
Electronic Notes in Theoretical Computer Science 25 (1999)
URL: http://www.elsevier.nl/locate/entcs/volume25.html 13 pages

Formal Methods: The very idea, some thoughts
about why they work when they work 1

Daniel M. Berry 2

Computer Science Department

University of Waterloo

Waterloo, Ontario N2L 3G1, Canada

Abstract

The paper de�nes formal methods (FMs) and describes economic issues involved in
their application. From these considerations and the concepts implicit in \No Silver
Bullet", it becomes clear that FMs are best applied during requirements engineering.
A explanation of why FMs work when they work is o�ered and it is suggested that
FMs help the most when the applier is most ignorant about the problem domain.

1 Introduction

This paper is something that I have been meaning to write for some time
now. I have been giving a talk whose title is that of this paper to a variety of
audiences. In each case, the discussion generated was interesting and supplied
more material for the ever growing talk. When I received the invitation to
attend the Monterey Workshop on Engineering Automation for Computer-
Based Systems, I saw an opportunity to present the talk to an audience of
almost entirely formal methods people, including some of the pioneers. The
talk was much better received than I thought it might be given its controversial
nature. Moreover, all speaking participants at the workshop were required to
produce a paper for the proceedings. The paper that I wanted to write is the
result.

Because the paper represents more my personal opinion rather than some
rigorously established scienti�c conclusion, the paper uses �rst person when
referring to the author.

1 with apologies to James H. Fetzer [13]
2 I thank Jo Atlee, Don Cowan, Steve Easterbrook, Martin Feather, Sol Greenspan, An-
thony Hall, Axel van Lamsweerde, Maria Viera Nelson, Dave Robertson, John Rushby, and
Meyer Tanuan for comments on an earlier draft.

c
1999 Published by Elsevier Science B. V.



Berry

I have bene�ted particularly from an electronic discussion in 1995 with
Martin Feather.

1.1 Author's Background

My current area of research is Requirements Engineering (RE) [5]. The focus
of this area is on how to get requirements for software-intensive computer-
based systems (SWICBSs). It is now recognized, as is explained in the body of
this paper, that determining the requirements for SWICBSs is the hardest part
of their development, and di�culties in determining these requirements are
the source of a vast majority of errors found in delivered SWICBSs. The RE
area is interested in understanding why a method of determining requirements
works when it does and why a method of determining requirements fails when
it does.

1.2 Outline of Paper

This paper starts of with a brief de�nition of FMs. It then gives some feeling
for the economics of applying FMs to the development of SWICBSs. Fred
Brooks's observation of \No Silver Bullet" is recalled for what it says about
the di�culty of determining SWICBS requirements. The paper o�ers that
the most useful time to apply FMs is in the requirements engineering phase
of SWICBS development. Not all applications of FMs lead to high quality
SWICBSs. However, when they do succeed, there appear to be two factors
working for that success, the second time phenomenon and qualities of the
people who push for and engage in FMs.

So as not to lose readers who believe in FMs and who see parts of this paper
as arguing against their use, please consider that I believe in FMs and use them
when appropriate. I used to work for a company that sells FM technology and
applies FM to clients' SWICBS development problems, including for secure
operating systems. Moreover, I did some fundamental work on the underlying
theory of one FM a long time ago [3]. The reader will see that I am generally
in favor of FMs, but there are serious problems of which we must be aware.
The paper o�ers some unconventional ideas as to why FMs are successful when
they are.

2 De�nitions of FMs

Basically, an FM is any attempt to use mathematics in the development of a
SWICBS, in order to improve the quality of the resulting SWICBS. For the
purpose of this paper, I am trying to include in the realm of FMs anything
anyone working in FM claims is an FM. If I have neglected to include one,
my apologies. Please inform me by e-mail and include a reference to liter-
ature about it. For fuller discussions, see the papers by Hall, Leveson, and
Wing [16,19,22], and papers cited therein.

2



Berry

1 P $ C formal speci�cation of requirements

2 P $ C veri�cation of consistency and basic correctness of requirements spe-
ci�cation

3 P $ C formal speci�cation of design

4 P $ C veri�cation of consistency of requirements and design speci�cations

5 P $ C formal speci�cation of code

6 P $ C veri�cation of consistency of (requirements), design, and code spe-
ci�cations

7 C code

8 P $ C veri�cation of consistency of (requirements, design, and) code speci-
�cations and the code

Table 1

There are three main groups of FMs, veri�cation, intensive mathematical
study of key problem, and refutation. Each group is described; its strengths,
weaknesses and costs are considered,

2.1 Veri�cation

The �rst group of FMs are those that attempt to provide a basis by which the
software of a SWICBS can be formally proved to be a correct realization of a
speci�cation embodying its requirements. Strictly speaking, the code is proved
consistent with a formal speci�cation. Rarely, however, is the full proof carried
out. Nevertheless, the FMs in this group all have as their goal the production
of at least one part of a full proof of correctness. Within this group, there
are many levels of formality and completeness. Here, by \completeness" is
meant that of application and not that of a mathematical theory. Some of the
FMs of this group can be characterized as some collection of levels of Table 1.
In this table, the notation \P $ C" means \partial through complete", \C"
means \complete", and \P" means \partial".

In each veri�cation level, the items in parentheses are included in what is
veri�ed to be consistent by virtue of transitivity provided by lower level proofs.
Only the items outside the parentheses are directly involved in that level's
proof. In Level 2, \basic correctness" means veri�cation that the requirements
speci�cation satis�es any available independent speci�cation of the correctness
criterion, e.g., security.

A typical FM in the group described by Table 1 consists of some collec-
tion of levels. Sometimes only Level 1 and Level 7 are carried out with no
veri�cation. Rather, the doing of the formal speci�cation allows much to be
learned about the SWICBS to be developed before carrying out the actual
development. Much more is learned this way than when only an informal,
natural language speci�cation is written. Sometimes only Level 1 is carried

3



Berry

1 C study of one di�cult aspect of requirements e.g., security, safety

2 C study of one di�cult aspect of design

3 C study of one di�cult aspect of code

Table 2

out for the purpose of documenting the requirements of the SWICBS, on the
grounds that a formal speci�cation is the most precise.

Applying FMs of this group drives up the cost of SWICBS development
as high as 2 fold over applying normal systematic methods of writing just
the code if only Levels 1 and 7 are carried out, 10 fold if Levels 1 through 4
and then 7 are carried out, and even higher if more veri�cation is carried out.
These are the rules of thumb that were applied in the company mentioned
above that sold FM technology.

2.2 Intensive Study of Key Problems

The second group of FMs are the intensive mathematical study of one or more
di�cult aspects of the SWICBS. These are an attempt to avoid the heavy
costs of the veri�cation FMs. Rather than specifying the entire SWICBS,
only the di�cult or problematic parts of the SWICBS are considered. For
example, if the job is to build a secure operating system that guarantees that
only authorized users gain access to any speci�c �le, instead of specifying
the whole operating system and proving its security, one could focus on the
security-relevant portion of the system at the speci�cation, design, or code
level, or at some combination of these. While this focusing is considerably
cheaper than dealing with the full system, it is fraught with a serious danger
of overlooking something that is security relevant. One cannot be certain that
the ignored portions of the system are not security relevant, that they do not
impact and they are not impacted the parts designated as security relevant
and therefore under study. To prove that the ignored parts are not security
relevant turns the FM into a costly veri�cation. Nevertheless, as one gets
experience with a class of applications, he or she becomes more certain about
what can safely be ignored.

I would classify into this group any development in which theoretical
knowledge is used to make the development of a program more systematic.
The most common example of this phenomenon is compiler writing, which
borrows heavily on the theory of phrase-structure grammars and has spawned
its own collection of theory.

The rules of thumb that I have heard are that these intensive study FMs
drive the development cost up from 2 through 5 fold, depending on the com-
plexity of the problem and depending on how many levels of the study are
carried out.

4



Berry

2.3 Refutation

The elements of the third group of FMs take an entirely di�erent approach,
that of refutation rather than veri�cation [21], that is, instead of trying to
prove that the SWICBS meets its requirements, one tries to refute the claim
that it does. The advantage is that the correctness claim can be refuted by
one counter example, while a proof must consider all possible cases. There are
two kinds of refutation. One kind are those based on computable properties
of some speci�cation of the SWICBS. The second kind are those based on
execution of some speci�cation of the SWICBS on test data. Note that neither
of these can be veri�cation of correctness; correctness is not a computable
property, and testing can be used to show the presence of errors, never their
absence [10].

Given a speci�cation of the complete SWICBS, as in Level 1 of the veri�-
cation group of FMs, two examples of computable properties that can be used
to refute the claim of correctness are:

� type checking in the speci�cation

� cross reference checking in the speci�cation

A type error, unde�ned identi�er, or de�ned, but unused identi�er can be the
symptom of a more serious error, which a thinking human being should be
able to spot given the evidence.

Given a speci�cation of the complete SWICBS, as in Level 1 of the veri-
�cation group of FMs, if the language of the speci�cation is executable, e.g.
OBJ [14] or INATEST [18,11] one should be able to execute the speci�ca-
tion either with actual data or symbolically. The execution with test data
may show errors in the speci�ed SWICBS. Alternatively, one might be able
to build a �nite state model of the SWICBS, either directly or by simplifying
the model or abstracting away some of the complexity. Execution of the �-
nite state model with test data can show errors. In addition, if the model is
�nite state, there are computable checks, e.g., reachability analysis, that can
be used to show the presence of problems. This group of activities is called
model checking.

While locating an error by refutation is not guaranteed, in practice, model
checking does expose errors, just as does execution of the �nished SWICBS.
However, as is shown in Section 5, it is highly preferable for an error to be
exposed early in the life cycle than later after deployment of the �nished
SWICBS.

The refutation approaches cost that of Levels 1 and 7 of the veri�cation
group plus only 5{50% for the refutation, That is, refutation drives the cost of
development up to between 2.05 and 2.50 fold, and this is cheaper than with
full veri�cation.

5



Berry

2.4 Programming Itself as an FM

Remember that a program itself is a formal speci�cation. A programming
language is a formally de�ned language with precise semantics just like Z,
in fact, even more so than Z, which purposely leaves some things unde�ned.
One could not prove the consistency of speci�cations and code if code were
not formal. Therefore, programming itself is an FM in the sense that writing
a formal speci�cation is an FM. Remember that programming is building a
theory from the programming language and library of abstractions, i.e., the
ground, up, just like making new mathematics.

2.5 General Limitation of FMs

An ultimate problem with any of these FMs that are based on a speci�cation
of the SWICBS under design is the accuracy of this speci�cation. If it does
not specify what is desired, that is, it is not right, code that is consistent
with this speci�cation does not do what is desired. The speci�cation could be
wrong for an error of commission or an error of omission. The speci�cation
could deal with a given situation in an inappropriate way, e.g., shutting down
an aircraft engine that is in an inconsistent state. The speci�cation could fail
to deal with an issue entirely or could even fail to detect the presence of the
issue.

2.6 Economic Realities of FMs

For most software, it is just not worth the cost to apply FMs; one can get more
than acceptable quality by inspection [12] for up to 15% more and absolutely
superb results by just doing the software twice at the cost of about 100% more.
However, for highly safety- and security-critical systems, for which the cost of
failure is death or is considered very high, FMs are necessary to achieve the
required correctness and are well worth the cost.

David Notkin [9] observes about model checking that sometimes it is nec-
essary to make simplifying assumptions in the model to get a model tractable
enough to be checked. This necessity creates a dilemma. Without simpli�-
cation, the speci�cation cannot be analyzed and critical problems might be
overlooked. However, simpli�cations might hide critical problems, especially
as abstraction is used to collapse a number of states into one. In the end, it
is an issue of costs. Which problems cost more, the ones overlooked by lack
of analysis or the ones overlooked by simpli�cation?

On the other hand, there is evidence that careful use of FMs during RE
of a SWICBS can eliminate enough errors from ever showing up later in the
development of the SWICBS, when they are very expensive to �x, that the
cost of the later development is reduced enough that the total cost of an FM-
assisted development is no more or even less than than that of an unassisted
development [16,17]. See Section 5 for more information about the cost to �x

6



Berry

errors as a function of the development stage in which they are found.

3 Errors and Requirements Speci�cations

One thing that has been learned over the years is that most errors are in-
troduced into SWICBSs during the requirements discovery, speci�cation, and
documentation stages, to the tune of between 65 and 85%. The coding stage
introduces only about 25% of the errors ever introduced into a SWICBS [6].
Veri�cation of the consistency of code to speci�cation is by far the most ex-
pensive FM. Therefore, it is not clear how useful code veri�cation is if only
25% of the errors are introduced during coding, and these errors are probably
the easiest to �x. It seems that it is more cost e�ective to spend just 15%
more for inspections than to spend more than 10 fold to �x errors introduced
during coding. Therefore, the focus of FMs must be on requirements.

4 No Silver Bullet (NSB)

Not so long ago, Fred Brooks observed that, with respect to software devel-
opment, \There's no silver bullet" [8] that will suddenly and miraculously
make programming fundamentally easier than it has been. He classi�es soft-
ware di�culties into two groups, the essence and the accidents. The essence
of building software is devising the conceptual construct itself. This is very
hard, because that conceptual construct is of arbitrary complexity, it must
conform to the given real world, it constantly changes, and it is ultimately
invisible. On the other hand, most productivity gains have come from �xing
accidents. The accidents are the current technology that is used to develop
the software. Examples of such accidents and their solutions are

� really awkward assembly language eliminated by high-level languages,

� severe time and space constraints eliminated by the introduction of big and
fast computers,

� long batch turnaround time eliminated by time-sharing operating systems
and personal computers,

� tedious clerical tasks for which tools are helpful eliminated by those tools,
such as make, rcs, xref, spell, grep, fmt, and

� the drudgery of programming user interfaces eliminated by tools for building
graphic interfaces such as X Windows, Java, Visual Basic and other GUI
libraries.

These have been signi�cant advances, and they have made coding signi�cantly
easier and less error prone. However, again, these advances attack only the
minority of errors introduced by coding and do nothing about the essence.

Unfortunately, the essence has resisted attack. We have the same sense
of being overwhelmed by the immensity of the problem and the seemingly

7



Berry

endless details to take care of, and we produce the same kind of brain-damaged
SWICBSs that makes the same stupid kind of mistakes, as we did 30 years ago!
The source of these errors is that we just did not understand the conceptual
construct that was to be constructed. We overlooked details or have some
details wrong.

5 FMs and the Essence of Software

Another way to describe the essence is \requirements", not speci�cations,
which are just a statement of requirements, but the requirements themselves.
FMs just do not help identify requirements. They do not help us crack the
essence.

There is a myth going around. Some FM evangelists claim, \If only you
had written a formal speci�cation of the system, you wouldn't be having these
problems. Mathematical precision in the derivation of software eliminates im-
precision." Yes, formal speci�cations are extremely useful in identifying in-
consistencies in requirements speci�cations, especially if one carries out some
minimal proofs of consistency and constraint or invariant preservation. Inter-
estingly, writing a program implementing the speci�cation also helps identify
inconsistencies in the speci�cation; programming is another FM.

Contrary to the claim of these evangelists, FMs do not �nd all gaps in
understanding. As Gordon and Bieman observe, omissions of functions are
di�cult to recognize in formal speci�cations [15], just as they are in programs.

Indeed, Oded Sudarsky, in a private discussion over co�ee, pointed out the
phenomenon of preservation of di�culty. Speci�cally, di�culties caused by
lack of understanding of the real world situation are not eliminated by use
of FMs; instead the misunderstanding gets formalized into the speci�cations,
and may even be harder to recognize simply because formal de�nitions are
harder to read by the clients. Sudarsky adds that formal speci�cation methods
just shift the lack of understanding from the implementation phase to the
speci�cation phase. The air-bubble-under-wallpaper metaphor applies here;
you press on the bubble in one place, and it pops up somewhere else.

FMs do have one positive e�ect, and it is a big one. Use of them increases
the correctness of the speci�cations. Therefore, you �nd more errors of com-
mission at speci�cation time than without them, saving considerable money
for each bug found earlier rather than later. Remember, the cost to repair
an error goes up dramatically as the project moves towards completion and
beyond. An error costs an order of magnitude more to repair when found
during integration testing and two orders of mangnitude to repair when found
after delivery than when found during requirements speci�cation and earlier.
Therefore, it saves lots of money to �nd errors earlier, and FMs help �nd errors
earlier. However, these errors are of commission rather than of omission

8



Berry

6 Second Time Phenomenon

In 1985, I published a paper with Jeannette Wing that suggests that FMs
work, not because of any inherent property of FMs as opposed to just plain
programming, which is really also an FM, but rather, because of the second
time phenomenon [2]. If you do anything a second time around you do better,
because you have learned from your mistakes the �rst time around. Indeed,
Fred Brooks says: \Plan to throw one [the �rst one] away; you will anyway!" [7]
In other words, you cannot get it right until the second time. If you write a
formal speci�cation and then you write code, you've done the problem formally
two times. Of course, the code will be better than if you had not done the
formal speci�cation. It is the second time! Note that writing an informal
speci�cation and then writing code does not have the same e�ect. It is too
easy to handwave and overlook details and thus fail to �nd the mistakes from
which you learn. It has to be two formal developments, speci�cations or code,
for the second-time phenomenon to work.

Observe how the two-time approach is requirements centered. One is not
going to �x implementation errors this way, because the second time is not
the same implementation as the �rst time. Even if they were the same, one
can introduce new errors in the rewrite. The focus of the �rst speci�cation
or coding e�ort is on understanding the essence and eliminating requirements
errors. The focus of the second is on implementing the understood essence.
As Euripedes says, \Second thoughts are always wiser".

7 The Importance of Ignorance

In a recent article, \Importance of Ignorance in Requirements Engineering" [4],
I report on my and Orna Berry's experiences in practicing ignorance hiding [1]
in requirements engineering. I observed that I seem to do best when I am in
fact most ignorant of the problem domain. For example, I had been called
in as a consultant to help a start-up write requirements for a new multi-port
Ethernet switching hub. I protested that I knew nothing about networking
and Ethernet beyond nearly daily use of telnet, ftp, and net�nd. At one point,
earlier in my life, I had worried that the ether in Ethernet cables might evapo-
rate! Despite my ignorance, I did a superb job, in fact, better than I normally
do in my areas of expertise. By being ignorant of the application area, I was
able to avoid falling into the tacit assumption tarpit. The experience seems
to con�rm the importance of the ignorance that ignorance hiding is so good
at hiding. It was clear to me that the main problems preventing the engi-
neers at the start-up from coming together to write a requirements document
were that all were using the same vocabulary in slightly di�erent ways, none
was aware of any other's tacit assumptions, and each was wallowing deep in
his own pit. My lack of assumptions forced me to ferret out these assump-
tions and to regard the ever so slight di�erences in the uses of some terms as

9



Berry

inconsistencies.

My conclusion is that every requirements engineering team requires a per-
son who is ignorant in the application domain, the ignoramus of the team, who
is not afraid to ask questions that show his or her ignorance, and who will
ask questions about anything that is not entirely clear. It is not claimed that
expertise is not needed. On the contrary, experts are needed to provide the
material in which to �nd inconsistencies. Also, there is a di�erence between
ignorance and stupidity; the ignoramus cannot be stupid. On the contrary,
he or she must be an expert in general software system structures and how
computer-based systems are built. He or she must be smart enough to catch
inconsistencies in statements made by experts in �elds other than his or her
own, inconsistencies in their tacit assumptions, to abstract well, and to get
to the bottom of things. Most importantly, he or she must be unafraid to
ask so-called stupid questions to expose all tacit assumptions. (This is part
of smartness since usually stupid people are afraid to ask stupid questions for
fear of exposing their stupidity.)

The �nal recommendation is that each requirements engineering team
needs at least one domain expert, usually supplied by the customer and at
least one smart ignoramus.

As a consequence of these observations, resumes of future software engi-
neers will have a section proudly listing all areas of ignorance. This is the only
section of the resume that shrinks over time. The software engineer will charge
fees according to the degree of ignorance: the more ignorance, the higher the
fee!

Soon after publication of the Importance of Ignorance paper, I received an
e-mail letter from Martin Feather. He wrote,

I have often wondered about the success stories of applications of formal
methods. Should these successes be attributed to the formal methods them-
selves, or rather to the intelligence and capabilities of the proponents of
those methods? Typically, proponents of any not-yet-popularised approach
must be skilled practitioners and evangelists to [help bring the approach]
... to our attention. Formal methods proponents seem to have the ad-
ditional characteristic of being particularly adept at getting to the heart
of any problem, abstracting from extraneous details, carefully organizing
their whole approach to problem solving, etc. Surely, the involvement of
such people would be bene�cial to almost any project, whether or not they
applied \formal methods."

Daniel Berry's contribution to the February 1995 Controversy Corner,
\The Importance of Ignorance in Requirements Engineering," provides fur-
ther explanation as to why this might be so. In that column, Berry ex-
pounded upon the bene�cial e�ects of involving a \smart ignoramus" in
the process of requirements engineering. Berry argued that the \ignora-
mus" aspect (ignorance of the problem domain) was advantageous because
it tended to lead to the elicitation of tacit assumptions. He also recom-

10



Berry

mended that \smart" comprise (at least) \information hiding, and strong
typing ... attuned to spotting inconsistencies ... a good memory ... a good
sense of language...," so as to be able to e�ectively conduct the requirements
process.

Formal methods people are usually mathematically inclined. They have,
presumably, spent a good deal of time studying mathematics. This en-
sures they meet both of Berry's criteria. Mastery of a non-trivial amount
of mathematics ensures their capacity and willingness to deal with abstrac-
tions, reason in a rigorous manner, etc., in other words to meet many of
the characteristics of Berry's \smartness" criterium. Further, during the
time they spent studying mathematics, they were avoiding learning about
non-mathematics problem domains, hence they are likely to also belong
in Berry's \ignoramus" category. Thus a background in formal methods
serves as a strong �lter, letting through only those who would be an asset
to requirements engineering.

8 Another Experience

A complementary paper in these proceedings by David Robertson [20], con-
siders how attempts to use FMs in the early stages of SWICBS design can
fail. He describes his experiences trying to teach applied mathematicians to
apply temporal logic to specifying a reactive system. The experience is more
evidence of the importance of ignorance in writing speci�cations.

Robertson's group was collaborating for the �rst time with a group of
computer-using applied mathematicians that knew temporal logic theory in-
side and out, but had never applied this theory to specify any system. They
were asked to specify in temporal logic a domain that practically invited tem-
poral speci�cation. As Robertson described it in e-mail to me, it \was an
obvious application which could be done in a short time using simple tempo-
ral relations and forms of inference which were pedestrian by comparison to
those with which the temporal logic group is familiar." After an initial failure
to specify, the mathematicians asked Robertson, with some embarrassment,
to write a prototype for them. He rapidly turned out a Prolog program, of
less than 100 lines of the kind that a bright second year undergraduate should
be able to write. This prototype proved to be enough of a trigger, and the
mathematicians are now happily turning out speci�cations of more complex
systems.

The mathematicians simply could not take the �rst step without some-
thing concrete to help them. Robertson believes that the di�culty was that
they lacked training in problem representation. As happens with students who
are unable to apply the theory they learn to problems, the mathematicians
had not developed any intuition about how to abstract away the details of a
complicated problem in order to get a useful speci�cation. Robertson believes
that \it is often easier to produce the sort of idealised system I described above

11



Berry

if you are `just ignorant enough' about logic not to be drawn into too complex
modelling at an early stage but `just smart enough' not to make logical goofs
and to be able to transfer the initial prototype to more experienced hands.
People in this line of work need to retain a certain amount of wide-eyed ig-
norance of the domain|otherwise they would be tempted to model problems
too deeply, which is fun but seldom pro�table."

9 Conclusions

It is my belief that FMs work when they work, not so much because of for-
mality, but rather because of

(i) what is learned when applying FMs, that can be applied in the next
round of development and

(ii) the nature of the people who willingly and enthusiastically apply FMs.

Despite the weakness of FMs at discovering new requirements, FMs work best
when they are being applied to the RE stage of SWICBS development to help
understand and correct the requirements.

These conclusions suggest that maybe we should be marketing FMs not as
a means of ensuring the correctness of the SWICBSes that we develop, but as
a means to attract the right kind of competent people to work on SWICBS
development projects.

References

[1] Berry, D. M. and Berry, O., \The Programmer-Client Interaction in Arriving at
Program Speci�cations: Guidelines and Linguistic Requirements," Proceedings
of IFIP TC2 Working Conference on System Description Methodologies, (ed.
E. Knuth), Kecskemet, Hungary, May 1983

[2] fBerry, D. M., Wing, J. M.g, \Speci�cation and Prototyping: Some Thoughts
on Why They Are Successful," Proceedings of TAPSOFT Conference, pp. 117{
128, Berlin, Springer, March 1985

[3] Berry, D. M., \Towards a Formal Basis for the Formal Development Method
and the Ina Jo Speci�cation Language," IEEE Transactions on Software

Engineering, SE-13:2, 184{201, 1987

[4] Berry, D. M., \The Importance of Ignorance in Requirements Engineering,"
Journal of Systems and Software, 28:2, 179{184, February 1995

[5] Berry, D. M. and Lawrence, B., \Requirements Engineering," IEEE Software,
15:2, March 1998

[6] Boehm, B. W., Software Engineering Economics, Prentice-Hall, Englewood
Cli�s, NJ, 1981

12



Berry

[7] Brooks, F. P. Jr., The Mythical Man-Month: Essays on Software Engineering,
Addison Wesley, Reading, MA, 1975

[8] Brooks, F. P. Jr., \No Silver Bullet," Computer, 20:4, 10{19, April 1987

[9] Chan, W., Anderson, R. J., Beame, P., Burns, S., Modugno, F., Notkin,
D., and Reese, J. D., \Model Checking Large Software Speci�cations," IEEE

Transactions on Software Engineering, SE-24:7, 498{520, July 1998

[10] Dijkstra, E. W., A Discipline of Programming, Prentice-Hall, Englewood Cli�s,
NJ, 1976

[11] Eckmann, S. and Kemmerer, R. A., \INATEST: an Interactive Environment for
Testing Formal Speci�cations," Proceedings of the Third Workshop on Formal

Veri�cation, Pajaro Dunes, CA, February 1985, Software Engineering Notes,
10:4, August 1985

[12] Fagan, M. E., \Design and Code Inspections to Reduce Errors in Program
Development," IBM Systems Journal, 15:3, 182{211, 1976

[13] Fetzer, J. H., \Program Veri�cation: The Very Idea," Communications of the

ACM, 31:9, September 1988

[14] Goguen, J. A. and Tardo, J., \An Introduction to OBJ: A Language for Writing
and Testing Formal Algebraic Program Speci�cations," Proceedings Conference
on Speci�cations of Reliable Software, Boston, 1979

[15] Gordon, V. S. and Bieman, J. M., \Rapid Prototyping: Lessons Learned," IEEE
Software, 15:1, 85{95, January 1995

[16] Hall, A., \Seven Myths of Formal Methods," IEEE Software, 7:5, 104{103,
September 1990

[17] Hall, A., \Using Formal Methods to Develop an ATC Information System,"
IEEE Software, 13:2, March 1996

[18] Kemmerer, R. A., \Testing Formal Speci�cations to Detect Design Errors,"
IEEE Transactions on Software Engineering, SE-11:1, January 1985

[19] Leveson, N.G., \Guest Editor's Introduction: Formal Methods in Software
Engineering," IEEE Transactions on Software Engineering, SE-16:9,
September 1990

[20] Robertson, D., \Pitfalls of Formality in Early System Design," Proceedings

of the Monterey Workshop on Engineering Automation for Computer Based

Systems, Carmel, CA, October 1998

[21] Rushby, J., \Calculating with Requirements," Proceedings of the Third IEEE

International Symposium on Requirements Engineering, pp. 144{146, IEEE
Computer Society, Annapolis, MD, January 1997

[22] Wing, J. M., \A Speci�er's Introduction to Formal Methods," IEEE Computer,
23:9, September 1990

13


