Reprinted from:

Journal of Systems and Software
Volume 28, Number 1

February, 1995

Pages 179-184

Controversy Corner

It is the intention of the Journal of Systems and
Software to publish, from time to time, articles cut
from a different mold. This is one in that series.

The object of the CONTROVERSY CORNER
articles is both to present information and to stimu-
late thought. Topics chosen for this coverage are not
just traditional formal discussions of research work;
they aso contain ideas at the fringes of the field's
“conventional wisdom.”

This series will succeed only to the extent that it
stimulates not just thought, but action. If you have a
strong reaction to the article that follows, either
positive or negative, write to Robert L. Glass, Edi-
tor, Journal of Systems and Software, Computing
Trends, P.O. Box 213, State College, PA 16804. We
will publish the best responses as CONTROVERSY
REVISITED.

The Importance of Ignorance in

Requirements Engineering

Daniel M. Berry

Software Engineering Ingtitute, Carnegie Mellon University, Pittsburgh, Pennsylvania

This paper examines a number of successful require-
ments engineering efforts carried out by the author and
determines that a critical element in the success of these
efforts was the author’s ignorance of the client's domain.

Where ignoranceis bliss
"tisfolly to be wise

— Thomas Gray, 1742

1. INTRODUCTION

The problem is that of a team of one or more require-
ments analysts helping a team of one or more client
representatives arrive at complete, consistent, and
unambiguous requirements for a system that the client
wants built. This system may be anything from a simple
closed, P type program (Lehman, 1980) to the next
iteration of an evolving E-type system. In any case, the
requirements analysts must take the fuzzy, often mutu-
ally inconsistent and collectively incomplete ideas of
the client representatives and somehow arrive at a
shared and unambiguous consensus that captures every-
thing the system should be doing, no more and no less.

Address correspondence to Daniel M. Berry, Computer Science
Department, Technion, Haifa 32000, Israel. E-mail address:
dberry@cs.technion.ac.il

0 Elsevier Science Inc.
655 Avenue of the Americas, New York, NY 10010

179

This consensus must be reached despite any require-
ments analyst’s ignorance of the application domain and
any client representative’ s ignorance of computing.

This consensus is both a hindrance and an advantage.
It is a hindrance because it requires work to derive it
from the varied views, and it is an advantage because
reaching it is a way to sort through inconsistencies
among views and complete the incompleteness in indi-
vidual views.

Arriving at the consensus requires hard thinking on
the part of al involved. It is often useful to have tech-
niques to help the thinking be more systematic and give
something concrete to do when the thinking stalls.

This article reviews a paper that | and Orna Berry
published in 1983 about a joint requirements engineer-
ing experience in 1979 (Berry and Berry, 1983). As
described in detail in sections 2-5, that experience was
successful beyond expectations and the paper examined
the experience of attempting to identify the reasons for
success and posit methodological, technical, and
managerial components of a general approach to suc-
cessful requirements engineering. These components
and the reasons for and against their effectiveness are
discussed in sections 6-8. Since 1983, both Orna and |
have applied the approach separately to avariety of pro-
jects with success, abeit never as much as the first ex-

0164-1212/94/$7.00

perience. Was it beginner’s luck? Suddenly, in 1993, |
applied the approach with as much success as the first
timel Sections 9-11 examine this experience and at-
tempt to identify the properties in common with the first
event (it cannot be beginner’s luck!) that might account
for the unusual success.

At the time we wrote the first paper, | thought that
the problem was to overcome the ignorance | had about
the problem domain or to operate effectively in spite of
it. After the most recent experience, | have determined
that ignorance was more than something to overcome
on the way to writing the requirements. Instead, it was a
necessary component in my ability to expose the tacit
assumptions that prevent consensus. It seems that
among experts, a common disease is the presence of un-
stated assumptions. Because they are unstated, no one
seems to notice them. Worse than that, it seems that no
two people have the same set of assumptions, often
differing by subtle nuances that are even more tacit than
the tacit assumptions. It isthe dight differences in these
assumptions that confound attempts to arrive at con-
sensus, particularly because none of the players is even
consciously aware of his or her own assumptions and
certainly not of the differences between the players as-
sumptions about the same things.

2. BACKGROUND

The 1983 paper, titled “The Programmer-Client | nterac-
tion in Arriving at Program Specifications: Guidelines
and Linguistic Requi rements’* (Berry and Berry, 1983)
dealt with lessons learned during a 1979 experience in
which | played a requirements analyst and Orna Berry
played a client during a joint development of a
specification of the requirements for a statistical experi-
ment simulation program that the client then implement-
ed herself, as part of the research for her M.A. degree
in Statisticsat Tel Aviv University.

The research issue at hand was the validity of conclu-
sions drawn from experiments involving a sequence of
observations in which the data become unavailable from
some point on (truncation) or in which some, but not all,
data are missing (censored). The program was to permit
numerous simulations of experiments with large obser-
vation vectors. An experiment was to generate a pair of
vectors of observations, to both truncate one of the pair
at some random point and censor one of the pair at
some random points, and then to compare the conclu-
sions drawn from the full vectors to those drawn from
the truncated and censored vectors. Drawing conclu-

or a reprint, please contact the author via e-mal at
dberry@cs.technion.ac.il.

180

sions and comparing them required calculating some
well-known statistical measures.

The production of the requirements document took 4
weeks out of a total project time of 11 weeks. In the 7
weeks after acceptance of the requirements document,
the client implemented the specified program, tested it,
debugged it, did several production runs with a variety
of input parameters, studied the output of these runs, did
some additional production runs with additional input
parameters, studied the output of these runs, wrote up
the study and drew conclusions, defended the report as
an M.A. thesis, modified the thesis but not the program
and the requirements, and filed the thesis (Berry, 1979).

3. SUCCESSES

Despite the impediments listed in section 6 auguring
against success, the requirements document and the sub-
sequent program were wildly successful beyond all ex-
pectations (but not beyond all hopes!). That is:

e The eight-page requirements document did not need
to be changed beyond correction of minor typo-
graphical errors (missing or misplaced punctuation,
misspelled words, etc.) to keep it faithful to the pro-
gram as implemented.

The 60-page program worked after only a half
dozen error-exposing test runs and very easy correc-
tions.

The program, through its generation of extra debug-
ging output in anticipation of the testing phase, pro-
duced enough not originaly required output that
ended up satisfying all requests for additional useful
computations that were expressed during the thesis
defensel

In particular, the first component of success was a com-
plete shock to me. It was the first time, in nearly 15
years of programming experience, that | had participat-
ed in a software development in which the requirements
document did not need to be changed to keep it faithful
to the software as finally implemented. On all previous
occasions, either the requirements were changed or they
were abandoned as irrelevant, unneeded, too costly to
maintain, or impossible to reconstruct after the fact.

4. REQUIREMENTS

The form of the requirements document was that of an
input-output specification:

1. The input specification consisted of a list of typed,
constrained variable declarations for each variable
whose value was to be read in.

The output specification consisted of a list of al

values and tables to be printed out, given input that
met the types and constraints of the input
specification.

The output specification in turn consisted of

1. an abstract data type observation vector encapsulat-
ing al knowledge about the observation vectors and
providing all operations for creating them, reading
and printing al or part of them, and computing vari-
ous statistical measures on them, and

a main section specifying the vectors to be created
and the values and tables to be printed, al in terms
of operations of the abstract data type taken as prim-
itive.

No details were given as to how the operations of the
type and the values and tables to be printed were to be
computed.

5. IMPLEMENTATION

The implementation was carried out in FORTRAN by
the client herself; recall that she was writing this
software for her M.A. degree and had to write the pro-
gram herself. The abstract type was implemented as a
collection of subroutines and functions sharing a named
common area that the main program did not see. Thus,
encapsulation of the abstract data type was enforced by
the program. The implementation details not spelled out
in the requirements document were fleshed out in the
program. The client learned various programming, test-
ing, and debugging methods as she was writing the pro-
gram.

6. IMPEDIMENTS TO SUCCESS

The impediments that were thought to make success
highly unlikely were the following:

e Theclient, a statistician at the time, knew very little
about programming and what was possible with a
computer.

[, the requirements analyst, a computer scientist,
knew very little about probability and statistics ow-
ing to a phobia developed during a high school
course on the subject, in which | received my lowest
grade among all of my courses. My mind would
freeze at the mere thought of a standard deviation.
The native languages of the analyst and client are
different. They are English and Hebrew, respective-

ly.

181

7. CONJECTURED REASONS FOR SUCCESS

When | analyzed for the writing of our paper why the
requirements analysis effort had been so successful
despite the impediments, | identified three techniques
that had been applied, beyond good ol’ fashioned com-
mon Ssense:;

1. abstract data typing
2. strong typing
3. Jewish Motherhood

Thefirst two are normally considered applicable only to
design and programming languages, which are precisely
specified artificial languages with restricted expressibili-
ty. However, there is a natural language analogue to
these that proved to be applicable to the client’s verbal
descriptions of the problem and the working require-
ments document being written in mostly natural
language

Specifically, an imperative sentence can be con-
sidered an application of its verb (procedure) to its ob-
ject (arguments), in which the objects can be either
direct or prepositions with indirect objects. When a par-
ticular verb is suddenly used with a different number of
objects or with different kinds of objects, it is clear that
something might be wrong. In the view of an imperative
sentence as a procedure application, these different uses
of a verb can be considered type mismatching errors. In
this sense, there is a strong typing that can be under-
stood in imperative sentences. Moreover, a collection
of imperative sentences that share argument kinds can
be thought of as an abstract data type for the shared ob-
ject kinds. The sentences are the operations by which
the objects are manipulated. Certainly the implementa-
tion of the abstract data type is hidden, smply because
no implementations have been written yet!

An abstract data type is an implementation of a data
type in which the data structures are hidden or encapsu-
lated in a module that exposes only the procedures and
functions for operating on the data (Liskov and Zilles,
1974; Parnas, 1972). In the experience, the encapsula-
tion that is normally used to hide implementation details
so that they can be changed easily was used to hide my
ignorance of domain concepts so that | could work with
them as built-in primitives. All | had to do was be cer-
tain that the encapsulated concepts were well enough
understood that they could be implemented straightfor-
wardly. Then | could fake my way through the problem
so well that | could find inconsistencies in what the
client was saying even though | did not understand the
meaning of these concepts.

The ability to find these inconsistencies came from
strong typing (van Wijngaarden et al., 1975; Schwartz
and Berry, 1979). Strong typing is that property of a
programming language that ensures that the types of all
expressions and subexpressions can be computed at
compile time. As mentioned, in terms of the natural
language that was used as the medium of exchange
between the client and the requirements analyst, a type
inconsistency manifested itself by the use of a given
verb with a different number or different kinds of ob-
jects. My ability to notice these differences in sentences
uttered by the client allowed me to find al inconsisten-
cies in what she was saying, even though | did not
understand the substance of what she said in these sen-
tences. Whenever | found inconsistent sentences, | ex-
plained the nature of the inconsistency and asked the
client to resolve the problem. The resolution was either
that one, the other, or both uses were wrong, the opera-
tion was overloaded, or the operation took a variable
number of arguments, with the missing ones getting de-
fault values. It is no surprise that strong typing proved
to be enough to find all inconsistencies. It iswell known
how effective strong typing is at identifying program er-
rors at compile time and in preventing these errors from
happening at runtime (Gannon, 1977; Eggert, 1981). It
is the power of redundancy. It is for the advantages of
this power that the designers of Ada (Department of De-
fense, 1983) put it into the language constructs for
building strongly typed abstract data types.

Jewish Motherhood perhaps needs the most explana-
tion. It is the ability to keep nudging the client to tell
you all that needs to be told and to make the client feel
guilty for leaving anything out. It is also the ability to
detect from body language when the client has failed to
tell you something important. Dan Greenburg in his
famous book How to be a Jewish Mother (1993) ex-
plains how to nudge and inculcate guilt and makes the
important point that one has to be neither Jewish nor a
mother to be a Jewish Mother. Therefore, it is possible
for, say, an American male programmer to be a Jewish
Mother. In the experience, |, the requirements analyst,
successfully nudged all the necessary information from
the client. | was able to detect waffling in answers to my
guestions and follow up with questions to get answers
given with conviction.

These concepts formed the basis for an adaptive re-
quirements elicitation method that Orna and | have put
into practice in our own work since the experience. A
full narrative description of one application of the
method isfound in our original 1983 article.

182

8. COUNTERINDICATIONS

Although it is nice to believe that a method that worked
in one situation will work in al, the redlity is that each
problem seems to beget its own method or variation of a
method. Besides, there are a number of reasons why
this particular experience might very well have been
successful independently of the method applied:

1
2.

There was a heavy dose of beginner’s luck.

The program was small compared to industrial-
strength E-type systems (Lehman, 1991).

There was only one client representative.

There was only one requirements analyst.

The client became the programmer.

The problem has a strong mathematical basis.

o0k~ w

On the other hand, in the 14 years since the first ex-
perience, Orna and | have independently applied the
method in about two dozen software development pro-
jects, both in university research efforts and industrial
projects, to produce software for sale. The method has
been generally successful and has never failed to help
produce good, usable requirements. However, until
very recently, no effort felt quite as successful as the
first experience. So we felt that there was a strong
beginner’s luck component.

9. MOST RECENT EFFORT

| carried out the most recent effort when | was called in
as a consultant to help a start-up company write the re-
quirements for a new multiport Ethernet switching hub.

| was called in even though | had protested that |
knew nothing about networking and Ethernet beyond
nearly daily use of networking applications such as tel-
net, ftp, and netfind. To give the reader some idea of
how poor my understanding of Ethernet was, let it be
said that in the early days of Ethernet, once when | had
seen a cable lying on the floor, | worried out loud that
the ether might spill out and evaporate.

The engineers in the company were almost exclusive-
ly hardware engineers. They had been struggling for 4
months to come up with a software requirements docu-
ment and were getting nowhere fast. They knew about
the technology but not how to structure its software
well. They had not stated the requirements in full and
had been cycling between requirements gathering and
software design. They had a stronger understanding of
how to specify the hardware, and consequently the
hardware part of the project was on schedule whereas
the software part was behind schedule.

When they hired me, | asked each person to supply
me with a list of the pieces of the system and the
features (operations) of each. | read these and began to
build my abstractions with their operations. | noticed a
number of inconsistencies in both the abstractions and
the operations. | came in one morning and had a 2-hour
meeting with all of the engineers. During the meeting, |
nudged the engineers for resolutions to al the incon-
sistencies | had noted and any others that came up dur-
ing the meeting. After the meeting, | worked for 4 more
hours writing a new requirements document in the style
of the first experience, that is, with a collection of
abstract data types and processes that used these. At the
end of these 4 hours | had a good first draft specification
that seemed to have electrified the engineers. In only 6
hours, 1 had put down in words, types, objects,
processes, and diagrams thereof what they had been try-
ing to say over the last 4 months.

After that meeting, | worked with them over 2
months to help produce two documents, a functional
specification and an architectural specification, which
were carefully maintained to be consistent with each
other.

10. IGNORANCE IS THE KEY

Even before this most recent experience, when | had
described the first experience to a software engineering
class at Carnegie Mellon University, a student, Jim Al-
stad, had wondered if the very fact that | knew so little
about the client’s application area had been a significant
factor in the success of that first experience. By being
ignorant of the application, | was able to avoid falling
into the tacit assumption tar pit.

The latest experience seems to confirm the impor-
tance of the ignorance that the method is so good at hid-
ing. It was clear that the main problem preventing the
engineers at the company from coming together to write
a reguirements document was that they were all using
the same vocabulary in dlightly different ways, and none
was conscious of any other’s tacit assumptions. Each
was wallowing deep in his or her own pit. My own ig-
norance forced me to ferret out these tacit assumptions,
and my lack of assumptions forced me to regard the
differences in the way each was talking about the same
thing as signs of inconsistencies.

It is interesting that the two most successful applica
tions of the method were in areas in which one of there-
guirements analysts was totally ignorant. In all other,
less successful, applications of the method by either me
or Orna, it was for a problem in which | or Orna was an
expert. | was eliciting requirements for word process-

183

ing software as part of my research in electronic pub-
lishing, and Orna was €liciting requirements for net-
working software as part of her job as chief scientist for
a networking company.

It must be emphasized that | am not claiming that
domain expertise is not needed. It is clear that at least
one member of the requirements engineering team must
be a domain expert. The reguirements cannot be invent-
ed from total ignorance the way it appears that a magi-
cian pulls a rabbit out of a hat; in fact, there must be a
rabbit already in the hat. That rabbit is provided by the
domain experts.

Robert Glass (1993) reports about a software produc-
tion company that has English majors helping to write
maintenance documentation. He reports amazement
that nonsoftware-knowledgeable English majors were
consistently able to write high-quality descriptions of
the grubby details about programs that are needed to al-
low them to be maintained by people other than their
origina developers. Glass and the professional pro-
grammers who worked with the English majors were
surprised that these English majors, “by virtue of having
poked and probed at a variety of the enterprise’s
software assets, probably knew as much about what
software was out there as anyone else in the company.”
English majors are generally skilled in organizing ideas
and expressing them in writing. Perhaps an additional
phenomenon at play is ignorance being parlayed into an
ability to recoil when the unspoken underlying assump-
tions inhibit understanding and to hunt them down
among the more knowledgeable programmer members
of the team.

11. RECOMMENDATIONS

On the basis of these experiences, it seems clear that it
is essential for each requirements engineering team,
consisting of analysts and client representatives, to have
at least one domain expert and at least one smart ig-
noramus! Generally, there is no difficulty finding the
domain expert among the client’s people. The ig-
noramus should be smart about computing, information
hiding, and strong typing, but totally naive and ignorant
in the client’s domain. It is absolutely essential for the
ignoramus to be attuned to spotting inconsistencies in
what people are saying; this means that the ignoramus
should have a good memory for what people say and a
good sense of language to be able to detect when a verb
is being used with a different set or number of objects.
These language skills are required of lawyers, psycholo-
gists, psychiatrists, negotiation facilitators, etc.

In ateam consisting of at least one ignoramus and at

least one expert, each kind of person will find different
things about the requirements. The domain expert finds
the basic information needed, but he or she falls too
easily for tacit assumptions. The ignoramus has no as-
sumptions and asks questions whenever he or she
catches a sign of something left unsaid.

We have the interesting situation that ignorance is
both necessary and something to overcome. It seems
that if there were no ignorance to overcome, the con-
sensus process would be stunted.

It should be stressed that although ignorance is neces-
sary, stupidity is neither desired nor helpful; the ig-
noramus must be smart. Moreover, total ignorance is
not helpful either. There must be some expertise on the
teams to drive the quest for facts and provide facts when
demanded by others on the teams.

When LindaMcCallaread an earlier draft of this arti-
cle, she observed that it is possible to develop a skill of
faking ignorance. | personaly have difficulties not using
everything | know and thus being lulled into accepting
the hidden assumptions. She suggested the technique of
building a glossary of all terms before beginning the
other steps of requirements elicitation. The list can be
brainstormed and differences in meanings can fuel a
resolution that exposes the hidden assumptions.

If the ideas presented here are accepted, perhaps we
shall see aday in the future in which software engineers
will proudly list on their resumes areas in which they
are ignorant! In any case, this list is the one section of a
resume that gets smaller and smaller as the software en-
gineer gets more and more experienced.

ACKNOWLEDGMENT

| thank Gregory Abowd, Orna Berry, Bruce Blum, Jorge Diaz-
Herrera, Robert Firth, Robert Glass, Shmuel Katz, Linda
McCalla, Bill Pollak, Dave Wood, and an anonymous referee
for their useful comments. The description of the requirements
process as arriving at a consensus is Bruce Blum's.

184

This work was sponsored by the U.S. Department of De-
fense.

REFERENCES

Department of Defense, Ada Language Reference Manual,
MIL-STD-1815A, U.S. Department of Defense, Wash-
ington, DC, 1983.

Berry, D. M. and Berry, O., The programmer-client interaction
in arriving at program specifications: guidelines and
linguistic requirements, in Proceedings of IFIP TC2
Working Conference on System Description Methodolo-
gies, (E. Knuth, ed.), 1983.

Berry, O., Comparison between Two Life Span Distributions
Based on Small Samples with Censored Data, M.A.
Thesis, Tel Aviv University, Tel Aviv, Israel, 1979.

Eggert, P. R., Detecting Software Errors before Execution,
Ph.D. Thesis, Computer Science Department, UCLA, Los
Angeles, California, 1981.

Gannon, J. D., An Experimental Evauation of Data Type
Conventions, Commun. ACM 20, 584-595 (1977).

Glass, R. L., Can English Mgjors Write Maintenance Docu-
mentation?, J. Syst. Software 21, 1-2 (1993).

Greenburg, D., How to be a Jewish Mother, Price/Stern/Sloan,
Los Angeles, California, 1993.

Lehman, M. M., Programs, Life Cycles, and Laws of Software
Evolution, Proc. IEEE 68, 1060-1076 (1980).

Lehman, M. M., Software Engineering, the Software Process
and Their Support, |EE Software Eng. J. 6 (1991).

Liskov, B. H. and Zilles, S. N., Programming with Abstract
Data Types, SGPLAN Not. 9, 50-60 (1974).

Parnas, D. L., On the Criteriato be Used in Decomposing Sys-
tems into Modules, Commun. ACM 15, 1053-1058
(1972).

Schwartz, R. L. and Berry, D. M., A Semantic View of Algol
68, J. Comp. Lang. 4, 1-15 (1979).

van Wijngaarden, A., Mailloux, B. J., Peck, J. E. L., Koster,
C. H. A, Sintzoff, M., Lindsey, C. H., Meertens, L. G. L.
T., and Fisker, R. G., Revised Report on the Algorithmic
Language Algol 68, Acta Informat. 5, 1-236 (1975).

