hand, might achieve

9

a higher gain by only scheduling task instances when all of their required
resources are available, thereby reducing blockage. Heuristic policies which
have been shown to often be e�ective, but which lack proved best-e�ort
qualities, will henceforth be referred to as speculative policies.

2.10 Complex Real-Time Applications

Practical scheduling and schedulability criteria get more complicated when
dealing with multi-processor platforms, with dynamic task sets, and with
more complicated task set characteristics, such as those having both hard and
soft deadlines, those having both periodic and sporadic tasks, those having
varying computational needs, those having tasks with non-preemptive code
segments, and those having inter-task dependencies such as those caused by
precedence-constraints, communicating tasks, and shared resources. First of
all, such systems require a load-balancing scheme for allocating tasks or task
instances to each of the available processors without overloading any of these
processors. Once allocated, appropriate scheduling policies must schedule the
tasks on each of the processors while taking into consideration the unknown
release times of the sporadic tasks as well as non-preemptive code segments
and inter-task dependencies. Moreover, dynamic task sets require e�ective
and practical load-balancing and scheduling algorithms which can be carried
out online with reasonably low overheads.

The targeted problem domain for this paper includes applications with
all of the above forms of complexity, but with the following restrictions, all
for simplicity's sake:

1. We assume that tasks are computationally intensive and that the plat-
form processor capacities are the only limiting factors when carry-
ing out task load-balancing. Memory and I/O resources are there-
fore currently assumed to be in�nite, even though extensions to multi-
dimensional resource limitations appear straight-forward.

2. We assume that the dynamic task sets and task computational re-
quirements are state-dependent, in the sense that the application has
an a priori known set of states, and each state has a known �xed set
of tasks with known worst-case computational requirements per task.
This would enable us to resolve most load-balancing and scheduling is-

10

sues o�ine for all possible states if the number of states were reasonably
small.

3. We generally assume that system states vary only occasionally, i.e. at
signi�cantly low rates, so that load-balancing and task scheduling for
each new state can be carried out knowing that the new state will per-
sist long enough to be considered perpetual. We later show, however,
when and how this assumption can be relaxed.

4. We assume that for each possible system state, there exists an a pri-

ori known uniprocessor scheduling solution, i.e. a scheduling policy
and computational capacity such that the policy can be shown to ade-
quately schedule the required task set for that state when these tasks
share a single processor with the given capacity. To accommodate all
possible system states, all we have to do is provide a single processor
with the worst-case computational capacity. A single processor with
the worst-case capacity will usually not be available on the targeted
multi-processor run-time platform, but this constraint guarantees, at
least, that the task characteristics for each system state are such that
the schedulability of any given task subset on any given processor can
be determined o�ine, as well.

For the sake of brevity, real-time applications belonging to the above
multi-processor problem domain, will henceforth be referred to simply as
complex real-time applications. The paradigms serving current commercial
and research real-time platforms cannot o�er practical solutions for such
applications. Real-time extensions to commercial operating systems, e.g.
Real-time UNIX [FGG+91] and Real-time MACH [TNR90], generally cater
to best-e�ort average performance and are therefore inappropriate for hard
real-time. Scheduling in the distributed MARS platform [DRSK89] is static,
and therefore inappropriate for dynamic task sets. Spring [SR89] strives for
a mode
exible combination of o�-line and on-line scheduling techniques,
but it, too, must rely on static load-balancing and scheduling when dealing
with mandatory hard tasks. The object-oriented MARUTI system [LTCA89]
focuses on fault-tolerance and on-line FCFS (�rst-come-�rst-serve) guaran-
tees using a non-preemptive, calendar-based, scheduling scheme, so it cannot
accommodate dynamic task characteristics or best-e�ort adaptation to dy-
namic run-time circumstances. The distributed ARTS kernel [TM89] uses on-

11

line, RM-based, preemptive priority-driven scheduling, which can more read-
ily cater to dynamic task sets and dynamic, value-oriented, load-balancing,
but task priorities are static and therefore inappropriate for dynamic task
characteristics. RM schedulability gets much more complicated when deal-
ing with complex task characteristics, so ARTS can be impractical for dy-
namic task sets when they have complex task characteristics. The object-
oriented CHAOS kernel [GS89] focuses primarily on eÆcient tailoring of the
real-time kernel to arbitrary platforms, thereby enhancing the portability of
its applications, but it, too, uses various forms of FCFS guarantee-oriented
scheduling which cannot readily accommodate complex task characteristics.
Thus, when dealing with hard real-time tasks, all of the existing platforms
use static scheduling or online-FCFS guarantee scheduling, neither of which
can support best-e�ort adaptation to dynamic run-time circumstances.

The inability of these platforms to cater to our complex problem domain is
not surprising. It is well known [MD78] that optimal hard real-time schedul-
ing on a multi-processor platform is NP-complete even for the much simpler
case of purely periodic and independent tasks. When dealing with complex

real-time systems with hard deadlines, even non-optimal policies can become
impractical for online use since these cannot provide a priori guarantees that
all hard deadlines will always be met. A portable solution must therefore
somehow devise o�ine solutions to cater to all possible system states and all
members of a family of platforms. But, as we soon point out, the growth of
possible platform con�gurations and system states is usually exponential, so
that such an approach would be intractable, as well. Thus, the development
of a top-layer design approach for such systems is a formidable challenge.

3 Motivation

The quest for less complicated, more
exible, and less expensive real-time
software is the primary motivation for seeking a platform-independent, top-
layer design approach for complex hard real-time systems. Another primary
motivation for portability is that it paves the way to two additional features
of our top-layer approach: the ability to support concurrent real-time appli-
cations and best-e�ort adaptation in a hard real-time context.

In many real-time applications, customizing the application to run on
a new platform and getting it to run concurrently with additional applica-

12

tions can be a relatively simple matter. This, however, is rare with complex

real-time applications, and even more rare when these applications have hard
tasks. Before we show how these goals are obtained, we must �rst under-
stand why traditional bottom-up approaches are inherently limited in these
respects.

3.1 Traditional Bottom-Up Approaches

As previously mentioned, choosing a cost-e�ective run-time platform is a ma-
jor challenge for complex real-time applications. A very powerful platform,
i.e. one which would result in a platform utilization which is much lower than
what can be obtained by an optimal scheduler, might indeed minimize the
task coding e�ort and simplify scheduling, but it also results in higher produc-
tion costs. A less powerful platform might require more optimized code and a
more sophisticated scheduling scheme, thereby incurring higher development
costs. Traditional real-time design approaches work bottom-up from the plat-
form hardware to the top-layer application, working from known times for
hardware instructions to guaranteed worst-case upper bounds on the execu-
tions of system and library routines invoked by the application tasks, to guar-
anteed worst-case predictions on the timing behavior of the tasks themselves.
As already mentioned, when dealing with a complex real-time application,
�nding an adequate load-balancing and real-time scheduling solution for a
given platform can be a very computationally intensive process, and it must
also consider every possible system state.

A bottom-up approach essentially forces us to commit to a particular
platform very early in the system design when precise task requirements
and characteristics, e.g. worst-case execution times, can still be quite vague.
Thus, the run-time platform is essentially chosen before we can adequately
evaluate its cost-e�ectiveness. Alter the nature, number, and capacity of the
available platform processors and we must once again use computationally
intensive algorithms to devise new load-balancing and scheduling solutions.

3.2 Portability and Real-Time Software Costs

The inherent platform-dependence of bottom-up real-time software has very
serious implications on real-time software development and maintenance costs.

13

Major diÆculties arise when poor initial estimates or evolving system
requirements result in �nding the targeted speci�cations unrealistic or the
chosen platform to be inappropriate. For example, such diÆculties are com-
mon place in cutting-edge projects in which little can be learned from past
project experiences, or in which available processing resources are often lim-
ited by volume, weight, and power consumption. Such diÆculties generally
have a severe impact on project scheduling and budget, and this impact is
often magni�ed by greater task scheduling complexities because new schedul-
ing solutions may require radical code changes. Note that once the chosen
platform has been found inadequate, porting a complex application even
to a platform with an equal number of faster processors might require new
scheduling solutions. The new schedulers may be required either because
the original cyclic executive solution assumes minimal execution times for
certain activities and these assumptions no longer hold, or because the orig-
inal scheduling solution is no longer possible because the improvements in
the original worst-case execution time estimates are not evenly distributed
among the tasks. Porting a complex real-time application to a more cost-
e�ective platform, e.g. to a smaller number of more powerful processors, will
require a re-distribution of tasks among processors as well as new scheduling
solutions for each processor.

Platform-independent software is a valuable asset even when the tar-
geted platform is indeed appropriate. Application debugging and testing are
formidable tasks for many real-time systems, and portable applications can
be developed and tested on platforms with the most e�ective tools avail-
able and then ported to the production platforms, which are often bereft of
such tools. Portability facilitates software development, eases software main-
tenance, encourages software reuse, and increases application longevity by
enabling easy porting to new platforms when initial platforms become obso-
lete. Thus any design method that produces software that is more portable
is worth its weight in gold.

3.3 Concurrent Real-Time Applications

Another primary motivation is the growing need for platform-independent
real-time applications which can run concurrently and reliably along-side ad-
ditional platform-independent real-time applications. As platform-independent
Java-coded multimedia applets grow more prevalent, we require a design

14

method that will enable arbitrary sets of applets to reliably share a given
run-time platform if the resources of that platform are adequate. In a con-
ventional approach to real-time scheduling, each set of applets and each plat-
form poses a di�erent scheduling problem which would have to be resolved
online to determine whether platform resources are adequate and if yes, what
the scheduling solution should be. As already stated, for complex real-time
applications, the online resolution of such problems would be computation-
ally intractable. A major top-layer design objective is to enable us to resolve
each application's scheduling needs independently and o�ine, and to do so
in a manner which will support an online time-sharing mechanism which will
consider the real-time deadlines of each application and enable us to quickly
evaluate whether available platform resources are adequate.

3.4 Best-E�ort Adaptation

The design of portable real-time applications makes way to a new challenge
which was only mildly relevant for platform-dependent applications in the
past. When designed to run on a given platform, an application will be
generally be designed a priori to best exploit the available resources of that
platform. When designed to run on any of several platforms, an application
aught to be designed with inherent
exibility so that it can adapt to best ex-
ploit the available resources on each run-time platform. Even when designed
for a speci�c platform, an application with state-dependent characteristics
aught to best adapt to each state. To distinguish between this and best-
e�ort scheduling, this will be referred to as best-e�ort adaptation. To this
end, we introduce the notion of a set of application modes of operation to
be chosen from, each mode known to contribute to some notion of a system
gain. The current application mode must then be selected for each platform
and for each state in a manner that will maximize the system gain without
overloading the platform resources, e.g. without missing any hard deadlines.
Di�erent modes may employ di�erent algorithms, di�erent task sets, and
di�erent task requirements, e.g., di�erent task periods. Such multiple-mode
applications will henceforth be referred to as best-e�ort applications, and we
will generally assume a large number of modes to best accommodate a large
variety of states and platforms.

15

4 A Top-Layer Approach

Our goal, therefore, is to produce real-time software that can readily port
from one shared-memory multi-processor platform to another without alter-
ing the program and without having to devise new scheduling solutions for
each new platform. The run-time platform can therefore be �nalized much
later in the development cycle when all the necessary data are available.

The keys to our approach are simple yet
exible platform and aggre-
gate job-oriented program models that should enable decomposing larger,
generally highly complex, scheduling problems into several smaller, gener-
ally simpler, scheduling problems that can be resolved independently and
o�ine, and then encapsulated in a platform-independent manner. Each of
these smaller scheduling problems are referred to as a job, and software com-
ponents developed using the approach can be treated as reusable real-time

objects that should be readily incorporated into new programs without hav-
ing to deal with scheduling details within them. Well designed jobs should
facilitate near-optimal platform utilizations. Evolving system requirements
could then be readily resolved with the related jobs without e�ecting the
other jobs in the system. Schedulability is at the core of all real-time sys-
tems, so this modularity in the scheduling domain should greatly reduce the
complexity of load-balancing and the making of best-e�ort mode selection
decisions.

4.1 The Platform Model

We will generally assume that all targeted platforms belong to the same
family in the sense that task execution times on any given processor within
the family are assumed to be equal to the number of machine cycles needed to
complete the task, divided by a processor characteristic called the processor
capacity. This notion of capacity essentially re
ects the processing speed of
that processor. All platforms within a family are assumed to di�er only in
the number and capacity of the shared-memory processors in each platform.

When all processors share a common machine language and the execu-
tion of each machine instruction requires an equal number of machine cycles
for all processors, then the processor capacity is simply equal to the inverse
of the machine cycle time and therefore prescribed in MHz units. For such
platform families we seek binary-level portability, whereby top-layer applica-

16

tions should run on an arbitrary number of shared-memory processors with
arbitrary processor capacities without modi�cation. This restricted notion
of a platform family can be extended to embrace source-level portability, i.e.
di�erent processors and di�erent machine languages, as well. Once the fam-
ily of processors has been established, each platform is fully characterized by
a set of processor capacities.

Note that the primary obstacle to portable real-time applications is the
complexity of resolving scheduling in a uniform manner for platforms with
di�erent task execution times and di�erent resource capacities. Even when
assuming portability over a speci�c family of processors, di�erent proces-
sor numbers and capacities can produce an exponential growth of di�erent
scheduling problems. When dealing with hard complex real-time applica-
tions, resolving scheduling and schedulability for all possible platform con-
�gurations would therefore be intractable. Thus the development of portable
real-time applications is a formidable challenge even when limited to speci�c
processor families.

4.2 The Static Top-Layer Program Model

In the static program model, the software application is modeled as a set
of real-time subsystems, called jobs, each job comprising of any number of
periodic and sporadic real-time tasks. As previously described in Section 2,
the computational requirements of each task are typically provided in time
units and for a speci�c processor. Our platform model assumes a speci�c
family of processors, but the processor capacity (speed) may vary, so the
task computational requirements are therefore speci�ed, instead, in machine
cycles. Real-time scheduling is independently resolved o�ine for each job by
initially assuming that the job task set runs on a dedicated processor, by
selecting an appropriate conventional policy for scheduling the job's internal
tasks, and by computing the minimal processor capacity, i.e. the minimal rate
of machine cycles needed, to guarantee all hard deadlines and the minimal
soft value contributions required by that job. One job, for example, could be
employing a cyclic executive policy to schedule its tasks, and will be known
to satisfy its temporal requirements when run on a processor with a machine
cycle rate of 2 MHz or more, while another job might use a rate-monotonic
scheduling policy for its tasks, and its minimal machine cycle rate might be
10 MHz.

17

Thus, the top-layer program model can be applied to arbitrary job sets,
provided that each job consists of a task set that has a known schedul-
ing solution for an arbitrary known processor capacity. The real-time task
characteristics and scheduling solutions are encapsulated within the jobs by
making each job personally responsible for its internal scheduling, e.g., by
including a scheduling task or thread for facilitating the chosen scheduling
policy. The tasks of a job could even be completely serialized at compile time
to eliminate the need for this run-time scheduling task.

4.2.1 Job Time-Sharing

The load-balancing granularity in our model is the program job, i.e., it is
understood that all the tasks in a given job will always run together on a
single processor, always share the same memory, and otherwise compete with
other jobs for resources o�ered by the shared platform. Once a satisfactory
scheduling algorithm is determined o�ine and implemented for each job,
then the normally dynamic, on-line scheduling of all the tasks in the system,
i.e., of all the tasks in all the jobs, can be reduced to that of the dynamic,
on-line scheduling of only the jobs. Once a job is scheduled, its internal
o�ine-determined scheduling algorithm determines which of its tasks will
run within its allocated running slots. An appropriate real-time job time-

sharing scheme can then enable several jobs to share a given platform if it can
guarantee that each job will be dispatched in a timely manner and allocated
the required rate of machine cycles such that the job's internal scheduling
policy will always reliably schedule the job's tasks. An overloaded processor
is one which has been allocated a job set for which such guarantees cannot
be provided by the job time-sharing mechanism. The jobs running on a
given platform may belong to a single application or may belong to several
concurrent applications, so the same scheme can be used to time-share any
number of real-time applications.

4.2.2 The Job Bandwidth

To accommodate the above time-sharing scheme, the minimal rate of ma-
chine cycles required for each job must be appropriately augmented to ac-
commodate the worst-case job time-sharing overheads. This augmented rate
of machine cycles is referred to as the job bandwidth, a term used to denote a

18

periodic allocation of machine cycles as in the bandwidth-preservation tech-
niques of [LSS87, SSL89]. We then require that the job time-sharing scheme
on each processor must reliably guarantee scheduling for an arbitrary job set
if the sum of job bandwidths does not exceed the given processor capacity.
Di�erent time-sharing schemes can be used for di�erent classes of complex
real-time applications, with EDF job time-sharing being quite e�ective when
dealing with computationally intensive tasks and relatively relaxed task fre-
quencies.

Another interesting job time-sharing feature is that minimal bandwidth
allocations are guaranteed for all jobs in the system so that jobs with low
priority tasks never starve when running together with jobs containing higher
priority soft tasks that would otherwise fully load the processor. The pro-
posed EDF job time-sharing scheme may appear trivial, but we know of no
previous attempt to thus resolve in this way complex scheduling problems of
this nature.

4.2.3 Black-Box Jobs

We also require that the job time-sharing mechanism need know only the
job bandwidths and the current earliest deadline for each job. This enables
top-layer jobs to be treated as black-box real-time software objects in the
sense that they can be reliably load-balanced and time-shared without having
to divulge their internal task characteristics and scheduling policies. This
contrasts with conventional approaches where the real-time platform can only
cater to the needs of white-box applications, i.e. applications which reveal all
tasks and a signi�cant set of task characteristics. Each job sharing a given
processor can therefore employ a totally di�erent scheduling policy, e.g. CE,
EDF, or RM with PCP. Major job design goals should include minimizing
the job bandwidths and maximizing the job bandwidth utilizations, i.e. the
rate of machine cycles actually consumed by the job tasks divided by the
job bandwidth. If these goals are achieved, time-shared, real-time scheduling
can be near optimal. Job bandwidths and utilizations should therefore be
carefully considered when decomposing the software application into jobs and
when selecting scheduling policies for each job.

19

4.2.4 Job Load-Balancing

Schedulability is at the core of all real-time systems. Therefore, this black-
box modularity in scheduling domain greatly reduces the complexity of load-
balancing when the job is the basic load-balancing entity. As previously
mentioned, arbitrary job sets may share a given processor if the sum of job
bandwidths does not exceed the processor capacity. Thus the allocation
of jobs to processors on any given shared-memory multi-processor platform
is essentially a generalization of the classic binpacking problem, and the
processor capacities should generally be great enough to contain several jobs.
Binpacking is strictly NP-complete, but it has several practical algorithms,
e.g. �rst-�t-decreasing, which we have appropriately adopted to carry out
job load-balancing in our model. A given platform can therefore serve any
application if the job bandwidths of that application can be partitioned over
the processors of that platform without overloading any of the processors.

This static program model is portable in the sense that job load-balancing
is readily carried out on any platform without having to alter the scheduling
algorithms being internally used by each job. This scheme is also readily
applied to systems running several concurrent real-time programs, in which
a request to run a program is accepted if the subsequent aggregate job set
can be load-balanced over the available processors based solely on the job
bandwidths within the programs. Thus job bandwidths and appropriate
algorithms for real-time job time-sharing and load-balancing provide a simple
mechanism for determining whether arbitrary top-layer programs can reliably
run on arbitrary platforms.

4.3 The Dynamic Top-Layer Program Model

The dynamic, top-layer program model assumes that system requirements
and available resources can be represented by well-de�ned platform and pro-
gram states that vary at relatively low rates. The platform state re
ects
the available platform resources and it is altered when a processor fails or
when there is a hot (on-the-
y) recon�guration of hardware. The program

(or workload) state is altered when a user request or other run-time factors
require changes in the current task mix and/or a�ect the task execution times
and how quickly these tasks must respond. Such changes clearly alter the
minimal processing bandwidths required by each job to satisfy its task needs,

20

so the current allocation of jobs to processors may no longer be eÆcient or
valid.

To address the needs of such systems, the static top-layer program model
is extended by letting each job support one or more alternate modes of op-
eration, sometimes referred to as job versions, each mode encapsulating an
arbitrary set of tasks and an appropriate internal scheduling policy for satis-
fying each task's deadlines when it is provided with a minimal bandwidth of
machine execution cycles. Each job mode is therefore fully characterized by
the required bandwidth along with a reward representing the aggregate value
contributed by the internal tasks when provided with the given bandwidth.
These job mode bandwidths are already determined o�ine along with the
internal scheduling policies for each job mode, so they must be provided as
tables or functions of the a priori known program states. Thus in a cellular
base station application, (see Section 4.3.4) the bandwidth for handling a
telephone session should vary as a function of the current session mode, e.g.
the chosen sample rate and error-correction method, as well as the state of
the session, e.g. whether connecting, speaking, or faxing. Job mode rewards,
also, may be o�ine determined as functions of the program state, e.g. a
higher session sample rate will contribute very little when connecting and
in other states the contribution will depend on the spectral nature of the
information being transferred. Suspendable jobs are also supported by the
dynamic programmodel. Jobs that can be suspended have a zero-bandwidth,
zero-reward suspend mode to indicate that possibility.

In the model, the aggregate system gain must be adequately expressed
as a function of the rewards provided by the current job modes. In some
cases, the system gain function might be additive, i.e. equal to the sum
of current job mode rewards. Best-e�ort accommodation for each state is
accomplished by the online selection of job modes that maximize the system
gain for that state without overloading the available processors. Thus, all
job mode bandwidths and rewards must be reevaluated with each altered
state, whereupon they must be considered in the re-selection of job modes
and the re-allocation of jobs to processors. Each job may have an arbitrary
number of states, and the application state is a combination of current job
states, so the number of system states can be exponential. For such cases, the
o�ine resolution of load-balancing and scheduling at the task level would be
intractable for all possible systems states even when dealing with relatively
simple task sets.

21

4.3.1 Online Meta-Control Decisions

The process of choosing between available software adaptations, e.g. alter-
nate job modes, is referred to as software meta-control because it essentially
determines which tasks must be scheduled, what their time constraints are,
and possibly which scheduling policy should subsequently be used. In the
dynamic top-layer program model, online software meta-control decisions re-
quire best-e�ort job mode selection and job load-balancing, which is shown
to be equivalent to a composite binpacking and multiple-choice knapsacking
problem, which is NP-hard. Online meta-control decisions must be carried
out with each program or platform state transition. Therefore, minimal and
reasonable decision-making overhead is crucial. To minimize the response
time for such changes, we have developed two families of practical approxi-
mation algorithms, QDP and G2, for making near-optimal best-e�ort meta-
control decisions with reasonable time complexity, typically providing 95%
performance in fractions of a second for substantial numbers of jobs, modes,
and processors.

In our top-layer program model, task characteristics, constraints, and
scheduling policies are encapsulated within each job mode. Thus each job
must also implement an online mechanism for providing the required band-
width for each available mode as a function of the current system state.
We assume that extensive o�ine schedulability analysis for each job mode
can produce eÆcient online mechanisms for providing these state-dependent
job mode bandwidths, and a similar online mechanism must be provided for
the state-dependent job mode rewards as well. The system must therefore
respond to each state transition by querying each job for its current mode
alternatives, mode bandwidths, and mode rewards so that it can make a
best-e�ort meta-control decision.

4.3.2 Meta-Control Decision Epochs

As already described in Section 2, we assume in our model that the rate
of altered system and platform states is reasonably low so that task sets
remain stable enough for conventional scheduling policies to be applied to
them over a signi�cant time interval. Furthermore, we assume that software
con�guration adaptations, i.e. transitions from one job mode to another, can
either be carried out instantly or be done quickly enough that these adapta-

22

tion overheads can be accommodated. As we soon show by example, many
applications can be designed to meet these limitations, and we also believe
that these limitations will eventually be relaxed by appropriate extensions to
our current meta-control algorithms. We also assume that meta-controller
decision-making processes can be accommodated without disrupting essen-
tial real-time processes. One way of avoiding disruption is to dictate that
all meta-controller decisions take e�ect at discrete points in time called deci-
sion epochs, and to ensure that task deadlines are adequately synchronized
with these epochs so that new tasks can be introduced and old tasks can be

ushed simultaneously.

4.3.3 A Virtual Reality Example

Consider, for example, a virtual reality program required to maximize the
overall realism produced by simulating and displaying realistic behavior of a
dynamic set of visible entities. Each entity can be treated as a job with sev-
eral modes, each mode using a di�erent simulation update rate. The realism
contributed by each entity's mode could be a factor of the entity's state, e.g.
the nature of its motion as well as observed size and visibility, so the reward
attributed to each entity must consider how the update rate for that entity
will contribute to the overall realism in its current state. Higher update
rates might even imply di�erent simulation models requiring a di�erent set
of tasks and constraints, so that the task set serving each entity mode may
be di�erent. Once the entity modes have been determined, it is essential that
all hard deadlines associated with these tasks be met. To facilitate seamless
meta-controller adaptations, we might decide that adaptations may only oc-
cur at epochs that are at times that are multiples of 100 milliseconds. This
decision implies that all other update rate alternatives should be multiples
of 10 Hertz as well. This would enable the system to instantaneously switch
job modes, i.e., update rates and simulation models, at any given adaptation
epoch, since none of the tasks belonging to the replaced simulation models
should be executing at those points in time. Another interesting possibility
might be to carry out the adaptations in stages, whereby all transitions to
lower bandwidth modes are carried out �rst, asynchronously, at their �rst
possible opportunities, and all other transitions can then follow in a care-
fully crafted sequence which never overloads the system. The existence of
such a sequence would have to be ascertained as part of the meta-controller

23

decision-making process.

4.3.4 A Cellular Base Station Example

There are, however, many examples in which meta-controller decision epochs
and task timing constraints need not be synchronized. In such a case, the
need for predetermined decision epochs and instantaneous transitions are not
necessary. In a cellular phone base station, for example, a rising number of
subscribers or a faulty processor would cause the base station to gradually
curtail a variety of voice enhancement and noise-cancellation processes so
that a uniform highest overall service level is maintained for the current
number of subscribers and processors. A base station has several seconds to
decide whether or not it can respond to a new subscriber, and how it can
best adapt to the new work load. This provides plenty of time for gradually
phasing out old tasks and phasing in new tasks, without risking any missed
hard deadlines in tasks serving current subscribers. This example illustrates
how even signi�cant meta-control adaptation overheads might be handled
when the system is allowed an adequate response time to changes in its run-
time requirements.

5 The ATLAS Experiment

Once the algorithms have been devised, it is necessary to formally derive
their computational complexity to determine whether they have a chance of
behaving as hoped. However, this formal modeling is not enough. Theoret-
ical estimates are only orders of magnitude and it is not known what the
multiplicative constants are. It is necessary to build and run a system de-
signed according to the top-down principles, making use of these algorithms,
in order to verify the e�ectiveness of the approach. To this end we have
devised a scalable, best-e�ort real-time system with a realistic mix of hard
and soft deadlines, with very frequent meta-control decision epochs, capable
of porting unaltered to any of several accessible platforms, while meeting all
hard deadlines and maximizing the system gain for each platform.

The system developed is a music synthesizing system called ATLAS, an
acronym for a top-layer audio synthesizer. All digital synthesizers produce
digital samples that must be output via appropriate digital-to-analog inter-

24

D/AFIFO
-

fs"!

voice1

"!

voiceN

ppp "!

mixer

Graphic Display

MIDI

Controls

Synthesis Methods

Waveform Tables

-

Q
Q
Q
Q
Q
Q
QQs

ppp

-

�
�
���

Q
QQs

�
��>

XXXz

-

�
�
���

ATLAS

Trace Recording-

Figure 2: The ATLAS Application

faces at a predetermined sample rate. As depicted in Figure 2, the digital
samples produced by ATLAS are all software computed and fed into a hard-
ware queue (FIFO) in real-time, so the digital samples for each note must be
generated and mixed at rates that sustain the
ow of output samples via the
hardware queue. The notes generated by ATLAS are dictated by a standard
online MIDI1 input driven by several electronic instruments, each instrument
producing sequences of requests to start or stop the playing of one or more
concurrent notes, e.g. when playing a chord. Each ATLAS note that has to
be generated is referred to as a voice, with higher pitched voices requiring
higher sample generation rates. Each generated note is also recorded on the
the real-time display depicted in Figure 3. Thus the internal application
state is a function of the number of concurrent MIDI-dictated voices, the
nature of the instruments, and the voice pitches, and ATLAS is required to
best adapt to each state on any of the targeted runtime platforms.

To accommodate di�erent platforms and dynamic system states, ATLAS
provides several synthesis modes (methods) of varying quality for generating
the digital samples for each instrument. Each mode is characterized by the
computational bandwidth requirements of the mode and the signal-to-noise
ratio produced by the mode. As illustrated in Figure 4, each synthesis mode
may require any number of periodic tasks. An FM (frequency modulation)

1MIDI is an acronym for the standard Musical Instrument Digital Interface Speci�-
cation 1.0, which was �rst established by the International MIDI Association in North
Hollywood, California in 1983.

25

Figure 3: Real-Time ATLAS Output

26

��
��
env ��
��
osc- -

��
��
env ��
��
osc-

��
��
env ��
��
osc-

��
��
mix

Q
QQs

�
��3

��
��
fm
Q
QQs

��
��
noise ��
��
�lter- -

��
��
env
Q
QQs

FM additive subtractive

-
ggg

ggg

Figure 4: Typical Musical Synthesis Methods

synthesis mode, for example, requires an osc oscillator task for generating
a periodic stream of digital samples which produce a voice waveform with
an appropriate pitch, another fm task for generating values which frequency
modulate the oscillation pitch, and a third env task for generating oscillation
amplitude values to obtain an appropriate power envelope for each note. An
additive synthesis method may require any number of oscillator and envelope
tasks along with a mixer task to mix their outputs. A subtractive synthesis
method will require a noise generation task, a digital �ltering task to obtain a
speci�c frequency spectrum, and an envelop task to modulate the amplitude.
These tasks are periodic in the sense that they are periodically invoked to
process and generate sample packets containing several samples at a time.
These packets can then serve as inputs to other synthesis tasks, including
the �nal mixer task of Figure 2 that mixes the samples of all concurrent
notes before feeding its output packets into the �nal hardware queue.

Discontinuities in the audio output, o�-pitch notes, and o�-beat notes,
are all very annoying even to the uneducated human ear and are therefore not
tolerable. Thus, hard ATLAS requirements include that all task deadlines
which a�ect voice pitch, voice synchrony, the steady
ow of digital samples
must always be met, and all events and decisions must be recorded so that
performance and compliance can be veri�ed. The soft requirements are that
the generated notes be displayed, and the quality of the produced music be

27

best-e�ort, i.e. that for every system state, the system must always select
the synthesis modes that maximize the overall SNR (signal-to-noise ratio)
without jeopardizing the completion of any hard deadlines. For any given
platform, one can always devise a system state, i.e. a large enough number
of concurrent high-pitched voices with very demanding synthesis methods,
which will overload that platform even when using synthesis methods with
the lowest bandwidths. Lower volume voices contribute less to the SNR, so
lower volume voices will be shed until the hard deadlines of all remaining
voices can be guaranteed.

Each concurrent voice is treated here as a job, the synthesis method op-
tions available to each voice are treated as job modes, and the number and
nature of concurrent voice jobs is clearly dynamic. As indicated by Figure 2,
besides the dynamic number of voice jobs there are several additional jobs in
the system responsible for MIDI processing, interactive graphic display, and
the time-stamped recording of the internal trace events necessary for veri-
fying and evaluating system performance. The top-layer architecture must
facilitate the online best-e�ort selection of voice job modes, the dynamic load-
balancing of the varying number of jobs over the available processors, and
the real-time time-sharing of the job subsets sharing each of the processors,
and it must do so reliably on a diverse range of platforms.

The ATLAS application actually poses several additional challenges to
our top-layer approach. Somewhat contrary to our model assumptions, AT-
LAS state transitions are actually quite frequent, forcing us to carry out
meta-controller decisions several times a second. Real-time scheduling must
therefore be resolved in a manner which can accommodate synthesis mode
transitions at such high rates. Furthermore, voice synthesis mode transitions
cannot be carried out while a note is being generated, so that each meta-
control decision must consider a di�erent set of voice mode alternatives for
each decision epoch. Finally, when dealing with hard real-time applica-
tions, our top-layer approach generally assumes WCETs for all tasks and it
assumes that all platforms are such that task WCETs are readily derived for
each platform. We believe, however, that our top-layer approach has great
potential for accommodating non-deterministic platforms even when assum-
ing sub-WCETs, thereby signi�cantly increasing system performance for such
platforms. Currently targeted ATLAS platforms include non-deterministic
PC and Silicon Graphics platforms so that this potential might be explored
and veri�ed. The successful application of our top-layer approach to this

28

application would therefore serve also as an indicator regarding the
exibility
of the approach and the hardness of assumed limitations.

Our current, non-preemptive, uniprocessor version of ATLAS has been
fully designed and coded for two very di�erent platform families, PC com-
patibles and Silicon Graphics, by way of a uniform platform-interfacing layer
called VaPoR. Note that developing VaPoR-like layers will no longer be nec-
essary as cross-platform virtual platforms for real-time evolve, e.g. the PERC
virtual machine for real-time Java programs. Thus far, this initial ATLAS
version has been fully tested for a small set of musical scores and program
con�gurations on two very di�erent platforms within the PC family, the au-
thor's 486/33 MHz PC, and the advisor's Pentium which is more powerful by
an order of magnitude. First it was developed and tested on the author's ma-
chine and then binary-ported and run without modi�cation on the advisor's
machine as well. A standard MIDI �le served to emulate online MIDI input
to ensure that identical experiments could be carried out on both machines.
Continuous output sample streams and precise voice pitches were maintained
on both machines, but the SNR was much higher on the more powerful plat-
form due to the automatic choice of higher sample rates and more accurate
synthesis modes. When platform resources might be overloaded, only the
higher volume voices were generated. No audible faults were detected on
either platform, even though assumed voice generation execution times were
signi�cantly less than worst-case!

For a quantitative analysis of performance, ATLAS supports a minimally
intrusive trace mechanismwhereby events, decisions, and strategically placed
program checkpoints are all recorded in a cyclic double-bu�ered trace bu�er
which is periodically
ushed to an appropriate �le under meta-controller con-
trol. A detailed analysis of these recordings veri�ed that no hard requirements
were breached. The best-e�ort average system gain, i.e. the SNR produced
by the choice of voice synthesis modes for each time frame, was indeed 95
percent the optimal for each platform, clearly matching that which was theo-
retically anticipated. Above all, we have successfully integrated and applied
the software architecture of Section 4.3, the real-time time-sharing princi-
ples of Section 4.2.1, and the meta-control algorithms of Section 4.3.1 in a
manner wich enabled the top-down developed program to port very nicely to
several platforms within a predetermined family. Furthermore, the current
ATLAS application has been implemented in a manner which should enable
it to recompile, as is, and run equally well on any Silicon Graphics platform,

29

thereby illustrating that top-layer applications can readily port to additional
platform families, as well. Though fully tested, so far, only on uniproces-
sor platforms, the extension to shared-memory multiprocessors is relatively
straight-forward, and no diÆculties are anticipated. Thus the current AT-
LAS version already provides ample evidence that a top-layer is feasible - it
works!

Additional ATLAS requirements include support for a soft real-time in-
teractive, menu-driven, graphic display, as well as a hard real-time recording
of all events and decisions so that the timeliness of ATLAS activities can be
validated and the system gain can be evaluated. Targeted platforms include
several conventional parallel and distributed platforms which also have non-
deterministic elements, so ATLAS has been designed to e�ectively accommo-
date these elements, as well. ATLAS is an excellent testbed for the study of
complex real-time architectures because it is complex, platform requirements
are minimal, it is readily con�gured and scaled to overload any conceivable
platform, and hard real-time faults are readily detected by sensitive eyes and
ears.

5.1 A Conventional Approach

A conventional approach to such requirements would be to determine the
worst-case MIDI state to be supported by the system as well as the worst-case
set of operator-induced jobs, compute the WCETs for this state and these
jobs, and seek synthesis methods for this state which could be accommodated
by the platform. This is also how hardware synthesizers are designed, but,
as previously described, this would result in a very low average utilization
of platform resources, possibly as low as only a few percent. Furthermore,
determining the WCETs for targeted platforms is not always feasible, par-
ticularly when dealing with the ATLAS-targeted platforms which have non-
deterministic components, whereupon such an approach cannot serve hard

real-time applications. A conventional approach would also require a com-
plete worst-case characterization for all system components, including those
of the underlying platform layers as well. On a UNIX platform, for example,
we would also have to model all underlying audio, mouse, keyboard, display,
cache management, and �le I/O activities, as platform tasks which have to
be scheduled by an appropriate integrated scheduling policy along with the
top-layer tasks belonging to the application. When overloaded, conventional

30

approaches shed loads on a FCFS basis, without being able to consider the
e�ect of these loads on system gain.

Conventional approaches are also inherently non-portable. When porting
from one platform to another, scheduling policies generally have to be revised
because underlying platform tasks and all task characteristics will di�er on
the new platform, thereby altering the total set of tasks and the WCET
ratios between them. This is true even when porting to a faster platform
with identical machine instructions, since di�erent operating systems, hard-
ware devices, software drivers, and virtual memory con�gurations can all ad-
versely a�ect scheduling. Moreover, di�erent application task characteristics
usually e�ect the way the program should adapt to varying circumstances,
so conventional approaches cannot generally support automated best-e�ort
adaptation in a portable manner.

5.2 ATLAS Advantages

ATLAS's architecture enables it to automatically adapt to arbitrary MIDI-
speci�ed musical requirements by selecting those modes which will maximize
the synthesized SNR without sacri�cing any functional and temporal require-
ments. ATLAS's top-layer design also enables it to automatically port from
one platform to another, always best exploiting the resources available on
that platform. Probably the most exciting aspect of our ATLAS experience
is the success it appears to have had in more e�ectively accommodating the
non-deterministic elements prevalent in conventional platforms. Our current
version has been assuming typical, rather than elusive worst-case, execution
times, with safety margins of only 20 percent. The output audio FIFO acts
a shock absorber, and the current fullness of the FIFO queue acts as an
indicator as to how close we are to a missed deadline. We can therefore
relax our assumptions when the FIFO is full and be more careful when it
gets empty. Meta-control decisions are made for each time frame, enabling
us to quickly adapt when necessary. For more serious noise spikes, we also
provide safety valves which can respond instantly, even before we reach our
next meta-control decision epoch. The inherent
exibility and the adaptive
architecture thus enable ATLAS to best-e�ort exploit the current platform
while maintaining platform utilization levels which would probably be lower
by two magnitudes if worst-case states and WCETs were assumed. When
unable to synthesize all of the MIDI dictated voices, ATLAS always sheds

31

the less audible voices, rather than shed on an arbitrary FCFS basis. ATLAS
is inherently portable. Therefore ATLAS performance will automatically im-
prove with time as available platforms grow more powerful.

Acknowledgments

References

[Der74] M. L. Dertouzos. Control robotics: The procedural control of
physical processes. In Proc. IFIP Congress, pages 807{813, 1974.

[DRSK89] A. Damm, J. Reisinger, W. Schwabl, and H. Kopetz. The real-
time operating system of MARS. ACM Operating Systems Re-

view, 23(3):141{157, July 1989.

[FGG+91] B. Furht, D. Grostick, D. Gluch, G. Rabbat, J. Parker, and
M. Roberts. Real-Time Unix Systems. Norwell, NA:Kluwer, 1991.

[GS89] Prabha Gopinath and Karsten Schwan. CHAOS: why one cannot
have only an operating system for real-time applications. ACM

Operating Systems Review, 23(3):106{125, July 1989.

[LL73] C. L. Liu and James W. Layland. Scheduling algorithms for mul-
tiprogramming in a hard real-time environment. Journal of ACM,
20(1):46{61, January 1973.

[LSS87] J. P. Lehoczky, L. Sha, and J. K. Strosnider. Enhanced aperiodic
responsiveness in a hard real-time environments. In Proceedings

of 8th Real-Time Systems Symposium, pages 261{270, December
1987.

[LTCA89] Shem-Tov Levi, Satish K. Tripathi, Scott D. Carson, and
Ashok K. Agrawala. The MARUTI hard real-time operating sys-
tem. ACM Operating Systems Review, 23(3):90{105, July 1989.

[MD78] A. K. Mok and M. L. Dertouzos. Multiprocessor scheduling in a
hard real-time environment. In Proc. of the Seventh Texas Con-

ference on Computing Systems, November 1978.

32

[Nil95] Kelvin Nilsen. Issues in the design and implementation of real-
time java. Technical report, November 1995.

[SC88] John A. Stankovic and Sheng-Chang Cheng. Scheduling Algo-

rithms for Hard Real-Time Systems - A Brief Survey, pages 150{
173. IEEE Computer Society Press, 1988.

[SR89] John A. Stankovic and Krithi Ramamritham. The Spring kernel:
A new paradigm for real-time operating systems. ACM Operating

Systems Review, 23(3):54{71, July 1989.

[SSL89] B. Sprunt, L. Sha, and J. P. Lehoczky. Aperiodic task scheduling
for hard real-time systems. Journal of Real-Time Systems, 1:27{
60, 1989.

[TM89] Hideyuki Tokuda and Cli�ord W. Mercer. ARTS: A distributed
real-time kernel. ACM Operating Systems Review, 23(3):29{53,
July 1989.

[TNR90] H. Tokuda, T. Nakajima, and P. Rao. Real-time Mach: Towards
a predictable real-time system. In Proceedings of USENIX 1990

Mach Workshop, pages 73{82, October 1990.

[Whi92] D. J. White. Markov Decision Processes. John Wiley & Sons,
1992.

33

