
Reprinted from:

Journal of Systems and Software
Volume 13
1990
Pages 209–230

The Use of a Repeated Phrase Finder in
Requirements Extraction*

Christine Aguilera
Computer Science Department, University of California, Los Angeles, California

Daniel M. Berry
Computer Science Department, Technion, Haifa 32000, Israel

A program, findphrases, for finding repeated phrases in an
arbitrary text is presented. Its primary intended application is
finding the abstractions in problem descriptions. It is hoped
that this tool can be used as the basis for an environment to
help organize the sentences and phrases of a natural language
problem description to aid the requirements analyst in the
extraction of requirements. Four experiments to confirm its
effectiveness are described. These experiments show that the
same abstractions are found by the tool in the natural language
description, the final executable program, and in various ver-
sions in between.

1. INTRODUCTION

The first steps in the development of any computa-
tional system should be the writing of requirements with
the client’s help. It may be necessary to build a proto-
type first, but ultimately before building a production-
quality version, it is necessary to agree upon what is to
be in the system. As observed by Winchester and Estrin
[32], well-formed requirements meet a number of re-
quirements themselves.

1. The requirements must be understandable to both
the customers and the designers and builders.

2. The parts of the requirements must be consistent
with each other.

3. The requirements must be complete so that the

iii

Address correspondence to Daniel M. Berry, Computer Science
Department, Technion, Haifa 32000, Israel.

* This work was supported in part by the University of California
MICRO program, Unisys Corporation, and NCR Corporation.

designers and builders do not have to make unin-
tended value judgments during their work.

4. Each part of the requirements must be traceable in
the subsequent design and implementation.

5. It must be testable that the implementation meets the
requirements.

6. The requirements should allow as much design free-
dom as possible by not specifying more detail than
is necessary.

This paper ultimately describes and determines the
effectiveness of one tool designed to assist in one part of
the process of writing requirements. However, as
several referees have pointed out, it is essential that the
reader understand the context in which this tool is ex-
pected to operate. Hence, Sections 2 through 5 are de-
voted to describing this context.

2. THE PROBLEM

Many system design or programming methods, e.g.,
those of Jackson [18], Parnas [24], Booch [10], Myers
[21], Orr [22, 23], etc., start from a clear statement of
the requirements and show how to arrive at a design of
a program or even at a program meeting these require-
ments. However, none of these methods really explain
how these requirements are obtained in the first place. It
seems clear to us (at least) that the writing of the re-
quirements is a major part of the problem, and that once
these are available, the arrival at an implementation, by
comparison, is relatively straightforward.

Large E type [19] software, for which it is difficult or
even impossible to obtain clear requirements, is usually

209

developed for a client organization in which there are
many people who have some view or say as to what the
desired system should do. These views range from be-
ing totally unrelated to each other to being totally incon-
sistent with each other. It is no wonder that the distilla-
tion of these views into a consistent, complete, and
unambiguous statement of the requirements, albeit in
natural language, is a major part of the problem of
developing software which meets the client’s needs.
Therefore, it is essential to have methods and tools that
help in distilling these many views into coherent re-
quirements.

3. PAST WORK

There are already a variety of systems, tools, and
methods for dealing with requirements. These include
SADT [26, 25], IORL [28], PSL/PSA [30], RDL [32],
RSL [5, 6, 7], RML [11] and Burstin’s prototype [12]
tool. The first two are graphically oriented, and the
second of these is automated. The remainder work from
highly constrained subsets of English consisting of sen-
tences, each of which states one requirement to which
the final implementation must adhere. Those which are
automated have tools for working with the sentences
and abstractions of the requirements document once
these sentences and abstractions have been recognized
and stated.

Structured Design and Analysis Technique (SADT)
uses a graphic language for expressing the requirements
of the system under development. An SADT model is
an organized sequence of diagrams starting with a top-
level overview diagram. A diagram is composed with
at most six boxes connected in an arbitrary manner with
arrows and accompanied with explanatory text. Each
lower-level diagram is an expansion of one of the boxes
at its parent diagram. An arrow between boxes re-
presents a constraint relation between the boxes and not
necessarily a flow of control or data.

Teledyne Brown Engineering has been experiment-
ing with a Technology for the Automated Generation of
Systems (TAGS), a system development method that
has the developers focusing on writing requirements
rather than on coding. TAGS is composed of the
Input/Output Requirements Language (IORL), a tool
system, and the TAGS method. IORL is a graphic and
tabular language that allows identification of each im-
portant software, hardware, embedded, or management
component of the system under development. The sys-
tem must be specified as a hierarchical collection of
components that interact through data links combined
with a controlling mechanism that dictates how infor-

mation flows through the system. The highest level in
an IORL specification is a schematic block diagram
(SBD) showing the major system components and the
data interfacing between them. Each such component
may be expanded in a lower level SBD. Associated
with each SBD are a variety of other diagrams supply-
ing other information about the components in the SBD.
These include diagrams for specifying control, logic,
and data flow of and among the individual components
of an SBD. The multiview orientation of TAGS is simi-
lar to that of SARA [15, 16], except that the latter is
directed at implementation design while the former is
directed at specification. (The marked similarity of no-
tations for specification and design underscores the fuz-
ziness of the boundary between specification and
design.) The associated tool set allows construction of
the diagrams, a number of static checks within and
between diagrams, and simulations driven by the di-
agrams.

Problem Statement Language (PSL) is a language for
expressing the objects and relations among objects of
the system under development. A system consists of
things called objects which may have properties which
in turn may have values. The objects may be connected
by relationships. The language has a rich collection of
standard object, property, and relation types that can be
used to describe all aspects of an information system,
including input, output, data flow, system and data
structure, performance, and management. The PSL pro-
cessor, Problem Statement Analyzer (PSA) builds a re-
lational data base capturing the contents of a PSL
specification and prepares a variety of reports. The data
base can be used as a living specification that can be in-
terrogated and updated as necessary.

Some of the other requirement statement languages
and accompanying tools have adopted PSL/PSA’s rela-
tional data base orientation. TRW’s Software Require-
ments Engineering Program (SREP) project has pro-
duced the Software Requirements Engineering Meth-
odology (SREM) which makes use of a number of tools
comprising the Requirement Engineering and Valida-
tion System (REVS). REVS is used to translate sen-
tences of Requirement Statement Language (RSL) into
tuples of a relational data base called the abstract sys-
tem semantic model. Tools are provided for interrogat-
ing and updating this data base as well as for preparing
reports. RSL differs from PSL in that the former em-
phasizes flows.

Winchester’s Requirement Definition Language
(RDL) of UCLA’s SARA System also expresses rela-
tions between objects of the system under development.
Each sentence in RDL represents a tuple of a relational

210

data base built up about the system under development.
Some of these relations can be expressed pictorially
through the use of SARA’s other modeling languages
for exhibiting system structure and control and data
flows.

The designers of RML observe that requirements are
meaningful only in the context of certain real-world
knowledge. For example, when the requirements spe-
cify a temperature and a tolerance, knowledge about
heat, temperature, measurement, tolerance limits, Fah-
renheit, Celsius, etc., is implied on the part of the reader
and is often used implicilty by the programmers. Thus,
specification processing tools should have access to a
knowledge base that can be consulted to provide im-
plied details that are not given explicitly. A RML
specification organizes the world as a collection of in-
teracting objects. For each object, its characteristics are
given as incomplete sentences with the object implied
as the missing parameter. Thus an object’s specification
can be viewed as a collection of relation tuples with the
object appearing at least once in each tuple. A complete
specification can thus be organized as a relational data
base. It is intended to build tools for translating a RML
specification into an AI language for knowledge
representation so that existing tools can be used for ex-
tracting the implied information of a specification.

Burstin’s prototype tool allows tuples of a relation,
i.e., sentences, each with a verb and objects, to be or-
ganized into a hierarchy of abstractions. Each abstrac-
tion contains those sentences sharing a common collec-
tion of objects, with the verbs representing procedures
of the abstraction. There are tools for introducing and
moving sentences to and from abstractions and for plac-
ing and moving abstractions in the hierarchy. There is
also a rudimentary application-oriented expert system
that helps recognize when two or more phrases of sen-
tences may be talking about the same thing, e.g.,
“plane” and “airplane” or “passenger” and “flier.”

All of these systems are useful for working with sen-
tences and abstractions of a requirements document,
once they are recognized and formed. Organizations
implementing and using two of these, PSL/PSA and
SREM, report much user satisfaction [7, 27, 30].

It is interesting that all of the above requirements
analysis systems deal with relations and that all but the
first two, which are not picture-oriented, have gone to
the use of a relational data base for storing the relations.
All can be used to support abstraction-based require-
ment development, which leads naturally to abstrac-
tion-based software development [9].

However, none of the methods and tools give much
help in actually obtaining the sentences in the first place

and in recognizing the relevant abstractions, especially
in the context of a large client organization. The
descriptions of all of the methods either fail to mention
how to get the sentences or say something to the effect
of “get them and write them down” as if there were
nothing to it.

Teichroew and Hershey [30] offer that “since most of
the data must be obtained through personal contact, in-
terviews will still be required.” PSA does help this gath-
ering process in that its “intermediate outputs ... also
provide convenient checklists for deciding what addi-
tional information is needed and for recording it for in-
put.”

Alford [5] says that the “SREM steps address the se-
quence of activities and usage of RSL and REVS to
generate and validate the requirements. It assumes [ital-
ics are not in the original] that system function and per-
formances have been allocated to the data processor,
and have been collected into a Data Processing Subsys-
tem Performance Requirement or DPSPR.”

Even eight years later, Scheffer et al. [27], from a
completely different company which had been using
SREM, state only that the “initial input to SREM is a
system specification that is translated into RSL and in-
terpreted to determine the interfaces with the outside
world, the messages across these interfaces, and the re-
quired processing relationships and flows.”

The first step of the TAGS method [28] is the con-
ceptualization step, “User concepts and requirements
are used to develop a conceptual model that is the basis
for subsequent engineering.” This conceptual model is
the top level SBD. In the cited article, there is advice on
the issues that should be dealt with in arriving at it.
However, no tools are provided, since the TAGS
method deals with activities that follow the production
of this first SBD.

Therefore, we feel that the gap between the initial
fuzzy natural language statements from the individuals
in the client organization to the sentences, i.e., relations,
with which these tools work is still too large. Methods
and tools are needed to close this gap.

4. ENVISIONED REQUIREMENTS
GATHERING ENVIRONMENT

We ultimately envision an integrated environment,
REGEE, for gathering, sifting, and writing require-
ments. This environment may very well be part of a
larger environment used for software development, de-
ployment, and maintenance [1, 2]. REGEE is in the
very rudimentary prototyping stage, as we do not under-
stand the process it is supposed to assist. For now, RE-

211

GEE is described as helping the human requirements
analyst (RA) massage transcripts of interviews with
members of a client organization into a consistent, com-
plete, unambiguous, coherent, and concise statement of
what the organization wants. We do not care what
language is being used either for the interview tran-
scripts or for the final requirements. REGEE should
support any possibility. Usually the input, transcript
language will be some natural language, possibly with
pictures. However, the output language, in which the re-
quirements are written, can be anything from natural
language, possibly with pictures, to predicate calculus;
in particular, it should be possible to use any of the re-
quirements expression languages that are mentioned in
Section 3.

We do not know enough about effective requirements
writing to be able to codify the process. Thus at least for
now, an expert-system approach is out of the question.
We therefore envision an environment consisting of
clerical tools that help with the tedious, error-prone
steps of what one particular human RA, the second au-
thor, does.

We view a requirements document both in the pro-
cess of being written and in final form as a network,
very often a hierarchy, of nodes each denoting an
abstraction and containing a description of all that is
known and required about the abstraction. The arcs
between the nodes can be used to describe the “uses”
relation or any other basis for organizing the set of
abstractions.

REGEE needs two basic kinds of tools,

1. to help identify the abstractions that will make the
nodes from the transcripts of the interviews, and

2. to help organize the abstractions into a network of
abstraction-nodes, each to contain a consistent, com-
plete, unambiguous, coherent, and concise descrip-
tion of that abstraction.

This paper deals with a proposed tool of the first
kind, a repeated phrase finder. To understand the ra-
tionale behind the repeated phrase finder, it is useful to
understand the envisioned tool of the second kind. We
are building a significant enhancement of the Burstin
tool mentioned in Section 3. This tool provides a medi-
um in which nodes, implemented as windows on a work
station screen, can be organized into a network, as sug-
gested by Figure 1. Each window can be made to hold
arbitrary text, including text that causes displaying of a
picture. Any arbitrary element of the text of any win-
dow can be given links connecting the element to any
window or to any element, possibly in another window.
Figure 2 shows two windows from a description of an
airline reservation system.

˜˜˜˜˜˜
˜˜˜˜˜˜

˜˜˜˜˜˜
˜˜˜˜˜˜

˜˜˜˜˜˜
˜˜˜˜˜˜

˜˜˜˜˜˜
˜˜˜˜˜˜

˜˜˜˜˜˜
˜˜˜˜˜˜

Figure 1. Network of Nodes.

book passenger on flight book passenger on flight

flight passenger

Figure 2. Links.

The links connect an element to windows giving
more details about the element or to other elements talk-
ing about the same or related concepts, as the human
RA desires. The RA can use these links to navigate
through the windows as he or she is tracking down the
information that allows the contents of each window to
be refined into a consistent, complete, unambiguous,
coherent, and concise description of the window’s
abstraction.

This description of the tool of the second kind sug-
gests building it on top of some existing hypertext sys-
tem [13, 14, 33]. Indeed, Garg and Scacchi have sug-
gested maintaining all life-cycle documents as hypertext
[17].

5. ABSTRACTION IDENTIFICATION

The way identification of abstractions is done now is
that the human RA scans the transcripts trying to note
important subjects and objects of sentences, i.e., nouns.
The problem is that humans get tired, get bored, fall
asleep, and overlook relevant ideas. So we want a tool
that does the clerical part of the search without getting
tired, getting bored, falling asleep, and overlooking any-
thing. The human RA still does all the thinking with the
output of this tool, confident that no occurrence of any
noun has been overlooked.

Our first idea, reported in Berry et al. [8], was to use
a parser to find the nouns. However, we tried it and
found that the few errors it made were so distracting

212

that it was more comfortable to do it by hand. Further-
more, the program did not inspire confidence that it
found everything. Maybe there was an important noun
that was overlooked because it appeared to the parser as
a verb. Even a better, but still ultimately imperfect,
parser does not solve this confidence problem. We want
something with guaranteed coverage, even if it is less
intelligent. The lack of intelligence in the tool is no
problem because a human is applying his or her intelli-
gence to the output of the tool.

The tool we propose for helping the RA to find
abstractions is findphrases, a repeated phrase finder.

6. FINDING REPEATED PHRASES IN A TEXT

The purpose of the findphrases tool is to find repeat-
ed phrases in an arbitrary text. findphrases is described
by its UNIX-style manual page given in Appendix A.

In its simplest application, the user provides find-
phrases with the text to be analyzed and a file contain-
ing punctuation and keywords. The punctuation and
keywords are used by findphrases to break the text into
sentences. findphrases processes the phrases of the sen-
tences and produces a series of reports. The basic output
contains: (1) the input file as is with lines numbered and
the punctuation and keywords overstruck, (2) a frequen-
cy ranked table of repeated phrases, and (3) an alpha-
betically ordered table of repeated phrases. Each entry
in these tables gives the numbers of the lines in which
the phrase occurs, so that each phrase may be examined
in its original context to decide which abstraction is
really represented by the phrase. A number of options
are provided that the user may use to control the parsing
of the input text into tokens and phrases, to control the
printing of the phrases in the tables of the output, and to
indicate which additional tables are to be printed. Sam-
ple outputs from several applications of findphrases on
a variety of texts are provided in Appendix C. These ap-
plications are described in Section 10.

In another software project, Takata [29] has used
findphrases to help identify the phrases of a book that
should be indexed in conjunction with a tool which gen-
erates a formatted index from the text of a book and the
list of phrases to be indexed. Takata’s tool, indx, takes a
phrase-file which contains all phrases for which the in-
dex is to be developed.

findphrases may also be used in other applications
where the identification of repeated phrases in a text is
needed.

Observe that there is a learning process involved in
using findphrases effectively for each of these and oth-
er applications. First, it appears that there are different

characteristic punctuation-keyword, multitoken and ini-
tial ignored-phrases files for each language. These can
be catalogued for general use. In addition for each class
of applications, there appears also to be a characteristic
set of additional ignored phrases. Finally, as one is do-
ing a particular application, one finds it useful to extend
the ignored phrases file with common words that are ac-
tually important abstractions, but whose presence skews
the list and populates it with too much noise for finding
the other abstractions.

7. TESTING EFFECTIVENESS WITH FOUR
EXPERIMENTS

All of the above are just raw ideas about how to build
a requirements gathering and writing environment and a
plausable explanation of why it should work. However,
unless the findphrases program is effective in helping
the human RA to identify abstractions, it is useless to
continue down this path. The first author implemented
findphrases and conducted tests to determine its
effectiveness in its intended purpose.

We found four examples of program development,
each of which had multiple versions of the same pro-
gram ranging from natural language descriptions,
through designs, decompositions, etc., to code. Three of
these are published in the literature and one is not; none
were designed to be a subject of this experiment (our
own included), although obviously they were picked to
be subjects after the fact.

It is desired to determine if findphrases is effective
in helping the human RA to find, in the natural language
transcripts of interviews about a system under develop-
ment, all of the abstractions that serve as the basis for
the requirements, design, and implementation. It will be
deemed effective if we, as humans, do indeed recognize
the same set of abstractions in the outputs of find-
phrases run (with the appropriate parameter files in
each case) on all versions of the same problem. Finding
the same set of abstractions in all versions says that the
abstractions found in the first version, the natural
language description, are sufficient to cover all abstrac-
tions that will be needed for all subsequent versions, in-
cluding the code, and that no other abstractions will
need to be invented.

While doing the experiments, we were discovering
methods for finding abstractions and producing the re-
quirements from the initial statements. However, the
refinement of these methods is left to future work if and
when findphrases has been judged effective.

The sections that follow describe the four experimen-
tal applications of findphrases. The relevant output list-

213

ings for some of the examples are found in the appen-
dices. Space considerations prevent giving the output
listings for all of the examples. However, they may be
found in the appendices of Aguilera’s thesis [4].

The first experiment is Abbott’s example of program-
ming with the help of natural language. This example is
the focus of a paper [8] that points to the need of this
phrase-finding tool. For this experiment, three versions
of the program solution are compared. The first version
was written in standard English, the second in an Ada-
based program design language, and the third in Ada.
Since Berry et al. [8] is published in a previous issue of
this journal, and the publication contains ouptuts of
some runs of an earlier version of findphrases on some
of the versions of the problems, the outputs of the runs
are not given here.

The second experiment is the problem of writing the
phrase finder itself. In writing the phrase finder, the
manual page served as the requirements document.
findphrases was run with its own manual page to see if
the same abstractions that formed the basis for the mo-
dular decomposition used in writing the code are iden-
tified from the information provided by findphrases.
The manual page itself is given as Appendix A, and the
frequency listing is given as Appendix B.

The third experiment takes Mitchell’s textbook [20]
example of writing a sorting program starting from the
English statement of the requirements and ending with a
Pascal program developed with a structured program-
ming method. Four versions of the program solution are
compared, the initial English description, two program
design language descriptions, and the final Pascal pro-
gram. The input and output from the runs of find-
phrases on all four versions of the problem are given in
Appendix C.

The fourth experiment takes Wiener and Sincovec’s
textbook [31] example of writing a spelling checker
program. They start with a statement of the require-
ments, develop a modular decomposition for the solu-
tion, and produce an Ada program. findphrases was
used with the list of general goals and requirements for
the spelling checker. The abstractions found with the
aid of the output produced by findphrases in this appli-
cation are compared with those used by Wiener and
Sincovec. The listings from these runs are not given in
this paper.

8. ABBOTT’S EXAMPLE — THE NUMBER OF
DAYS BETWEEN TWO DATES

In this experiment, three versions of a problem and
its solution were tested. The problem to be solved was

“write a function subprogram that, given two dates in
the same year, returns the number of days between the
two dates.” [3] The first solution was Abbott’s original
informal strategy written in English, the second was the
strategy written in an Ada-based program design
language, and the third was the final Ada program. The
second and third versions were taken from Berry et al.
[8].

findphrases was applied to each version using the
appropriate punctuation-keyword-file and other options
provided by findphrases. Appendix B of Aguilera [4]
lists the input text, the selected options, and the tables
generated by findphrases for each version.

To compare the abstractions contained in the
different versions of the solution, a method was needed
for finding the abstractions from the tables of repeated
phrases that are produced by findphrases. The method
selected was Abbott’s own method of formalizing an in-
formal strategy [3].

An informal strategy can be formalized into a pro-
gram by

1. identifying the data types,
2. identifying the objects (program variables) of those

types,
3. identifying the operators to be applied to those ob-

jects, and
4. organizing the operators into the control structure

suggested by the informal strategy.

This is done by looking at the English words and
phrases of the informal strategy and, respective to the
list above,

1. identifying the common nouns,
2. identifying the proper nouns or direct references
3. identifying the verbs, attributes, predicates, or de-

scriptive expressions suggesting an operator, and
4. identifying the control structures that are implied in

a straightforward way by the natural language
description, e.g., by use of phrases such as “if,”
“then,” “otherwise,” “for each,” etc.

For this experiment, common nouns were used to
identify the data abstractions. Using the tables of re-
peated phrases, the user can manually identify the com-
mon nouns since these tend to be repeated very often.
To determine whether a noun actually represents a dis-
tinct data type, its context must be considered. By using
the line numbers printed in the tables, or by using the
UNIX grep, the user can locate each noun, analyze the
context of the lines containing it, and make a determina-
tion. It is possible that a common noun appears only
once in the text and therefore does not appear in the re-
peated phrases tables. To handle such cases, the −t op-

214

tion of findphrases allows the user to obtain a listing of
all the distinct tokens in the text. Using this list, the user
can identify missing common nouns that in turn can be
located and analyzed. In his discussion of the informal
strategy, Abbott identifies “counter” as a common noun,
a phrase that only appears once according to find-
phrases. In the text, however, the underscore was used
in the phrase Day_counter thus capturing the multi-
ple occurrences of “counter.” Because the phrase
Day_counter is included in the repeated phrases
tables, the user may note the occurrence of the common
noun “counter,” or by examining the Tokens List in Ap-
pendix B, Section 1 of Aguilera [4], the single oc-
currence of counter can be identified. In this case,
after analyzing its usage, this phrase was found to be
equivalent to the data type number_of_days and
was therefore not used as a separate data abstraction.

In the informal strategy, the common nouns identified
as actual data types were only date, month, and
number_of_days. These same phrases were iden-
tified by findphrases as repeated phrases in all three
versions of the problem description. Other common
nouns found in the different versions occurred as
equivalent rephrasings of these same types. For in-
stance, in the informal strategy, dates, days, and
number also occurred as repeated phrases. Since the
second and third versions were developed through an
iterative process, the results from findphrases showed
that once the initial data types were identified, they were
used consistently in each of the later versions.

In this experiment, the data types that form the basis
of the data abstraction calendar_tools were iden-
tified as repeated phrases by findphrases in each ver-
sion of the problem description. Thus, findphrases was
found to be effective in helping the human RA identify
the same set of abstractions in each version. In addi-
tion, the tables produced by the findphrases tool were
found to be useful in organizing the information of the
text while applying Abbott’s method.

9. THE findphrases MANUAL PAGE

This experiment considered the problem of develop-
ing a program for findphrases. findphrases was tested
using its own manual page. The data abstractions
identified by findphrases from this application were
compared with the abstractions used in the decomposi-
tion for the final program. Appendix B contains one of
the tables produced by findphrases using the manual
page.

The decomposition used for the findphrases program
includes 15 different modules, as illustrated in Figure 3.

(See Chapter 3, Section 3 of Aguilera [4] for a descrip-
tion of the modules.) The modules with dashed outlines
are built into the implementing programming language.
Nine of the non-built-in modules, i.e., those with the
thicker outlines, are data abstraction packages. The list
below shows the correspondence between these pack-
ages and some of the repeated phrases identified by
findphrases from the manual page description:

The Data The Repeated
Abstraction Packages Phrasesiii
string_type_file strings, character strings

argument_line argument, option

output_file output,

tables of the output

chunk_file file(s), free-format

punct_keyword_table punctuation, keyword(s),

punctuation/keyword(s),

punctuation-keyword-file

multi_tokens_table multi-tokens,

multi-tokens-file

text_file text, input,

arbitrary text

phrases phrase(s),

ignored phrases,

repeated phrases

sentences sentence(s)

The name of each abstraction, except for chunk_
file, directly corresponds to at least one repeated
phrase appearing in the manual page. Although the
phrase “chunk” does not appear in the description, the
chunk_file abstraction is implied by the phrases in-
dicated above. During the program’s development,
chunk_file was recognized as the abstraction to be
used by the procedures that read the various free-format
files. Thus, this abstraction is indirectly identified by re-
peated phrases appearing in the tables.

In this experiment, the repeated phrases tables pro-
duced by findphrases include phrases that identify the
abstractions that were used in the program decomposi-
tion. The tables act as guides to the user when looking
for the abstractions. The user’s attention is first focused
on the phrases with the highest frequency and then on
possibly related phrases. The line numbers printed in the
tables enable the user to locate the phrases in the text.
By analyzing the context of the sentences containing the
phrase, the importance of the phrase as a potential
abstraction can be determined.

In addition to finding the list of abstractions, as the
user analyzes the context of each phrase usage, a list of
statements related to that phrase can be extracted. For
example, consider the phrases multi-token, mul-
ti-tokens and multi-tokens-file. By exa-

215

fin
d_

ph
ra

se
s

de
te

rm
in

e_
m

ax
_n

o
_t

ok
en

s_
pe

r_
ph

ra
se

re
ad

_i
n_

pu
nc

t
_k

ey
w

or
ds

re
ad

_i
n_

m
ul

ti
_t

ok
en

s
re

ad
_i

n_
ig

no
re

d
_p

hr
as

es
se

nt
en

ce
s

co
nv

er
t

_t
o_

in
te

ge
r

ph
ra

se
s

ar
gu

m
en

t_
lin

e

pu
nc

tu
at

io
n

_k
ey

w
or

d_
ta

bl
e

m
ul

ti_
to

ke
ns

_t
ab

le

te
xt

_fi
le

ch
un

k_
fil

e
te

xt
_i

o

ar
gu

m
en

t_
lin

e,
ch

un
k_

fil
e,

ou
tp

ut
_fi

le

st
ri

ng
_t

yp
e_

fil
e

al
lo

th
er

m
od

ul
es

ou
tp

ut
_fi

le

F
ig

ur
e

3.
fin

dp
hr

as
es

D
E

C
O

M
PO

SI
T

IO
N

.

21
6

mining the context of the lines that contain these
phrases, one finds the following information:

1. The optional multi-tokens-file contains in free format
the list of character strings to be taken as multito-
kens;

2. a multitoken is a string consisting of more than one
symbolcharacter (non-word character);

3. if the −m option is present, the input text is parsed
using the information provided by the multi-tokens-
file;

4. a token may be a multitoken;
5. if the −v and the −m options are present, the list of

multitokens is printed.

These statements represent requirements for the data
abstraction multi-token. Located by the manual
method, these same statements were used when the ini-
tial decomposition and implementation were developed.
The final program uses a procedure to read the multi-
tokens-file and a package to handle a multitokens table.
These statements also guided the development of the
text parsing routines.

Thus, in this experiment, the human RA finds in the
repeated phrases generated from the manual page the
very abstractions used in the modular decomposition
and implementation.

10. AN ALGORITHM FOR SORTING A LIST
OF NAMES

The third experiment used the problem of sorting a
list of names alphabetically. The problem was taken
from Mitchell [20] from the chapter titled “Describing
Algorithms in English.”

From Mitchell’s algorithm, a fully implemented Pas-
cal program was developed using three iterations of
Abbott’s method of formalizing an informal strategy.
findphrases was tested with all four versions: (1) the in-
itial English description, (2) a program design language
description using goto statements, (3) a program
design language description with the goto statements
eliminated, and (4) the final Pascal program. Appendix
C lists the results from applying findphrases to each
version.

Using Abbott’s initial step of identifying the common
nouns in the tables produced by findphrases for the in-
formal strategy, the data types list, name, and posi-
tion were identified. These phrases, appearing in
equivalent forms, occurred as repeated phrases in all
four versions of the problem description and were used
as abstractions in the final program. Appendix C con-
tains the inputs and outputs of the runs of findphrases
on these four versions.

For this experiment, findphrases was found effective
in helping to identify the abstractions used in the final
program from each version representing various stages
in the development of the problem solution.

11. WIENER AND SINCOVEC’S SPELLING
CHECKER

This final example comes from Software Engineering
with Modula-2 and Ada by Wiener and Sincovec [31].
The chapter titled “A Case Study in Modular Software
Constructions” lists the goals and requirements of the
spelling checker and describes an informal strategy
along with a design framework and implementation.
findphrases was tested with a text that describes the
goals and requirements of the spelling checker. The out-
put from this application is listed in Appendix E of
Aguilera [4].

In the spelling checker case study, Wiener and Sin-
covec give the modular design used to implement the
spelling checker. The modules include the main pro-
gram Spell, the procedure TestWord, and seven
data abstractions: Hidden, TextOps, Counters,
MainDict, FastDict, AuxDict, and TempDict.

Using the tables produced by findphrases, the poten-
tial data types were identified using methods similar to
those used in the previous experiments. The repeated
phrases identified as data types were: word, line,
text file, dictionary, and number of
words. From the context of the sentences containing
the phrase line, the data types line of text and
number of lines were implied.

The data abstractions found compare favorably with
those used by Wiener and Sincovec. In their implemen-
tation, Wiener and Sincovec used Hidden to hide the
data types WordType and LineType that correspond
to word and line of text. Their module Text-
Ops was used to handle the text file. The four dic-
tionary modules, MainDict, FastDict, AuxDict,
and TempDict, were used to handle the dictionaries
that correspond to the data type dictionary. A
separate module called Counters was used to handle
the operations on the counters for the number of
words and number of lines. These comparisons
show that the data abstractions found by using find-
phrases correspond directly to those used by Wiener
and Sincovec in their implementation.

As with the previous experiments, the data abstrac-
tions identified from the repeated phrases in the initial
goals and requirements description of the spelling
checker are exactly those used in the final implementa-
tion.

217

12. TEST RESULTS AND CONCLUSIONS

In these experiments, findphrases was found to be
effective in helping the human RA identify the same
abstractions from different versions of a program
description. In addition, findphrases was helpful in or-
ganizing the information in the descriptions and allowed
the user to focus on the important phrases. It will now
be necessary to try out findphrases on new and larger
problems.

In addition, methodological work is needed. Spe-
cifically, initial punctuation-keyword, multitoken, and
ignored phrases files need to be suggested for each
language and problem area. Strategies of adding words
to the ignored phrases file must be developed. More
work is needed to consider the appropriate methods for
reducing the list of repeated phrases down to the list of
abstractions.

Finally, it is necessary to build the hypertext-based
requirements massager and to complete the construction
of REGEE.

ACKNOWLEDGEMENT

The authors thank Yoëlle Maarek and the referees for their
useful comments. UNIX is a trademark of AT&T Bell Labora-
tories.

REFERENCES

1. Requirements for the Ada programming support environ-
ment: STONEMAN, Technical Report, U.S. Department
of Defense (1981).

2. IEEE Software, 5 (1988).
3. R.J. Abbott, Program design by informal english descrip-

tions, CACM, 26 (1983).
4. C.S. Aguilera, Finding abstractions in problem descrip-

tions using findphrases, M.S. Thesis, Computer Science
Department, UCLA, Los Angeles (1987).

5. M.W. Alford, A requirements engineering methodology
for realtime processing requirements, IEEE Transactions
of Software Engineering, SE-3, 60–69 (1977).

6. M.W. Alford, Software requirements engineering metho-
dology (SREM) at the age of two, in COMPSAC 78
Proceedings (1978).

7. M.W. Alford, SREM at the age of eight; the distributed
computing design system, Computer, 18, 36–46 (1985).

8. D.M. Berry, N.M. Yavne, and M. Yavne, Application of
program design language tools to abbott’s method of pro-
gram design by informal natural language descriptions,
Journal of Software and Systems, 7, 221–247 (1987).

9. V. Berzins, M. Gray, and D. Naumann, Abstraction-
based software development, Communications of the
ACM, 29, 402–415 (1986).

10. G. Booch, Software engineering with Ada, Benjamin-
Cummins, San Francisco, 1986.

11. A. Borgida, S. Greenspan, and J. Mylopolous, Know-
ledge representation as the basis for requirements
specifications, Computer, 18, 82–91 (1985).

12. M.D. Burstin, Requirements analysis of large software
systems, Ph.D. Dissertation, Department of Manage-
ment, Tel Aviv University, Tel Aviv, Israel (1984).

13. J. Conklin, A survey of hypertext, MCC Technical Re-
port No. STP-356-86, Rev. 1, MCC, Austin, TX (1987).

14. N.M. Delisle and M.D. Schwartz, Contexts — a parti-
tioning concept for hypertext, ACM Transactions on
Office Information Systems, 5, 168–186 (1987).

15. G. Estrin, The story of SARA, Proceedings of IFIP
Working Conference on Methodology for Computer Sys-
tem Design (1983).

16. G. Estrin, R.S Fenchel, R.R. Razouk, and M.K. Vernon,
SARA (System ARchitect’s Apprentice): modeling,
analysis, and simulation support for design of concurrent
systems, IEEE Transactions of Software Engineering,
SE-12, 293–311 (1986).

17. P.K. Garg and W. Scacchi, Maintaining software life cy-
cle documents as hypertext: issues, analysis, and direc-
tions, Technical Report, University of Southern Califor-
nia, Los Angeles (1987).

18. M.A. Jackson, Principles of program design, Academic
Press, London, 1975.

19. M.M. Lehman, Programs, life cycles, and laws of
software evolution, Proceedings of the IEEE, 68,
1060–1076 (1980).

20. W. Mitchell, A prelude to programming: problem solving
and algorithms, Reston Publishing, Reston, VA, 1984.

21. G.J. Myers, Composite/structured design, van Nostrand
Reinhold, New York, 1979.

22. K.T. Orr, Structured systems development, Yourdon,
New York, 1977.

23. K.T. Orr, Structured requirements engineering, Ken Orr
& Associates, Topeka, KS, 1981.

24. D.L. Parnas, On the criteria to be used in decomposing
systems into modules, Communications of the ACM, 15,
1053–1058 (1972).

25. D.T. Ross, IEEE Transactions on Software Engineering,
SE-3, 16–33 (1977).

26. D.T. Ross and K.E. Schoman, Jr., Structured analysis for
requirements definition, IEEE Transactions on Software
Engineering, SE-3, 6–15 (1977).

27. P.A. Scheffer, A.H. Stone, III, and W.E. Rzepka, A case
study of SREM, Computer, 18, 47–54 (1985).

28. G.E. Sievert and T.A. Mizell, Specification-based
software engineering with TAGS, Computer, 18, 56–66
(1985).

29. K.K. Takata, Indx, a semi-automatic indexing program,
M.S. Thesis, Computer Science Department, UCLA,
Los Angeles (1987).

218

30. D. Teichroew and E.A. Hershey, III, PSL/PSA: a
computer-aided technique for structure documentation
and analysis of information processing systems, IEEE
Transactions of Software Engineering, SE-3, 41–48
(1977).

31. R. Wiener and R. Sincovec, Software engineering with
Modula-2 and Ada, John Wiley & Sons, New York,
1984.

32. J. Winchester and G. Estrin, Requirements definition and
its interface to the SARA design methodology for
computer-based systems, AFIPS Conference Proceed-
ings, 51, 369–379 (1982).

33. N. Yankelovich, N. Meyerowitz, and A. van Dam, Read-
ing and writing the electronic book, Computer, 10, 15–30
(1985).

APPENDIX A. findphrases MANUAL PAGE

FINDPHRASES (LOCAL) UNIX Programmer’s Manual FINDPHRASES (LOCAL)

NAME
findphrases − find repeated phrases in an arbitrary text

SYNOPSIS
findphrases [−−nnumber] −−ppunctuation-keyword-file [−−xignored-phrases-file] [−−mmulti-tokens-file] [−−u] [−−b] [
−−s] [−−t] [−−v] [−−c]

DESCRIPTION
All files mentioned in the synopsis provide their data in what is referred to as free format subject to particular restrictions
to be described for each case. In free format, the items of the file may be entered zero or several per line with a mixture of
blanks and tabs before, in between, and after the items. Consequently, no item can include a blank, a tab, or a newline.

The −−n argument is optional and if present provides a number number serving as the maximum length phrase (to be
described later) to be tallied. If this argument is not present, if it does not supply a number, or if the supplied number is
outside the reasonable range of greater than zero and less than or equal to 50, then number is taken as 10.

The punctuation-keyword-file contains in free format a list of those character strings to be taken as punctuation/keywords
(see below). The optional ignored-phrases-file contains one-per-line a list of phrases to be ignored in the tallying (see
below). In each line, the tokens (see below) are in free format. The optional multi-tokens-file contains in free format a list
of those character strings consisting of more than one symbolcharacter (see below) which are to be taken as multi-tokens
(see below).

No assumptions are made about the standard input, thus it may be an arbitrary text. The program parses the text into
words and symbolcharacters. These in turn are formed and classified into tokens and punctuation/keywords based on the
information provided by the punctuation-keyword-file and, when the −−m option is present, the multi-tokens-file.

First some definitions are necessary:

Whitespace: blank , tab , newline , beginning-of-file , end-of-file

Wordcharacter: letter , digit , _

Symbolcharacter: any printable character which is neither a wordcharacter nor a blank

Word: any sequence of wordcharacters delimited on each side by whitespace or a symbolcharacter

Punctuation/Keyword: whatever is in the punctuation-keyword-file; the symbolcharacter strings are called
punctuation and the wordcharacter strings are called keywords

Multi-token: whatever is in the multi-tokens-file

Token: any word, symbolcharacter, or multi-token which is not listed in the punctuation-keyword-file

Sentence: list of tokens delimited on each side by punctuation/keyword

Phrase: one or more consecutive tokens occurring within one sentence

The main job of this program is to tally the occurrence of all phrases in all sentences. The maximum length phrase that
has to be considered is that of number tokens. If the ignored-phrases-file is provided, then the phrases given in the file are
to be ignored in the tallying. If the −−b option is used along with the ignored-phrases-file, then phrases which begin with
an ignored phrase are also ignored in the tallying.

219

The standard output consists of:

a copy of the input as is, with the lines numbered and the punctuation/keywords overstruck two times (i.e.,
printed three times in place) so that they can be spotted easily,

a frequency ranked table of the repeated phrases. i.e., those appearing more than once among the sentences; that
is the entries of the table are given in order of decreasing frequency, and

an alphabetically ordered table of the repeated phrases.

In the two tables, the entry for a repeated phrase consists of:

a sequence of asterisks indicating the phrase’s frequency as a percentage of the maximum frequency; in this one
asterisk represents 10%,

the actual number of occurrences of the repeated phrase,

the repeated phrase itself, and

a list of the numbers of all lines containing the beginning of the repeated phrase.

In printing the repeated phrase itself in a table entry, the underscores, i.e., ‘‘_’’, are printed as blanks. This means that an
underscore can be used immediately preceeding or following a word that looks like a keyword to prevent it from being
considered a keyword.

Note that the definition of ‘‘phrase’’ is independent of the number of times it occurs in the sentences. An ignored phrase
is simply one to be ignored in the tallying but not in searching for phrases. A phrase which contains an ignored phrase
which itself is not ignored is to be tallied. When the −−b option is present, a phrase which begins with an ignored phrase is
not to be tallied. A repeated phrase is one whose final tally is greater than one. Only the repeated phrases show up in the
tables of the output.

Typically, the ignored-phrases-file will contain so-called noise phrases such as ‘‘a’’, ‘‘an’’, ‘‘the’’, ‘‘of’’, ‘‘of the’’, etc.
plus any useless phrases found in previous runs of the program.

One particular configuration of the files is as follows:

Punctuation-keyword-file: ; [] abort accept access all and array at begin body case constant declare delta
digits do else elsif end entry exception exit for function generic goto if in is limited loop mod new not null
of or others out package pragma private procedure raise range record rem renames return reverse select
separate subtype task terminate then type use when while with xor

Multi-tokens-file: ∗∗∗∗ := <= >= /= .. <> << >>

This configuration is suited for finding repeated phrases in Ada or in an Ada-based program design language.

If the −−u option is present, then only the unique phrases that are not wholly and everywhere contained in another phrase
are listed in the tables of the output. In addition to the already specified output, if the −−s option is present, then all the
sentences are listed; if the −−t option is present, then all the tokens are listed; if the −−v option is present, then the output is
verbose with the punctuation/keywords listed, and when the −−m, and respectively the −−x, option is present, the multi-
tokens, and respectively the ignored phrases, are listed. If the −−c option is present, then upper and lower case distinctions
are to be applied in determining whether a phrase is in a sentence. The default is to ignore case distinction in the
comparisons.

DIAGNOSTICS
They are good, of course.

BUGS
There are none, of course.

APPENDIX B. findphrases USED ON ITS OWN
MANUAL PAGE

The outputs referred to in these appendices follow
the entire text. In each case, the output, given in a type-
writer font and extending over several pages, is headed
by a label including the name of the example. This la-
bel is in Roman fonts. The outputs have been edited for
compactness and lines have occasionally been folded to
fit the column width.

The original text of the manual page is found in Ap-
pendix A. The text was modified slightly by the addition
of some punctuation before it was used with the tool.
The following findphrases options were used:

i. The punctuation-keyword-file consisted of a stan-
dard set of punctuation: period, comma, colon,
semi-colon, question mark, and exclamation point.

ii. The ignored-phrases-file consisted of a list of sixty-

220

seven phrases to be ignored: apostrophe, opening
and closing double quotes, opening and closing
parentheses, opening and closing brackets, dash,
colon, underscore, 10, a, ada, all, an, and, any,
are, as, based, be, begin, beginning,
below, by, called, can, configuration,
course, described, e, each, end, entry,
file, for, i, if, in, into, is, it, items,
may, not, number is, of, on, or, respec-
tively, see, so, synopsis, taken, than,
that, the, then, this, those, thus, times,
to, tokens, (see below), when, which, and
with. These phrases were found in prior runs.

iii. The multi-tokens-file consisted of the following
symbols: ’’ ‘‘ ** := <= >= /=
.. <> << >>

iv. The −u and −b options were used to print the Tables
of Repeated Phrases. The −b option was used to ig-
nore in the tallying of repeated phrases those phrases
which began with an ignored phrase. The number
used with the −n option was 11.

The output for this experiment, labelled “Output 1”
shows the text subjected to findphrases and the table of
repeated phrases sorted by frequency. The alphabetical-
ly sorted table of repeated phrases has been omitted.

APPENDIX C. A SORTING ALGORITHM

This appendix contains the results of using
findphrases on four versions of a sorting algorithm.
The first version of the sorting algorithm was taken
from [Mit84]. The second through fourth versions were
developed using Abbott’s method. In the second version
the goto statements of the first version remained. In
the third version the gotos were eliminated and re-
placed with while loops. The fourth version is part of
a fully implemented Pascal program. The outputs for
these experiments are labelled “Output 2” through
“Output 5.” They each contain the text subjected to
findphrases and only the frequency ordered table of re-
peated phrases.

C.1. VERSION 1: AN INFORMAL STRATEGY
FOR SORTING

The input file used in the first version of the Sorting
Example is listed below as the Input Textfile. The lines
of the text have been numbered. The following
findphrases options were used:

i. The punctuation-keyword-file consisted of a comma
and period.

ii. The ignored-phrases-file consisted of and, be, in,

in the, of, of the, the, and to as phrases to
be ignored.

iii. There were no multi-tokens used with this input file.
iv. The −u option was used to print the table. The

number used with the −n option was 5.

C.2. VERSION 2: THE SORTING STRATEGY
WITH gotoS

The input file used in the second version of the Sort-
ing Example is listed below as the Input Textfile. The
lines of the text have been numbered and the punctua-
tion and keywords have been highlighted. The follow-
ing findphrases options were used:

i. The punctuation-keyword-file consisted of the
period, colon, and semi-colon as punctuation and
Algorithm, do, else, end, if, then, and
while as keywords.

ii. The ignored-phrases-file consisted of list of nineteen
phrases to be ignored. These phrases were found on
previous runs.

iii. The multi-tokens-file consisted of the symbol <--
iv. The −u option was used to print the table. The

number used with the −n option was 16.

C.3. VERSION 3: THE SORTING STRATEGY
WITH gotoS REMOVED

The input file used in the third version of the Sorting
Example is listed below as the Input Textfile. The lines
of the text have been numbered and the punctuation and
keywords have been highlighted. The following
findphrases options were used:

i. The punctuation-keyword-file was the same as the
one used with the second version.

ii. The ignored-phrases-file was the same as the one
used with the second version.

iii. The multi-tokens-file consisted of the assignment
symbol :=

iv. The −u option was used to print the table. The
number used with the −n option was 8.

C.4. VERSION 4: A PASCAL
IMPLEMENTATION FOR THE SORTING
STRATEGY

The input file used in the fourth version of the Sort-
ing Example is listed below as the Input Textfile. The
lines of the text have been numbered and the punctua-
tion and keywords have been highlighted. The follow-
ing findphrases options were used:

221

i. The punctuation-keyword-file consisted of the
period, semi-colon, and opening and closing curly
brackets as single symbol punctuation, Pascal open-
ing and closing comment symbols, (* and *), as
multi-symbolcharacter punctuation, and begin, do,
end, if, then, while as keywords.

ii. The ignored-phrases-file consisted of the opening

and closing parentheses and comma as phrases to be
ignored.

iii. The multi-tokens-file consisted of the assignment
symbol :=

iv. The −u option was used to print the table. The
number used with the −n option was 5.

Output 1. Manual Page.

THE INPUT TEXTFILE

1 FINDPHRASES(1) UNIX Programmer’s Manual.
2
3 NAME:
4 findphrases - find repeated phrases in an arbitrary text.
5
6 SYNOPSIS:
7 findphrases [-nnumber] -ppunctuation-keyword-file [-xignored-phrases-file]
8 [-mmulti-tokens-file] [-u] [-b] [-s] [-t] [-v] [-c].
9

10 DESCRIPTION:
11
12 All files mentioned in the synopsis provide their data in what is referred to as free format
13 subject to particular restrictions to be described for each case. In free format, the items of the
14 file may be entered zero or several per line with a mixture of blanks and tabs before, in
15 between, and after the items. Obviously, no item can include a blank, a tab, or a newline.
16
17 The -n argument is optional and if present provides a number number serving as the
18 maximum length phrase (to be described later) to be tallied. If this argument is not present, if
19 it does not supply a number, or if the supplied number is outside the reasonable range of
20 greater than zero and less than or equal to 50, then number is taken as 10.
21
22 The punctuation-keyword-file contains in free format a list of those character strings to be taken
23 as punctuation/keywords (see below). The optional ignored-phrases-file contains one-per-line a
24 list of phrases to be ignored in the tallying (see below). In each line, the tokens (see below)
25 are in free format. The optional multi-tokens-file contains in free format a list of those character
26 strings consisting of more than one symbolcharacter (see below) which are to be taken as
27 multi-tokens (see below).
28
29 No assumptions are made about the standard input, thus it may be an arbitrary text. The
30 program parses the text into words and symbolcharacters. These in turn are formed and
31 classified into tokens and punctuation/keywords based on the information provided by the
32 punctuation-keyword-file and, when the -m option is present, the multi-tokens-file.
33
34 First some definitions are necessary:
35
36 Whitespace: blank, tab, newline, beginning-of-file, end-of-file.
37
38 Wordcharacter: letter, digit, _ .
39
40 Symbolcharacter: any printable character which is neither a wordcharacter nor a blank.
41
42 Word: any sequence of wordcharacters delimited on each side by whitespace or a
43 symbolcharacter.
44
45 Punctuation/Keyword: whatever is in the punctuation-keyword-file; the symbolcharacter
46 strings are called punctuation and the wordcharacter strings are called keywords.
47
48 Multi-token: whatever is in the multi-tokens-file.
49
50 Token: any word, symbolcharacter, or multi-token which is not listed in the
51 punctuation-keyword-file.
52
53 Sentence: list of tokens delimited on each side by punctuation/keyword.

222

54
55 Phrase: one or more consecutive tokens occurring within one sentence.
56
57 The main job of this program is to tally the occurrence of all phrases in all sentences. The
58 maximum length phrase that has to be considered is that of number tokens. If the ignored-
59 phrases-file is provided, then the phrases given in the file are to be ignored in the tallying. If
60 the -b option is used along with the ignored-phrases-file, then phrases which begin with an
61 ignored phrase are also ignored in the tallying.
62
63 The standard output consists of:
64
65 a copy of the input as is, with the lines numbered and the punctuation/keywords
66 overstruck two times (i.e. printed three times in place) so that they can be spotted
67 easily,
68
69 a frequency ranked table of the repeated phrases. i.e. those appearing more than once
70 among the sentences; that is the entries of the table are given in order of decreasing
71 frequency, and
72
73 an alphabetically ordered table of the repeated phrases.
74
75 In the two tables, the entry for a repeated phrase consists of:
76
77 a sequence of asterisks indicating the phrase’s frequency as a percentage of the
78 maximum frequency; in this one asterisk represents 10%,
79
80 the actual number of occurrences of the repeated phrase,
81
82 the repeated phrase itself, and
83
84 a list of the numbers of all lines containing the beginning of the repeated phrase.
85
86 In printing the repeated phrase itself in a table entry, the underscores, i.e., ‘‘_’’, are printed as
87 blanks. This means that an underscore can be used immediately preceding or following a word
88 that looks like a keyword to prevent it from being considered a keyword.
89
90 Note that the definition of ‘‘phrase’’ is independent of the number of times it occurs in the
91 sentences. An ignored phrase is simply one to be ignored in the tallying but not in searching for
92 phrases. A phrase which contains an ignored phrase which itself is not ignored is to be tallied.
93 When the -b option is present, a phrase which begins with an ignored phrase is not to be
94 tallied. A repeated phrase is one whose final tally is greater than one. Only the repeated phrases
95 show up in the tables of the output.
96
97 Typically, the ignored-phrases-file will contain so-called noise phrases such as ‘‘a’’, ‘‘an’’, ‘‘the’’,
98 ‘‘of’’, ‘‘of the’’, etc. plus any useless phrases found in previous runs of the program.
99

100 One particular configuration of the files is as follows:
101
102 Punctuation-keyword-file: ; [] abort accept access all and array at begin body case
103 constant declare delta digits do else elsif end entry exception exit for function generic
104 goto if in is limited loop mod new not null of or others out package pragma private
105 procedure raise range record rem renames return reverse select separate subtype task
106 terminate then type use when while with xor.
107
108 Multi-tokens-file: ** := <= >= /= .. <> << >> .
109
110 This configuration is suited for finding repeated phrases in Ada (Ada is a trademark of the U.
111 S. Department of Defense.) or in an Ada-based program design language.
112
113 If the -u option is present, then only the unique phrases that are not wholly and everywhere
114 contained in another phrase are listed in the tables of the output. In addition to the already
115 specified output, if the -s option is present, then all the sentences are listed; if the -t option
116 is present, then all the tokens are listed; if the -v option is present, then the output is verbose
117 with the punctuation/keywords listed, and when the -m, and respectively the -x, option is
118 present, the multi-tokens, and respectively the ignored phrases, are listed. If the -c option is
119 present, then upper and lower case distinctions are to be applied in determining whether a
120 phrase is in a sentence. The default is to ignore case distinction in the comparisons.
121
122 DIAGNOSTICS:
123 They are good, of course.

223

124
125 BUGS:
126 There are none, of course.
127

*** End of the Input TextFile ***

THE REPEATED PHRASES TABLE -- SORTED BY FREQUENCY
Relative
Frequency Phrase The Phrase and
Percentage Count the Lines Containing It
---------- ------ ----------------------------------
********** 20 file 7, 7, 8, 14, 22, 23, 25, 32, 32, 36, 36, 45, 48,

51, 59, 59, 60, 97, 102, 108
********** 19 phrase 18, 55, 58, 61, 75, 77, 80, 82, 84, 86, 90, 91,

92, 92, 93, 93, 94, 114, 120
********** 19 phrases 4, 7, 23, 24, 57, 59, 59, 60, 60, 69, 73, 92, 94,

97, 97, 98, 110, 113, 118
******* 14 ignored 23, 24, 58, 59, 60, 61, 61, 91, 91, 92, 92, 93,

97, 118
******* 13 tokens 8, 24, 25, 27, 31, 32, 48, 53, 55, 58, 108, 116,

118
****** 12 punctuation 22, 23, 31, 32, 45, 45, 46, 51, 53, 65, 102, 117
****** 11 repeated 4, 69, 73, 75, 80, 82, 84, 86, 94, 94, 110
***** 10 keyword 7, 22, 32, 45, 45, 51, 53, 88, 88, 102
***** 10 present 17, 18, 32, 93, 113, 115, 116, 116, 118, 119
***** 9 one 23, 26, 55, 55, 78, 91, 94, 94, 100
***** 9 option is 32, 60, 93, 113, 115, 115, 116, 117, 118
**** 8 multi - 25, 27, 32, 48, 48, 50, 108, 118
**** 8 number 17, 17, 19, 19, 20, 58, 80, 90
**** 8 option is present 32, 93, 113, 115, 115, 116, 117, 118
*** 6 keyword - file 7, 22, 32, 45, 51, 102
*** 6 listed 50, 114, 115, 116, 117, 118
*** 6 multi - tokens 25, 27, 32, 48, 108, 118
*** 6 punctuation / 23, 31, 45, 53, 65, 117
*** 6 repeated phrase 75, 80, 82, 84, 86, 94
*** 5 free format 12, 13, 22, 25, 25
*** 5 keywords 23, 31, 46, 65, 117
*** 5 list of 22, 24, 25, 53, 84
*** 5 output 63, 95, 114, 115, 116
*** 5 phrases - file 7, 23, 59, 60, 97
*** 5 punctuation - keyword - file 22, 32, 45, 51, 102
*** 5 repeated phrases 4, 69, 73, 94, 110
*** 5 s 1, 8, 77, 111, 115
*** 5 symbolcharacter 26, 40, 43, 45, 50
*** 5 tokens - file 8, 25, 32, 48, 108
** 4 case 13, 102, 119, 120
** 4 contains 22, 23, 25, 92
** 4 frequency 69, 71, 77, 78
** 4 ignored - phrases - file 23, 58, 60, 97
** 4 ignored in the tallying 24, 59, 61, 91
** 4 ignored phrase 61, 91, 92, 93
** 4 multi - tokens - file 25, 32, 48, 108
** 4 phrase is 91, 93, 94, 120
** 4 program 30, 57, 98, 111
** 4 punctuation / keywords 23, 31, 65, 117
** 4 sentences 57, 70, 91, 115
** 4 strings 22, 26, 46, 46
** 4 table 69, 70, 73, 86
** 3 b 8, 60, 93
** 3 blank 15, 36, 40
** 3 character 22, 25, 40

224

** 3 file contains 22, 23, 25
** 3 findphrases 1, 4, 7
** 3 itself 82, 86, 92
** 3 line 14, 23, 24
** 3 maximum 18, 58, 78
** 3 more 26, 55, 69
** 3 optional 17, 23, 25
** 3 phrase which 92, 92, 93
** 3 phrases in 4, 57, 110
** 3 sentence 53, 55, 120
** 3 tables 75, 95, 114
** 3 tallied 18, 92, 94
** 3 text 4, 29, 30
** 3 token 48, 50, 50
** 3 u 8, 110, 113
** 3 word 42, 50, 87
** 3 wordcharacter 38, 40, 46
* 2 arbitrary text 4, 29
* 2 argument is 17, 18
* 2 b option is 60, 93
* 2 blanks 14, 87
* 2 c 8, 118
* 2 considered 58, 88
* 2 consists of 63, 75
* 2 delimited on each side by 42, 53
* 2 file contains in free format a list of those character strings 22, 25
* 2 files 12, 100
* 2 given in 59, 70
* 2 greater than 20, 94
* 2 ignored phrase is 91, 93
* 2 input 29, 65
* 2 lines 65, 84
* 2 listed in the 50, 114
* 2 m 32, 117
* 2 maximum length phrase 18, 58
* 2 more than 26, 69
* 2 multi - token 48, 50
* 2 newline 15, 36
* 2 no 15, 29
* 2 number of 80, 90
* 2 only the 94, 113
* 2 particular 13, 100
* 2 per 14, 23
* 2 phrase are 61, 114
* 2 printed 66, 86
* 2 provided 31, 59
* 2 punctuation / keyword 45, 53
* 2 range 19, 105
* 2 repeated phrase itself 82, 86
* 2 repeated phrases in 4, 110
* 2 sequence of 42, 77
* 2 standard 29, 63
* 2 strings are called 46, 46
* 2 t 8, 115
* 2 tab 15, 36
* 2 table of the repeated phrases 69, 73
* 2 tables of the output 95, 114
* 2 tally 57, 94
* 2 they 66, 123
* 2 tokens (see below 24, 27
* 2 two 66, 75
* 2 used 60, 87
* 2 v 8, 116

225

* 2 whatever is in the 45, 48
* 2 whitespace 36, 42
* 2 zero 14, 20

Output 2. Sorting Example - Version 1: An Informal Strategy.

THE INPUT TEXTFILE

1 1. Consider the first position in the new list to be created.
2 2. Consider the first name in the given list which has not yet been crossed out.
3 Designate it the_earliest_name_in_the_alphabet_which_I_have_so_far_examined.
4 If this is the only name in the given list go to step 6.
5 3. Consider the next name in the given list. If it precedes
6 the_earliest_name_in_the_alphabet_which_I_have_so_far_examined
7 in the lexigraphical ordering of names, then let it be the unique
8 name in the given list to be designated
9 the_earliest_name_in_the_alphabet_which_I_have_so_far_examined.
10 4. If the last name considered is not the last name in the given list,
11 return to step 3.
12 5. Place the name presently designated
13 the_earliest_name_in_the_alphabet_which_I_have_so_far_examined
14 into the position of the new list being considered (the next vacant
15 position). Cross out this name in the given list so that it will never
16 again be considered or compared. Consider the next position in the new
17 list. If at least two names remain in the given list, then return to step 2.
18 6. Since only one name remains in the given list, transfer it to the
19 indicated position in the new list, and the alphabetical listing of
20 the given list will be complete.
21

*** End of the Input TextFile ***

THE REPEATED PHRASES TABLE -- SORTED BY FREQUENCY
Relative
Frequency Phrase The Phrase and
Percentage Count the Lines Containing It
---------- ------ ----------------------------------
********** 13 list 1, 2, 4, 5, 8, 10, 14, 15, 17, 17, 18, 19, 20
******* 9 name 2, 4, 5, 8, 10, 10, 12, 15, 18
******* 9 the given list 2, 4, 5, 8, 10, 15, 17, 18, 20
****** 8 in the given list 2, 4, 5, 8, 10, 15, 17, 18
***** 6 name in the given list 2, 4, 5, 8, 10, 15
**** 5 it 3, 5, 7, 15, 18
**** 5 position 1, 14, 15, 16, 19
*** 4 consider the 1, 2, 5, 16
*** 4 the new list 1, 14, 16, 19
*** 4 the earliest name in the alphabet which i have so far examined

3, 6, 9, 13
** 3 considered 10, 14, 16
** 3 position in the new list 1, 16, 19
** 3 the next 5, 14, 16
** 3 to step 4, 11, 17
** 2 2 2, 17
** 2 3 5, 11
** 2 6 4, 18
** 2 consider the first 1, 2
** 2 consider the next 5, 16
** 2 designated the earliest name in the alphabet which i have so far examined

8, 12
** 2 names 7, 17

226

** 2 not 2, 10
** 2 only 4, 18
** 2 out 2, 15
** 2 return to step 11, 17
** 2 the last name 10, 10
** 2 this 4, 15

Output 3. Sorting Example - Version 2: With Goto’s.

THE INPUT TEXTFILE
1 Algorithm
2 Initialize the vacant position to the first position on the new list.
3 2: Initialize the given position to the first name not yet crossed out
4 on the given list.
5 Get the_name from the given list in the given position.
6 earliest_alpha_name_so_far <-- the_name
7 if size of the given list = 1 then
8 go_to 6
9 else
10 3: Advance the given position.
11 Get the_name from the given list in the given position.
12 if the_name preceeds the earliest_alpha_name_so_far then
13 earliest_alpha_name_so_far <-- the_name
14 end if
15 if not at the end_ of the given list then
16 go_to 3
17 end if
18 Insert earliest_alpha_name_so_far in the new list in the vacant position.
19 Delete the earliest_alpha_name_so_far from the given position.
20 Advance the vacant position.
21 if size of the given list > 1 then
22 go_to 2
23 end if
24 end if
25 6: Initialize the given position to the first name not yet crossed out
26 on the given list.
27 Get the_name from the given list in the given position.
28 Insert the_name in the new list in the vacant position.
29 end.

*** End of the Input TextFile ***

THE REPEATED PHRASES TABLE -- SORTED BY FREQUENCY
Relative
Frequency Phrase The Phrase and
Percentage Count the Lines Containing It
---------- ------ ----------------------------------
********** 12 position 2, 2, 3, 5, 10, 11, 18, 19, 20, 25,

27, 28
********* 11 list 2, 4, 5, 7, 11, 15, 18, 21, 26, 27,

28
******* 8 the given list 4, 5, 7, 11, 15, 21, 26, 27
****** 7 the given position 3, 5, 10, 11, 19, 25, 27
****** 7 the name 5, 6, 11, 12, 13, 27, 28
**** 5 earliest alpha name so far 6, 12, 13, 18, 19
*** 4 the vacant position 2, 18, 20, 28
*** 3 get the name from the given list in the given position

5, 11, 27
*** 3 go to 8, 16, 22

227

*** 3 initialize 2, 3, 25
*** 3 not 3, 15, 25
*** 3 of the given list 7, 15, 21
*** 3 position to the first 2, 3, 25
*** 3 the new list 2, 18, 28
** 2 1 7, 21
** 2 2 3, 22
** 2 3 10, 16
** 2 6 8, 25
** 2 advance the 10, 20
** 2 earliest alpha name so far <-- the name 6, 13
** 2 in the new list in the vacant position 18, 28
** 2 initialize the given position to the first name not yet crossed out on the

given list
3, 25

** 2 insert 18, 28
** 2 size of the given list 7, 21
** 2 the earliest alpha name so far 12, 19

Output 4: Sorting Example - Version 3: With Goto’s Removed.

THE INPUT TEXTFILE

1 Algorithm
2 the_vacant_pos := first_position_on_list (the_new_list);
3 while size_of (the_given_list) > 1 do
4 the_given_pos
5 := position_of_first_name_not_crossed_out (the_given_list);
6 the_name := get_name (the_given_list, the_given_pos);
7 earliest_alpha_name_so_far := the_name;
8 while not end_of_list (the_given_list) do
9 advance (the_given_pos);
10 the_name := get_name (the_given_list, the_given_pos);
11 if name_precedes (the_name, earliest_alpha_name_so_far) then
12 earliest_alpha_name_so_far := the_name
13 end if
14 end while
15 insert (earliest_alpha_name_so_far, the_new_list, the_vacant_pos);
16 delete (earliest_alpha_name_so_far, the_given_list);
17 advance (the_vacant_pos);
18 end while
19 the_given_pos := position_of_first_name_not_crossed_out (the_given_list);
20 the_name := get_name (the_given_list, the_given_pos);
21 insert (the_name, the_new_list, the_vacant_pos);
22 end.
23

*** End of the Input TextFile ***

THE REPEATED PHRASES TABLE -- SORTED BY FREQUENCY

Relative
Frequency Phrase The Phrase and
Percentage Count the Lines Containing It
---------- ------ ----------------------------------
********** 8 := 2, 5, 6, 7, 10, 12, 19, 20
********** 8 the given list 3, 5, 6, 8, 10, 16, 19, 20
********* 7 (the given list 3, 5, 6, 8, 10, 19, 20
********* 7 the name 6, 7, 10, 11, 12, 20, 21
******** 6 the given pos 4, 6, 9, 10, 19, 20

228

****** 5 earliest alpha name so far 7, 11, 12, 15, 16
****** 5 the given list) 3, 5, 8, 16, 19
***** 4 (the given list) 3, 5, 8, 19
***** 4 the given pos) 6, 9, 10, 20
***** 4 the vacant pos 2, 15, 17, 21
**** 3 the name := get name (the given list , the given pos)

6, 10, 20
**** 3 the new list 2, 15, 21
**** 3 the vacant pos) 15, 17, 21
*** 2 (earliest alpha name so far , 15, 16
*** 2 (the name , 11, 21
*** 2 , the new list , the vacant pos) 15, 21
*** 2 advance (9, 17
*** 2 earliest alpha name so far := the name 7, 12
*** 2 insert (15, 21
*** 2 the given pos := position of first name not crossed out (the given list)

4, 19

Output 5. Sorting Example - Version 4: Part of a Pascal Implementation.

THE INPUT TEXTFILE

1 (* Sort the Given List of Names *)
2 TheVacantPos := FirstPositionOnList (TheNewList);
3 while (SizeOfList (TheGivenList) > 1) do begin
4 TheGivenPos := PositionOfFirstNameNotCrossedOut (TheGivenList);
5 GetName (TheName, TheGivenList, TheGivenPos);
6 EarliestAlphaNameSoFar := TheName;
7 while (not EndOfList (TheGivenPos)) do begin
8 Advance (TheGivenPos);
9 GetName (TheName, TheGivenList, TheGivenPos);
10 if (NamePrecedes (TheName, EarliestAlphaNameSoFar)) then
11 EarliestAlphaNameSoFar := TheName;
12 { end if }
13 end; { while }
14 Insert (EarliestAlphaNameSoFar, TheNewList, TheVacantPos);
15 Delete (EarliestAlphaNameSoFar, TheGivenList);
16 Advance (TheVacantPos);
17 end; { while }
18 TheGivenPos := PositionOfFirstNameNotCrossedOut (TheGivenList);
19 GetName (TheName, TheGivenList, TheGivenPos);
20 Insert (TheName, TheNewList, TheVacantPos);
21 Delete (TheName, TheGivenList);
22

*** End of the Input TextFile ***

THE REPEATED PHRASES TABLE -- SORTED BY FREQUENCY
Relative
Frequency Phrase The Phrase and
Percentage Count the Lines Containing It
---------- ------ ----------------------------------
********** 8 TheGivenList 3, 4, 5, 9, 15, 18, 19, 21
********** 8 TheName 5, 6, 9, 10, 11, 19, 20, 21
********* 7 TheGivenPos 4, 5, 7, 8, 9, 18, 19
******** 6 TheName , 5, 9, 10, 19, 20, 21
****** 5 := 2, 4, 6, 11, 18
****** 5 EarliestAlphaNameSoFar 6, 10, 11, 14, 15
****** 5 TheGivenList) 3, 4, 15, 18, 21
****** 5 TheGivenPos) 5, 7, 8, 9, 19

229

***** 4 TheName , TheGivenList 5, 9, 19, 21
***** 4 TheVacantPos 2, 14, 16, 20
**** 3 GetName (TheName , TheGivenList , TheGivenPos)

5, 9, 19
**** 3 TheNewList 2, 14, 20
**** 3 TheVacantPos) 14, 16, 20
*** 2 Advance (8, 16
*** 2 Delete (15, 21
*** 2 EarliestAlphaNameSoFar , 14, 15
*** 2 EarliestAlphaNameSoFar := TheName 6, 11
*** 2 Insert (14, 20
*** 2 TheGivenPos := PositionOfFirstNameNotCrossedOut (TheGivenList)

4, 18
*** 2 TheNewList , TheVacantPos) 14, 20

230

