An Axiomatic Treatment of Exception
Handling in an Expression-Oriented
Language

SHAULA YEMINI

IBM T. J. Watson Research Center

and

DANIEL M. BERRY
University of California at Los Angeles

An axiomatic semantic definition is given of the replacement model of exception handling in an expression-
oriented language. These semantics require only two new proof rules for the most general case. An example is
given of a program fragment using this model of exception handling, and these rules are used to verify the con-
sistency of the fragment and its specification.

Categories and Subject Descriptors: D.2.4 [Software Engineering): Program Verification—correctness proofs;
D.3.1 [Programming Languages): Formal Definitions and Theory—semantics; D.3.3 [Programming
Languages]: Language Constructs—control structures; F.3.1 [Logics and Meaning of Programs): Specifying
and Verifying and Reasoning about Programs; F.3.1 [Logics and Meaning of Programs]: Studies of Program
Constructs—control primitives;

General Terms: Design, Languages, Theory, Verification

Additional Key Words and Phrases: Algol 68, aliasing, axiomatic semantics, exception handling, expression
language, program specification, replacement model, side effect

1 INTRODUCTION

This paper presents an axiomatic treatment of exception handling in an expression-
oriented language, based on the replacement model [26]. The replacement model, in
contrast to other exception handling proposals, supports all the handler responses of

This research was supported in part by the University of California Micro Program, SDC—A Burroughs
Company, and NCR.

A preliminary report of this work appeared in the Conference Record of the Ninth Annual ACM Symposium on
Principles of Programming Languages, January, 1982.

Authors’ Addresses: S. Yemini, IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, NY
10598, U.S.A; D. M. Berry, Computer Science Department, 3531 Boelter Hall, University of California, Los
Angeles, CA 90024, U.S.A

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

© 1987 ACM 0164-0925/87/0700-0390 $01.50

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 3, July 1987, Pages 390-407.

An Axiomatic Treatment of Exception Handling - 391

resumption, termination, retry and exception propagation, within both statements and
expressions, in a simple, modular and uniform fashion. The main result presented in this
paper is that the semantics of all these handler responses can be captured using a simple
axiomatic definition involving only two proof rules in addition to the rules defining the
other aspects of the embedding programming language; these rules place no restrictions
on allowable handler effects except for those resulting from the normal scope rules.
While the replacement model can be exploited most in an expression-oriented language,
it is suitable for any block-structured programming language. A syntactic extension and
both operational and axiomatic semantic definitions for embedding the replacement
model in ALGOL 68 [25] are presented in [26]. The operational semantics are also given
in [271.

2 EXCEPTION HANDLING IN THE REPLACEMENT MODEL

Operations, i.e., procedures and functions, provided by a programming language,
whether primitive or program-defined, can often be usefully defined only on a subset of
the states in their domain of definition. This subset is defined by an assertion that is called
the normal case input assertion of the operation. An exception of an operation is a state
in that operation’s domain that does not satisfy the normal case input assertion'. Exam-
ples of exceptions include an empty or ended file in a the read operation, a zero denomi-
nator in a division operation, an empty stack in a pop operation.

A module construct is supposed to encapsulate data objects and their operations. In
order to enforce this encapsulation, the invoker of an operation should be notified of the
detection of an exception, in order to allow the invoker to determine an appropriate
action. This notification pattern also supports modular decomposition: the detection of an
exception is done by the operation supplied by the module, but the response, which is
application specific and therefore cannot be determined in the module, is left to the
invoker. Notifying the invoker of an operation that an exception has been detected is
called signalling the exception, and the operation is called the signaller of its exceptions.
The program supplied by the invoker for responding to the detection of an exception is
called the handler.

The replacement model adopts an expression-oriented view: a program is considered a
composite expression; exceptions correspond to subexpressions that cannot be fully com-
puted by their signaller. Procedures and functions are required to declare the identifier
and data type of each exception they can signal. Any generalized expression, i.e., closed
construct such as a block, loop or conditional, may be made a signaller by declaring its
exceptions.

Exception handling in the replacement model consists of computing replacement
effects and returning replacement values for either

(1) the signalling of the exception, after which the signaller may resume, or
(2) the invocation of the signalier of the exception.

T Since exceptions can be propagated, an exception of one operation may also be a result of another operation,
used in its implementation, that does not have its normal case input assertion satisfied.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 3, July 1987.

392 -+ S. Yeminiand D. M. Berry

In any case, signalling is effected by calling the handler as a procedure. Therefore,
Alternative 1, called resumption, is achieved by doing a normal return from the handler

1t ~f aith T th A of tha handl tavt hy Thi =
as a réswat o1 Cilner réacning i ¢nd o1 tn nanailr (©X1 or oYy reéacining an exit com-

pleter. The value of the expression just preceding the end of the text or the completer is
returned as the resulption value. To achieve Alternative 2, called replacing, one must
arrange that a value is returned not to the signaller, but to the singaller’s invoker. A
replace completer is provided just for that purpose. The value of the expression just
preceding the replace is returned to the signaller’s invoker as a replacement for the
value that the signaller would have returned in the normal case. Consistent with these
alternatives, the type of an exception (See examples below for more details.) includes the
types of the resumption and the replacing values, and the type of the replacement value
must be identical to the return type of the signaller.

In many exception handling proposals, unhandled exceptions are automatically pro-
pagated along the chain of invokers. That is, given an exception e, the run-time system
searches for the first handier named e along the chain of returns; the handlers are thus
dynamically bound to the signallings of exceptions. This prevents the compiler from
determining at least the identifier denoting the handler for any signaller and forces the
keeping of identifier strings, or some lexically generated encoding thereof, in the run-
time data. As discussed in [27], this binding can violate information hiding in that it can-
not be assured that the statically enclosing handler will field the signalling, as it may be
that a like-named handler inserted by some unknown caller for a different purpose will
field the signalling. Accordingly, the replacement model opts for a static determination
of at least the identifier denoting the handler for any signaller. The impact of this decision
is that each signaller must declare which exceptions it can signal. The types of the
parameters, the resume and the replace values must be specified as part of the type of an
exception. Each invoker of any signaller must provide in some context statically enclos-
ing the invoker, a handler for each exception declared with the signaller, and the handler
must agree as to the types of the parameters and the resume and replace values. As a
result of these rules, no signalled exception can go unhandled (and thus, there is even no
need for a rule about what to do with unhandled signallings), at least the identifier denot-
ing the handler (there may be handler variables) for each exception is known at compile
time, the interface between all signallings and all fielding handlers can be verified at
compile time via their common exception type. In addition, all propagation must be done
explicitly; that is, the handler must explicitly signal an exception known to its signaller’s
invoker.

Observe that this scheme easily supports default exception handlers for all language-
defined exceptions. It suffices to declare in the standard prelude block that is assumed to
surround all programs, a handler for all language-defined exceptions. These will be used
unless the programmer hides them with more locally declared handlers

The addition of replace suffices to support all of the various handler responses con-
sidered useful in previous exception handling proposals, e.g., [1,10, 16,17, 14,19],

(1) replacing the immediate signalling of the exception amounts to resumption;

(2) replacing the signaller invocation amounts to termination;

(3) signalling an exception within the handler amounts to propagation;

(4) having a new invocation of the signaller within the handler, to replace the signalling
invocation, amounts to retrying; and

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 3, July 1987.

An Axiomatic Treatment of Exception Handling + 393

(5) signalling an exception of a closed construct in the handler for the original excep-
tion, with the handler for this propagated exception replacing the invocation of the
construct, amounts to termination of the construct as a result of the original excep-
tion.

None of the proposals of which the authors are aware can support all of these handler
responses in as straightforward a fashion.

As an example consider the procedure convert, which takes an array-of-integers
variable as a parameter, and returns the string formed by concatenating the characters
represented by the integers in the array. Besides specifying the types of the parameters
and the returned value, the heading of the routine text bound to convert also says that
procedure signals the exception badcode. This exception is signalled when an integer
for which there is no corresponding character is found. The procedure is written in
ALGOL 68, modified to include the extensions required for the proposed exception han-
dling mechanism.

proc convert=(ref(]int code)string
signals (exc (int) (char, string) badcode) :

begin
string s:="";
for i from lwb code to upb code
do

s:=s+repr code[i]
+ is string concatenation; thus the above
appends to s the char represented by code[i]
od
on nochar= (char,char) :
when repr signals nochar,
badcode (i) replace
signal badcode
no;
S
end

Convert invokes the operator repr, which returns the character represented by an
integer if one exists. Repr is assumed to have been modified here to signal the exception
nochar if its argument does not represent any character. The handler in convert han-
dles nochar by signalling convert’s own exception badcode. Note the strict level-
by-level, explicit propagation required by the static binding rule. A signalling of an
exception has the same syntactic form as a call. The value returned by a handler for
badcode replaces the value that would have been returned by repr, had repr not sig-
nalled an exception.

On € = h no postfixed to a closed construct (here a loop) designates the handler
expression h for all signallings of the exception € in that construct. In ALGOL 68, a rou-
tine text is headed by the list of the types and identifiers of its formal parameters, and its
return type. The same is done for handler texts. In general, h can be any expression yield-
ing a handler. In the following discussion, only handler texts are used.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 3, July 1987.

394 . 8. Yemini and D. M. Berry

Exc is the type constructor for exceptions. Exceptions are typed by the type of their
parameters and their two return types. An exception and any handler designated for it
have two return types, e.g., (char, string) for badcode, since a handler may either
resume or replace the signaller invocation, and each case may require the handler to
deliver a value of different type. By convention, the first type listed in the return type pair
is that for resumption, the second that for replacement. For example, the type of repr is

proc (int) char
signals (exc (char, char)nochar)

The identifier and data type of badcode are declared in convert’s heading, and are
considered part of convert’s data type. Including this information about each excep-
tion convert can signal enables a compiler to check that handlers of the proper types
have been designated in the static scope of each invocation of convert, as required in
the replacement model. Exceptions are not passed up the calling chain unless explicitly
propagated by a handler.

The following examples demonstrate how the various handler responses are supported
in the replacement model. In each of these examples, the handler is provided to a loop
statically enclosing the invoker of the procedure that can raise the exception.

(1) Resumption: supply a "?" as a replacement for the char corresponding to bad-
code. Convert then resumes. The result is therefore a string in which the charac-
ters corresponding to unconvertible codes are " ?".

do ... print(convert (nums)) ... od
on badcode=(int i) (char,string):"?"no

If there is never to be a replacement in a given handler, then there is no need for a
replace in that handler; the replacement value type is then choseri only to match
that of the declaration of the exception that the handler handles.

(2) Termination of the signaller: supply the empty string as a replacement for the
string returned by convert. Note that the replace type of an exception is always
the type returned by that exception’s signaller.

do .. print (convert (nums)) ... od
on badcode=(int i) (char, string) :""replace no

Since replace completes the expression whose value is intended to serve as a
replacement for the value returned by the signaller, its semantics are as follows.
Return the value to the instruction following the invocation of the signaller which
signalled the exception for which this handler was designated. This is the instruction
referred to by the return label for the signaller invocation, and therefore, its location
in the activation record for the signaller can be statically determined.

(3) Retry: retry after changing the badcode to a zero. The string returned by the
new invocation of convert is returned as a replacement for the value of the initial
invocation,

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 3, July 1987.

An Axiomatic Treatment of Exception Handling . 395

do ... print (convert (nums)) ... od
on badcode=(int i) (char, string):
begin
nums [i] :=0;
convert (nums) replace
replace the signalling invocation of convert
with another invocation of convert #
end
no

To support replacing subexpressions at any level uniformly, without coupling the
effects made by a handler to the flow control required after the handling is completed
[14,17], any closed construct in the embedding programming language is allowed to
become a signaller of exceptions. This is done by having the construct declare its
exceptions in a signals clause following the opening bracket of the construct.
Thus for example, a block, loop or conditional can become a signaller of exceptions.
The rules for resumption and replacement apply uniformly to procedure signallers
and any closed construct signallers.

The following example demonstrates two of the handler responses supported by
the replacement model, termination of a closed construct containing the invocation
signalling an exception [14, 17] and exception propagation.

In order to obtain termination of the loop after badcode has been detected, the
loop is made a signaller of a parameterless exception called £inish. This is done
by attaching a signals clause declaring finish after the do. Finish is sig-
nalled in the handler for badcode, i.e., it is the propagation of badcode. When the
handler for £inish replaces the invocation of the signaller of £inish, i.e., the
loop invocation, the loop is terminated as required.

(4) Termination of a closed construct and exception propagation:

begin
do signals((char,void) finish)
begin ... print (convert (nums)) ... end
on badcode=(int i) (char,string):finish no
od

end

on finish=(char,void) :skip replace no
when finish is raised, replace its signaller’s
invocation by the void value yielded by skip #

Skip in ALGOL 68 yields an undefined value of whatever type is required by the
context.

For further details and other examples of the replacement model see [26] and [27].

3 OTHER AXIOMATIC SEMANTICS FOR EXCEPTION HANDLING

Other axiomatic treatments of exception handling that the authors are aware of include
those of Cristian [6,7], Cocco and Dulli [5], Levin [16], and Luckham and Polak [18]

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 3, July 1987.

396 -« 8. Yemini and D. M. Berry

The first three axiom systems are for exception handling schemes designed by their
respective authors, which, like ours, are designed with the explicit intent of being
verifiable. The last axiom system is for a previously designed language, Ada™? [2, 14].
There was some attempt to make Ada verifiable, but practicalities in language design
prevented complete adherence to this goal. All are of exception handling schemes that
are more restricted than ours. Most notably, all assume a non-expression oriented
language. On top of that, in the Cocco-Dulli proposal, an exit-raised exception handler
cannot resume its signaller and must replace its signaller. Also, in the Levin proposal, a
handler cannot replace its signaller and must resume its signaller.

In each of these axiom systems, the logic used for the underlying language prohibits
expressions with side effects and procedures with aliased parameters because either the
axioms are based on Hoare’s {12, 13] or use a weakest precondition formulation [8]. 1t is
very helpful in this respect that Ada outlaws expressions with side-effects and aliased
parameters by making them erroneous, i.e., non-portable. On the other hand, the use of a
weakest precondition formulation allows Cristian a direct attack on total correctness. The
other and our formulations deal only with partial correctness.

It is interesting to note that for Ada, Luckham and Polak had to severly restrict the pro-
pagation of exceptions that not handled locally. In Ada, exceptions can be propagated
arbitrarily along the invocation chain. In other words, there is dynamic binding of
handlers as the run-time system searches for the first occurrence of the correctly named
handler along the invocation chain. This dynamic binding causes major difficulties to
axiomatization. So, Luckham and Polak outlaw automatic, arbitrary propagation. Rather,
exceptions must be explicitly propagated to a handler that must be provided by the
invoker. Whether such a handler is provided can be checked statically. This restriction
effectively makes the binding of the handler static and avoids the problems of Ada’s
dynamic binding of handlers. Thus, they have effectively restricted the Ada exception
handling to be more like ours.

The work in algebraic semantics of exception handling, e.g. [9], tends to ignore side
effects simply because dealing with side effects would require including the state as an
explicit argument to every function.

4 AXIOMATIC SEMANTICS

The present axiomatic treatment of exception handling follows the axiomatic approach
proposed by Schwartz for ALGOL 68 in [24]. A more accessible subset of this system is
presented in [23]. This approach is one of those suitable for axiomatizing the replace-
ment mechanism, since it contains rules of inference for procedures that allow parame-
ters of arbitrary types including procedures, and contains no restrictions on side effects in
expressions. It should be noted that side effects occur naturally in exception handling,
since any effect made by a handler, including the printing of an error message, is a side
effect of invoking the signaller.

Other suitable approaches are those of Pritchard [22], Kowaltowski [15], and H.-J.
Boehm [3]. The approaches used by Kowaltowski, Pritchard, and Schwartz (and thus
this paper) are to extend Hoare logic. Their axiom systems deal with expressions with
side effects by considering them as commands that return values and generating for each

2 Ada is a trademark of the U.S. Department of Defense.
ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1987.

An Axiomatic Treatment of Exception Handling . 397

subcommand that can return a value a variable that denotes its value. Thus for the com-
mand C, in the sentence “P{C}QAvalue=v", the input and output assertions P and Q
express the side-effects and v is the value returned. Their axiom systems deal with alias-
ing by severing the direct mapping between program identifiers and values, that is pre-
valent in Hoare-style axioms, in favor of asserting properties of explicitly stated environ-
ment and storage maps. Thus to claim that the identifier x has the value v, one must
assert that X is bound to location / and that location / has the value v. The difficulties
with these axiom systems are that every subcommand has to have a value variable and
the association between an identifier and its value always involves at least two conjuncts.
These difficulties prove to be quite explosive in the size of assertions. Boehm’s
approach, on the other hand, is to build a new logic in which all constructs normally have
side effects and return a value and to deal with side effects and returned values
variables and the other stating the value it returns. By treating variables (locations) as
objects distinct from their values and talking about each whenever necessary, aliasing
can be handled. While ultimately, the two Boehm rules for a construct must state the
same as a single Kowaltowski, Pritchard, or Schwartz rule for the same construct, each
Boehm rule is simpler than the Kowaltowski, Pritchard, or Schwartz rule, and some
would prefer the decomposition of concerns.

Sentences in the extended logic used in [24] have the form N/P{s}Qnaa=v. Here, S is
an expression or statement. 1 represents the value yielded by s, which is empty if Sis a
statement. P and QA2=v are the input and output assertions, respectively. N is a NESTL,
which maps the set of all identifiers and derived types known at each point in the pro-
gram to their declared types and, in general, provides the static properties of the program
necessary for the proof. As such, it is reminiscent of the NEST metanotion of the
Revised Algol 68 Report25 . The N distributes over all parts of the sentence; thus it
applies both to the pre- and the postcondition. The axiomatization assumes that programs
to be verified are compile-time correct, i.e., all type checking and type equivalencing
have been done, and all grammar-imposed restrictions have been met.

The above sentence is to be read as “if P is true with respect to N, and if the evaluation
of s halts, then Q is true with respect to N after evaluating S, and the value yielded by s
is v

In [24], a unique special variable 2; is associated with each occurrence of each expres-
sion layer in the program, representing the value yielded by evaluating that expression.
In order to be able to maintain a normal form, 2=V for assertions about 25 when pushing
assertions through successive expression layers, the domain of formal values was
enlarged to include conditional values of the form (P} v) (intuitively, “if P then V), and
V@V, (intuitively, “v4 or v,”), where P is a predicate in the underlying logic, and v,
V4, Vo are themselves formal values.

The axiomatic definition of exception handling requires

(1) a way to specify a signaller together with the exceptions it signals, independently of
any specific choice of handlers, and a definition of correctness of the signaller with
respect to the specification;

(2) away to specify the effect of a handler; and

(3) an adaptation-style proof rule [13] that combines the specification of a signaller,
together with the specifications of the handlers designated for an invocation of that
signaller, in order to derive the effect of that invocation.

ACM Transactions on Programming Languages and Systems, Vol. 8, No. 3, July 1987.

398 - 8. Yeminiand D. M. Berry

4.1 Specifying Signallers and Their Exception

Let s be a signaller of one exception € with a formal parameter vector X. The following
notation is used for an input/output specification of s.

NAP,Qnra=v,e(X){E(x),R(x)r2=u)}

P is the input assertion, QAa=V is the normal case output assertion which is satisfied if
no exceptions are signalled. E is the exception condition corresponding to the exception
e, describing the state in which e is signalled. RAa=u is the resumption condition, which
is required to be satisfied by a handler for e before resumption, in order to ensure that the
normal case output assertion, Qa3=V, is satisfied if and when S halts. The above
specification states that, with respect to N, if the input state satisfies P, and if the execu-
tion of the specified construct halts, then either QA3=v holds or the exception € is sig-
nalled and the state then satisfies E. Raa=U must be satisfied before resumption. This
notation reduces to {P, QA3=V} when there are no exceptions, but in that case, the con-
ventional notation, P{8}QAa=V, is used.

One says that S is partially correct with respect to the specification above, or

SPC wrt NAP,Qnra=v,e(xE(x), R(X)r2=u)}
if and only if

for any handler h for e, N/E(x){h(x)}R(x)Ar1=u

N/P{s}Qnra=v

that is, if and only if the assumption N/E{h}RA2=u for any handler h for e enables
proving that N/P{s}Qaa=v. This enables using the procedure proof rules to push asser-
tions through a signalling in the process of verification, even though the handler is not
known within the signaller body. The rule for an invocation of a signaller ensures that all
handlers for the exception do indeed satisfy the resumption condition before resumption.

In the general case, a specification may include several {P,QA2=Vv} pairs, each of
which may have several associated exceptions. The extension to this case is straightfor-
ward; see [26]. In fact, it is to be able to express multiple { P, QA3=v} pairs that this new
notation is introduced.

4.2 Specifying Handler Effects

Since resumption is obtained by the same mechanism as procedure calls, and termination
of a construct enclosing an invocation is obtained by simply generalizing the notion of a
signaller, only one rule is needed in addition to the rules in [24] in order to specify
handler semantics. This rule is for the completer replace.

4.2.1 Rule for Replace. Replace completes an expression in a handler body. The
value of this expression is yielded at the program location to which control is transferred
by replace. This location is that denoted by the return label of the invocation for
which the handler was designated.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 3, July 1987.

An Axiomatic Treatment of Exception Handling - 399

Replace preserves both the state and the returned value of its expression; however,
control is transferred to the label determined by the invoker of the signaller. The interpre-
tation of this label therefore has to be adapted to the context of each invocation for which
the handler is designated, as can be seen in the three rules for invocations given in Sec-
tion 4.3. Because control goes somewhere else, following the replace, anything may
be assumed. Therefore, false is taken as replace’s postcondition. The rule for
replace is

[REPLACE:]
N/P{e}Qna=v

N/P{e replace} falsen(replace:Qna=v).

This rule is a natural restatement of the rule by Clint and Hoare for gotos [4]. The nota-
tion here is borrowed from that of temporal logic [21], which uses assertions of the form
label:predicate to specify that predicate is to hold at the specified /abel in the program.
The “replace:” in the consequent is an uninterpreted label, which is interpreted
(adapted) in the rule for the site of an invocation, for each specific invocation.

4.3 Rules for Signaller Invocation

These rules combine the independent specifications of a signaller and of the handlers
designated for a particular invocation of this signaller in order to derive the effect of the
invocation,

4.3.1 Procedure and Handler are Identifiers. First, consider the special case situation
in which the expressions yielding the signaller and the handler are both identifiers, p and
h respectively, bound to values of the corresponding types, as opposed to arbitrary
expressions. This is probably the most common case, and is most likely to be supported
in programming languages that are not expression oriented. For brevity, it is assumed that
p may signal only one exception ex.

[SIMPLE INVOCATION:]

1. N/TAINV{COLLAT(ey,....,€,)} PAINVA2,=X

2. p{x)PC wrt NAP,Qnr2p=Vv,ex(Z}E(Z),R(Z)r24=U)}

3. N/E(Z2)AINV{h(Z)}(R(Z)AINV A2 =U)v(replace :SAINVA2,=w)

N/TAINV{p(ey,....,6,) on ex=h no }{QvSIAINVAI=(Q| v)B(S|w)

Premise 1 accounts for the effects of the collateral elaboration (evaluation in an
unspecified order) of the actual parameter expressions €4, . . ., €,. This elaboration may
have side effects. Rules for collateral elaboration can be found in [24]. Basically this rule
says that the (€y,....,€p) has the value X if and only if it has that value under any order
of evaluation of the constituent atomic subexpressions. This proviso is required because
the Revised Report [25] says that the yield of any collateral construct whose value
depends on the order of evaluation of constituent inseparable subexpressions is
undefined. The precondition of Premise 1 is the precondition of the whole invocation

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 3, July 1987.

400 - S. Yeminiand D. M. Berry

given in the conclusion of the rule.

Premise 2 is the specification of p in the form described earlier. Here, under input con-
dition P, the call p(x) satisfies the normal case output assertion QA3y=V or it signals the
exception ex(Z) under condition E(Z). It is required that all handlers for ex satisfy the
resumption condition R(Z)A24=U.

Premise 3 is the specification of the handler h with formal parameters vector Z. The
input assertion for A includes the exception condition E(2Z) for its designated exception.
The handler may cause either resumption or replacement of the signaller. In the first
case, indicated by encountering an expression f followed by end or no, it must be
shown at each such end or no that the handler establishes the resumption condition
R(z)A21=u, i.e., that at all of these points A(x) holds and that U is the value of £, In the
latter case, indicated by an expression followed by replace, the replacement condition
Sa,=w is determined (/NV is explained below). There can also be more than one
replace in the handler or a conditional choice between resumption and termination.
Thus in general, the output assertion of a handler contains both an assertion for the
resumption case and an assertion for each replacement case.

The conclusion of the rule states that if all the premises hold before the invocation,
then after the invocation, the normal case output assertion or the handler replacement
output assertion holds.

Since the signaller, and the handlers for a given invocation of it, are likely to have
different accessing environments, an invocation may have side effects on objects in the
environment containing the invocation, which are not accessible to the signaller (thus, no
INV in Premise 2). Let INV be an assertion about objects in this environment which holds
true before the invocation, and is preserved by the elaboration of the actual parameter
expressions. If /INV is preserved by all handlers designated for that invocation for all the
exceptions that may be signalled by the invoked signaller, it is concluded that INV
remains true after the signaller has been completed.

4.3.2 Signaller is Closed Construct. The syntactic rules for designating handlers allow
an on clause designating handlers to be postfixed to a closed construct, thus designating
the handlers in the on clause for all invocations within the construct; this is consistent
with the static binding of handlers to signallings. In the proof rules, it is assumed that all
handler designations have been copied to immediately postfix all of the associated invo-
cations. The effect of this copying transformation can be determined statically. Note that
this copying is only conceptual. In the actual program, there needs to be only one
occurrence of the on clause.

The rule for a signaller which is a closed construct, e.g. a block, is a special case of the
rule for a signaller invocation, in which there are no parameter expressions and INV is
identically true.

[CLOSED CONSTRUCT INVOCATION:]
1. sPCwrt NAP,Qnrag=v,ex(ZXE(z),R(Z)r2,=U)}
2. N/E(z){h(z)}(R(Z2)A21=u)v(replace :Sra,=w)

N/P{s on ex=h no}{QvS)An2=(Q | v)®(S | w)

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 3, July 1987.

An Axiomatic Treatment of Exception Handling - 401

4.3.3 General Case. In the general case, in an expression-oriented language, both the
invoked signaller and the designated handlers can be yielded by arbitrary expressions. In
this case, the proof rule needs to consider all the signaller values that could possibly be
yielded by these expressions. Each of these signallers may be partially correct with
respect to different input, output, and exception specifications. However, they all have
exceptions with identical identifiers and data types, since these are considered part of the
data type of the signaller. In order to not complicate the rule further, it is assumed that the
invoked signaller may signal only one exception ex.

[INVOCATION:]
1. N/TAINV{
COLLAT(ep, €1, . .. ,€n,€h)

m k
}(.v1(P,-A:,,=r,-))A(,v1(P',-A:,,=hj))A/NvA:e=x
i= J=

2. Vi 1gi€m,r{x) PC wrt NAP;, Qira=v;, ex(Z){E(Z);, R(Z)ir21=U;)}

3. Vij 1<ism, 1<j<k,
(N/E(2)inINV(
hi(z)
YR (2)iAINVA3,=u)v(replace:SinINVAz=w;))

N/TAINV{
ep,(e1,...,e,) onex=e, no

m
HNVA(((y, Q)A2=(Q1 [V1)@ -~ @(Qpm | Vi)V

m k
(Y, Y, S)Aa=(S11 [W11)® - (S| W)

Premise 1 accounts for the side effects of the collateral evaluation of the expressions
yielding the invoked procedure value, the handler. All are potentially conditional values.
However, for both the invoked procedure and the desigpated handlers, it is necessary to
distinguish each of the individual values comprising the conditional value in order to
examine each individual specification. Thus, assuming that the procedure expression €,
may yield any one of the routine values r;, instead of writing 2,=p where p is a condi-
tional value involving m different (P;|r;)s, p is separated into m different (P;A2=r;)s.
The same is done for 2. 2¢=X is shorthand for 26,=X;, for i=1, ..., n, the actual condi-
tional parameter values.

Premise 2 includes the specifications of all the possible signallers that could yielded by
&p.

Premise 3 includes the specifications of all the possible handler values that could be
yielded by e,.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 3, July 1987.

402 « 8. Yemini and D. M. Berry

5 APPLICATION OF RULES

The following outlines the use of these proof rules in proving the correctness of con-
vert. Since convert contains an invocation of a signaller, this example demonstrates
both proving correctness with respect to a specification of the form introduced above and
applying the rule for an invocation.

In order to keep the notation less cluttered, the NESTLs are omitted. It is assumed that
repr (n) has been proved correct with respect to the following specifications.

{Prepr(n) vOrepr(n) 1nOChar<Enochar7Rnochar»

where

(1) P::'epr(n)Etrue

(2) Qqepr (n) =CI<Nschaa=charrep(n)
(3) E cchar=n>chvn<cl

(4) RnocharEOrepr(n)

In the above, line-by-line, note that

(1) repr assumes nothing about its argument,

(2) repr returns the character represented by its argument when its argument is in the
range [¢/,ch],

(3) when repr signals nochar, its argument is out of range, and

(4) in order to insure that repx(n) satisfies Q epr (n) - @ handler must satisfy A opr (n)
before resuming repx(n).

It is assumed that the mapping charrep has been defined appropriately. The rules also
assume that all type checking has already been performed. R, ... in effect specifies
that resumption of repr after nochar has been signalled cannot possibly lead to repxr
satisfying its normal case output assertion, since nis a by-value parameter.

The specification of convert makes use of the ALGOL 68 ascription relationship,
which associates identifiers with the values to which they are bound. Since code is a
variable identifier, it is bound to a location of an array of integers d.,q.. The contents of
this location are obtained by the mapping T, and are denoted here by v ... (Ascribed
and 71 are close to the notions of environment and store in denotational semantics).

The following specification of convert is assumed.

{Pconvert (code) ! Qconvert (code) vbadCOde (i) (Ebadcode (1) Rbadcode (i) >}

where

€)) Pconvert (code) Eascribed(COde! dcode)At(dcode)=Vcode

(2) Qconvert (code) EPconvert (code) At(ds)=
upb code

i1 :‘ q ((Clsvcode (j)SChICharrep(Vcode (j)))
Jj=1wb code

B(CI >V goue ()W Veoae (f)>Ch | repichan) aa=d.,

(3) Ebadcode (1) E,:convert (code) A(C/>Vcode (i)vvcode(i)>0h)

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 3, July 1987,

An Axiomatic Treatment of Exception Handling - 403

@ Ryuagcoae (1) =Ebadcode (1) A3=replchar

In the above, line-by-line, note that

(1) itis assumed that v_4. is the value at the location bound to convert’s argument,

(2) when convert terminates, the argument is unchanged, and the return value is the
location of the result of the successive concatenation of character representations and
replacement characters, corresponding to the cases of character and noncharacter
codes, respectively,

(3) when badcode (i) is signalled an unrepresentable code, 1, has been encountered,
and

(4) the handler must provide a replacement character in order to enable
convert (code) to satisfy Qonvert (code) -

1t is useful to define the function string(/, u) as

u
string(l,u)=+ ((C1Vcoaq (J)SCh | Gharrep(viose ()
J=

B(CI>V oose ()VVeous (f)>Ch | repichar)) .

That is, string(/,u) is the string resulting from the successive concatenation of the
corresponding character representation for character codes of code, and replchar for
non-character codes of code.

The major step in the proof of correctness of convert with respect to its specification
is proving

Pconvert (code) nrascribed(s,d)at(d,)="" {

for i from lwb code to upb code do
s:=s+repr code[i]

od

on nochar=(char,char) :
badcode (i) replace

no

}P convert (code) AdSCribed(s,d)at(d,)=string (1wb code,upb code)A
J=empty .

This proof requires using the rule for a loop. The following notation for intervals on
the integers is used.

[Lul={jl/<jsu,je INT}
[Lu)=tjlIsj<u,je INT}

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 3, July 1987.

404 . S. Yemini and D. M. Berry
The needed rule for a loop is
[LOOP:]

1. N/B=3([)
2. N/ell,ulaS(,) { body}3([, 1)

N/B{for i from | to u do body od}3([/,u])A2=empty .
8 in the above is the loop invariant. Let

SEPconvert (code) /\ascribed(S, ds)
B=Sat(s)="",

and
S([/, ul)=Sat(d,)=string (/,u).

The proof of Premise 1 of LOOP is immediate. In order to show Premise 2 of LOOP,
the inductive step, the rule for an invocation of a signaller is needed in order to obtain the
effect of xepr, given the supplied handler.

It is desired to show that

([lwb code, i")}{

repr code [i]

on nochar=(char, char) :
badcode (i) replace

no

i

13([1wb code,iPaa=_ + ((cI<Veoge (j)SCh | charrep(Veoue ()
J/=1wb code

®(CI>Voue (I Veose (i)>Ch | replchar))

The rule INVOCATION is used with T=3([1wb code,i’)). Since there are no side
effects in evaluating code [1], the result for Premise 1 of INVOCATION is

1. N/3([1wb code,i’)){code[i] }3{[1wb code,1’))A2=V 4o (1) -

For Premise 2 of INVOCATION, it is assumed that repr has been proved correct
with respect to the given specification. The output assertion of Premise 1 trivially implies
the input assertion of repr.

For Premise 3 of INVOCATION, it is necessary to get the characterization of the
handler for nochar. This handler propagates repr’s exception nochar as the excep-
tion badcode of convert. In proving the correctness of a signaller (here convert),
the definition of partial correctness allows assuming that any handler for an exception
signalled in the signaller’s body is partially correct with respect to that exception’s
specified exception and resumption conditions. Thus, if it can be shown that just before
the signalling of badcode (1), the exception condition Ey 4c0qe (1) holds, it may be

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 3, July 1987.

An Axiomatic Treatment of Exception Handling . 405

assumed that immediately after the signalling, the corresponding resumption condition
Ry.qcoge (1) holds. Since for code (1], E, oenarDEpadcode (1) » it may be assumed that
Ryascode (1) holds after the signalling of badcode. Thus,

3- Enochar {
(char,char) :badcode (i) replace
Jreplace P .onvert (code) AMCI>Veoge (1)VVeoae (1)>Ch)A2=repichar .

Applying the rule INVOCATION, it can be concluded that

S([1wb code,iPAr=((c/sV 4. (1)SCh|charrep(V o4 (1))

@(CI >V qe VVeoae>Ch | repichar)) .

holds after the invocation of repr.
Therefore,
3([1wb code,i’)){

s:=s+repr code(i]

on nochar=(char, char) :
badcode (i) replace

no

13([1wb code,i’])a2=d, ;

so that the proof of Premise 2 of LOOP immediately follows.
Applying the rule LOOP, the required output assertion for the loop can be deduced.

3([1wb code,upb code])=

P onvert (code) AdSCribed(s,d)at(d,)=string(1lwb code,upb code)

The last expression in the body of convert is s, whose value is returned as the value
of convert.
3([1lwb code,upb code])
{s}
P convert (code) A@SCribed(s,d)at(d,)=string (1wb code,upb code)Aa=d,
The proof of the above immediately follows from the rule for elaborating an identifier.
Since the above immediately implies Q onvert (code) » the proof of correctness of con-
vert with respect to its specification is concluded.
6 CONCLUSION

Adopting an expression-oriented approach, and generalizing the concept of a signaller,
enables supporting all the structured handler responses that were considered useful in

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 3, July 1987.

406 - S. Yemini and D. M. Berry

various proposals for exception handling, with minimal additional mechanism. The uni-
formity of the mechanism contributes to the uniformity of its axiomatic semantics. In
contrast, the only other exception handling proposals supporting both resumption and ter-
mination of the signaller, those of [10] and [19], require a much more complex syntactic
and semantic extension, though neither one supports all the handler responses supported
in the replacement model. The mechanism can be adapted to any of the block-structured
programming languages, modulo their specific restrictions, with little loss of expressive
power, except that stemming from the expression orientation.

It is interesting to note that addressing exception handling in the context of modularity
and program verification provides insights that contribute to simplifying the mechanism.
Modularity requires both the exception state and the resumption state to be consistent or
possible states in the sense of [20], otherwise they cannot be specified externally without
compromising modular information hiding. This eliminates the problem of exceptions
which must be resumed in order to restore the state to a consistent state. Exceptions
which cannot or must not be resumed should be signalled just before a logical end of the
signaller, after which there is nothing left to be done in the signaller even if resumption is
attempted. This eliminates the need for constructs such as the SIGNAL and NOTIFY in
[10], and SIGNAL and ERROR in Mesa [19], and answers the main argument of [16] for
supporting only resumption.

While our rules appear messy and unwieldy, they are quite straightforward in that once
the notation for dealing with the value of an expression is understood, the rules do say
exactly what they are expected to say. The two facets contributing to the heavy appear-
ance of the rules are the dealing with the multiple control flow possibilities and the deal-
ing with the values returned by expressions. The first problem is inherent in exception
handling; all of the other axiomatic treatments of exception handling have the same
heaviness. The second source of heaviness could possibly be eliminated by use of a
cleaner, more compact formulation of expressions with side-effects such as that proposed
by Boehm [3]. It would be interesting for the future to rewrite the present rules assuming
Boehm’s logic for the underlying language.

One drawback of these rules, stemming from their unwieldiness is that they cannot
effectively be used in construction of programs as is considered desirable these days [11].
Their use is limited to ex post facto proofs of previously written programs. Nevertheless,
the communicational ideas embedied in these rules are important for program construc-
tion. Specifically,

(1) the exception condition states what the signaller knows about an attempted applica-
tion of an operation and what each handler for that exception may assume,

(2) the resumption condition states what each such handler must guarantee before
resuming the signaller; if it cannot, it is obliged to replace the signaller.

Whether stated formally or not, the designer of software utilizing exception handling
must decide on these conditions in order to insure that signallers and handlers behave
properly with each other.

ACKNOWLEDGMENTS

The authors thank the referees of the first draft of this paper for their highly detailed com-
ments.

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 3, July 1987.

An Axiomatic Treatment of Exception Handling - 407

REFERENCES

1.

%

10.
11,
12.
13,
14.

15.
16.

17.

18.

19,

20.

21.

22.

23.

24,

25.

26.

27.

IBM OS PL/1 Checkout and Optimizing Compilers: Language Reference Manual. SC33-0009-2, IBM
Corp. (1973).

Ada Language Reference Manual. MIL-STD-1815A, U.S. Department of Defense (1983).

BoenM, H.-J. Side-effects and aliasing can have simple axiomatic descriptions. ACM Trans. Programm.
Lang. Sys. 7, 4 (Oct. 1985), 637-655.

CLINT, M. AND HoARE, C.A.R. Program proving: jumps and functions. Acta Inf. I (1972),214-224.

Cocco, N. AND DULLL, S. A mechanism for exception handling and its verification rules. J. Comput. Lang.
7 (1982), 89-102.

CrisTiaN, F. Reasoning about programs with exceptions. In Proceedings Thirteenth International Sympo-
sium on Fault-Tolerant Computing (Milano, Italy, June 27-30 1983), IEEE, 188-195.

CrisTIAN, F. Correct and robust programs. [EEE Trans. Softw. Eng. SE-10, 2 (March 1984).

DUKSTRA, E.W. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, NJ (1976).

GOGUEN, J.A. Abstract errors for abstract data types. In Formal Description of Programming Concepts (St.
Andrews, N.B., Canada, 1978), North-Holland, Amsterdam, 491-527.

GOODENOUGH, J.B. Exception handling: issues and a proposed notation. Commun. ACM 18, 2 (Dec. 1975).
GRIES, D. The Science of Programming. Springer-Verlag, New York (1985).

HoaArg, C.A.R. An axiomatic basis for computer programming. Commun. ACM 12, 10 (Oct. 1969), 576-
580,585.

Hoare, C.A.R. Procedures and parameters: an axiomatic approach. In Symposium on Semantics of Algo-
rithmic Languages (Minneapolis, MN, 1971), Springer-Verlag, Berlin.

IcHBIAH, J.D. Rationale for the design of the Ada programming language. SIGPLAN Not. 14, 6 (June
1979).

KowaLtowski, T. Axiomatic approach to side effects and general jumps. Acta Inf. 7 (1977), 357-360.
LEVIN, R. Program structures for exceptional condition handling. Ph.D. dissertation, Carnegie Mellon
University, Pittsburgh, PA (June 1977).

Liskov, B.H. AND SNYDER, A. Structured Exception Handling. Computation Structures Group Memo 155,
MIT (Dec. 1977).

LuckHaM, D.C. AND PoLAK, W. Ada exception handling, an axiomatic approach. ACM Trans. Programm.
Lang. Sys. 2, 2 (April 1980), 225-233.

MITCHELL, J.G., MAYBURY, W., AND SWEET, R. MESA Language Manual. Xerox Research Center, Palo
Alto, CA (March 1979).

PARNAS, D.L. Response to Detected Errors in Well-Structured Programs. Computer Science Department,
Camegie-Mellon University (1972).

PNUELL, A. The temporal logic of programs. In Eighteenth Annual Symposium on the Foundations of Com-
puter Science (Providence, R, Oct. 31-Nov. 2 1977), IEEE, 46-57.

PRITCHARD, P. Program proving — expression languages. In Information Processing 1977 (Toronto,
Canada, August 2-12 1977), North-Holland, Amsterdam, 727-731.

ScHWARTZ, R.L. An axiomatic treatment of ALGOL 68 routines. In Proceedings Sixth International
Conference on Automata, Languages and Programming (Graz, Austria, July 1979), Springer-Verlag, Ber-
lin, 530-545.

ScHWARTZ, R.L. An axiomatic semantic definition of ALGOL 68. Ph.D. dissertation, Computer Science
Department, UCLA, Los Angeles, CA (1980).

WINGAARDEN, A. VAN, MaiLLoux, B.J., PEck, J.EL., Koster, C.H.A, SINTzoFF, M., LINDsEY, C.H.,
MEERTENS, L.G.L.T., AND FiskeR, R.G. Revised report on the algorithmic language ALGOL 68. Acta Inf.
5, 1-3 (1975), 1-236.

YeMIN, S. The replacement model for modular verifiable exception handling. Ph.D. dissertation, Com-
puter Science Department, UCLA, Los Angeles, CA (1980).

YEMINI, S. AND BERRY, D.M. A modular verifiable exception handling mechanism. ACM Trans. Pro-
gramm. Lang. Sys. 7, 2 (April 1985), 214-243.

Received June 1985; revised August 1986; accepted October 1986

ACM Transactions on Programming Languages and Systems, Vol. 9, No. 3, July 1987.

