The Use of Lexical Affinities in Requirements Extraction

Yoélle S. Maarek* and Daniel M. Berry§

Computer Science Department, Technion, Haifa 32000, Israel

Abstract

The use of lexical affinities to belp a human requirements analyst find
abstractions in problem descriptions is explored. It is hoped that a lexical
affinities finding tool can be used as part of an environment to help organize
the sentences and phrases of a natural language problem description to aid
the requirements analyst in the extraction of requirements. An experiment to
confirm its effectiveness is described.

1. INTRODUCTION

The first steps in the development of any computational system should
be the writing of requirements with the client’s help. It may be necessary to
build a prototype first, but ultimately before building a production-quality
version, it is necessary to agree upon what is to be in the system. Winchester
and Estrin [34] list a number of requirements for the requirements them-
selves. The main of these from the programmer-client perspective are that
the requirements must be understandable to both the customers and the
designers and builders; the parts of the requirements must be consistent with
each other; and the requirements must be complete so that the designers and
builders do not have to make unintended value judgements during their
work.

This paper deals ultimately with, describes, and determines the
effectiveness of one tool designed to assist in one part of the process of writ-
ing requirements. It is essential that the reader understand the context in
which this tool is expected to operate. Hence, Sections 2 through 5 are
devoted to briefly describing this context.

2. THE PROBLEM

Many system design or programming methods, e.g, those of Jackson
[19], Pamas {26], Booch [10], Myers [23], Orr [24,25], etc.. start from a
clear statement of the requirements and show how to arrive at a design of a
program or even at a program meeting these requirements. However, none of
these methods really explain how these requirements are obtained in the first
place. It seems clear to us (at least) that the writing of the requirements is a
major partt of the problem, and that once these are available, the arrival at an
implementation, by comparison, is relatively straightforward.

Large E type [20] software, for which it is difficult or even impossible to
obtain clear requirements, is usually developed for a client organization in
which there are many people who have some view or say as to what the

Address correspondence to the second author.

& This work was supported in parts by the University of California MICRO program, Unisys
Corporation, and NCR Corporation.

* Current Affiliation: IBM T.J. Watson Rescarch Center, P.O.B. 704, Yorktown Heights, NY
10598

Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/for
specific permission.

©1989 ACM 0-89791-305-1/89/0500/0196$00.75

196

desired system should do. These views range from being totally unrelated to
each other to being totally inconsistent with each other. It is no wonder that
the distillation of these views into a consistent, complete, and unambiguous
statement of the requirements, albeit in natural language, is a major part of
the problem of developing software which meets the client’s needs. There-
fore, it is essential to have methods and tools that help in distilling these
many views into coherent requirements.

3. PAST WORK

There are already a variety of systems, tools, and methods for dealing
with requirements. These include SADT {28,27], IORL [31], PSL/PSA
[32], RDL {34], RSL [5,6,7], RML {11] and Burstin’s prototype [12] tool.
The first two are graphically oriented, and the second of these is automated.
The remainder work from highly constrained subsets of English consisting of
sentences, each of which states one requirement to which the final imple-
mentation must adhere. These sentences can be considered as relations in a
database. Those which are automated have tools for working with the sen-
tences and abstractions of the requirements document once these sentences
and abstractions have been recognized and stated. Due to space limitations,
only those having a direct impact on this work are described in detail herein,
A more complete discussion can be found in [3]

Burstin’s prototytpe tool allows tuples of a relation, i.e., sentences, each
with a verb and objects, to be organized into a hierarchy of abstractions.
Each abstraction contains those sentences sharing a common collection of
objects, with the verbs representing procedures of the abstraction. There are
tools for introducing and moving sentences to and from abstractions and for
placing and moving abstractions in the hierarchy. There is also a rudimentary
application-oriented expert system that helps recognize when two or more
phrases of sentences may be talking about the same thing, e.g., “plane” and
“airplane” or “passenger” and “flier.”

All of the mentioned systems are useful for working with sentences and
abstractions of a requirements document, once they are recognized and
formed. Organizations implementing and using two of these, PSL/PSA and
SREM, report much user satisfaction [32,7,30].

It is interesting that all of the above requirements analysis systems deal
with relations and that all but the first two, which are not picture-oriented,
have gone to the use of a relational database for storing the relations. All can
be used to support an abstraction-based requirement development which
leads naturally to an abstraction-based software development {9].

However, none of the methods and tools give much help in actually
obtaining the sentences in the first place and in recognizing the relevant
abstractions, especially in the context of a large client organization. The
descriptions of all of the methods either fail to mention how to get the sen-
tences or say something to the effect of “get them and write them down” as if
there were nothing to it.

Teichreew and Hershey [32] offer that “since most of the data must be
obtained through personal contact, interviews will still be required.” PSA
does help this gathering process in that its “intermediate outputs ... also pro-
vide convenient checklists for deciding what additional information is
needed and for recording it for input.”)

Alford [5] says that the “SREM steps address the sequence of activities
and usage of RSL and REVS to generate and validate the requirements. It

assumes [italics are not in the original] that system function and perfor-
mances have been allocated to the data processor, and have been collected
into a Data Processing Subsystem Performance Requirement or DPSPR.”

Even eight years later, Scheffer, Stone, and Rzepka [30], from a com-
pletely different company which had been using SREM, state only that the
“initial input to SREM is a system specification that is translated into RSL
and interpreted to determine the interfaces with the outside world, the mes-
sages across these interfaces, and the required processing relationships and
flows.”

The first step of the TAGS method [31) is the conceptualization step,
“User concepts and requirements are used to develop a conceptual model
that is the basis for subsequent engineering.” This conceptual model is the
top level SBD. In the cited article, there is advice on the issues that should be
dealt with in arriving at it. However, no tools are provided, since the TAGS
method deals with activities that follow the production of this first SBD.

Therefore, we feel that the gap between the initial fuzzy natural
language statements from the individuals in the client organization to the
sentences, i.e., relations, with which these tools work is still too large.
Methods and tools are needed to close this gap.

4. ENVISIONED REQUIREMENTS GATHERING ENVIRONMENT

We ultimately envision an integrated environment, REGEE, for gather-
ing, sifting, and writing requirements. This environment may very well be
part of a larger environment used for software development, deployment,
and maintenance [1,2]. REGEE is in the very rudimentary prototyping
stage, as we do not understand the process it is supposed to assist. For now,
REGEE is described as helping the human requirements analyst (RA) mas-
sage transcripts of interviews with members of a client organization into a
consistent, complete, unambiguous, coherent, and concise statement of what
the organization wants. We do not care what language is being used either
for the interview transcripts or for the final requirements. REGEE should
support any possibility. Usually the input, transcript language will be some
natural language, possibly with pictures {17]. However, the cutput language,
in which the requirements are written, can be anything from natural
language, possibly with pictures, to predicate calculus; in particular, it should
be possible to use any of the requirements expression languages mentioned
in Section 3.

We do not know enough about effective requirements writing in order to
be able to codify the process. Thus at least for now, a completely automated
expert-system approach is out of the question. We therefore envision an
environment consisting of clerical tools that help with the tedious, error-
prone steps of what one particular human RA, the second author, does.

We view a requirements document both in the process of being written
and in final form as a network, very often a hierarchy, of nodes each denot-
ing an abstraction and containing a description of all that is known and
required about the abstraction. The arcs between the nodes can be used to
describe the “uses” relation or any other basis for organizing the set of
abstractions.

REGEE needs two basic kinds of tools,

1. to help identify the abstractions that will make the nodes from the tran-
scripts of the interviews, and

2. to help organize the abstractions into a network of abstraction-nodes,
each to contain a consistent, complete, unambiguous, coherent, and con-
cise description of that abstraction.

This paper deals with a proposed tool of the first kind, a lexical affinities
finder, to be described below. To understand the rationale behind the lexical
affinities finder, it is useful to understand the envisioned tool of the second
kind. We are building a significant enhancement of the Burstin tool men-
tioned in Section 3. This tool provides a medium in which nodes, imple-
mented as windows on a work station screen, can be organized into a net-
work, as suggested by Figure 1. Each window can be made to hold arbitrary
text, including text that causes displaying of a picture. Any arbitrary element
of the text of any window can be given links connecting the element to any
window or to any element, possibly in another window. Figure 2 shows two
windows from a description of an airline reservation system.

The links connect an element to windows giving more details about the
element or to other elements talking about the same or related concepts, as

197

Figure 1: Network of Nodes

<gassenger
#

b .
» book passenger on flight

flightw__

book passenger on flight

Figure 2: Links

the human RA desires. The RA can use these links to navigate through the
windows as he or she is tracking down the information that allows the con-
tents of each window to be refined into a consistent, complete, unambiguous,
coherent, and concise description of the window’s abstraction.

This description of the tool of the second kind suggests building it on top
of some existing hypertext system {35,13,15]. Indeed, Garg and Scacchi
have suggested maintaining all life-cycle documents as hypertext [16].

5. ABSTRACTION IDENTIFICATION

The way identification of abstractions is done now is that the human RA
scans the transcripts trying to note important subjects and objects of sen-
tences, ie., nouns. The problem is that humans get tired, get bored, fall
asleep, and overlook relevant ideas. So we want a tool that does the clerical
part of the search without getting tired, getting bored, falling asleep, and
overlooking anything, The human RA still does all the thinking with the out-
put of this tool, confident that no occurrence of any noun has been over-
looked.

Our first idea, reported in [8], was to use a parser to find the nouns.
However, we tried it and found that the few errors it made were so distract-
ing that it was more comfortable to do it by hand. Moreover, we realized that
even a better, but still imperfect, parser would still be distracting. Thus, the
program did not inspire confidence that it found everything. Maybe there
was an important noun that was overlooked because it appeared to the parser
as a verb. Even a better, but still ultimately imperfect, parser does not solve
this confidence problem. We want something with guaranteed coverage,
even if it is less intelligent. The lack of intelligence in the tool is no problem
because a buman is applying his or her intelligence to the cutput of the tool.

6. REPEATED PHRASE FINDER

A second idea, reported in [4,3], (Most of this introductory material is
borrowed from this paper.) is to use findphrases, a repeated phrase finder.
The idea is based on the observation that the frequency of occurrence of a
term within a text carries much information on the importance of this term in
the text. Indeed, it has been empirically verified that a writer repeats words
of importance in a text as she explains or varies her argument [21]. Just
counting repeated words within a document is not sufficient for identifying
its major abstractions. In counting isolated single words, a lot of information
is lost. In particular, information on the relationships in which words are
involved is lost. Therefore, it is necessary to consider the phrases in which
the words appear.

In its simplest application, the user provides findphrases with the text
to be analyzed and a file containing punctuation and keywords. The punc-
tuation and keywords are used by findphrases to break the text into sen-
tences. findphrases processes the phrases of the sentences and produces a
series of reports. The basic output contains: (1) the input file as is with lines
numbered and the punctuation and keywords overstruck, (2) a frequency
ranked table of repeated phrases, and (3) an alphabetically ordered table of
repeated phrases. Each entry in these tables gives the numbers of the lines in
which the phrase occurs, so that each phrase may be examined in its original
context to decide which abstraction is really represented by the phrase. A
number of options are provided that the user may use to control the parsing
of the input text into tokens and phrases, to control the printing of the
phrases in the tables of the output, and to indicate which additional tables are
to be printed.

Observe that there is a leamning process involved in using findphrases
effectively. First, it appears that there are different characteristic
punctuation-keyword, multi-token and initial ignored-phrases files for each
language. These can be catalogued for general use. In addition for each class
of applications, there appears also to be a characteristic set of additional
ignored phrases. Finally, as one is doing a particular application, one finds it
useful to extend the ignored phrases file with common words that are actu-
ally important abstractions, but whose presence skews the list and populates
it with too much noise for finding the other abstractions.

The works [4, 3] describe tests of effectiveness of findphrases in help-
ing the human RA identify abstractions.

The tests involved four examples of program development, each of
which had multiple versions of the same program ranging from natural
language descriptions, through designs, decompositions, etc., to code. Three
of these had been published in the literature and one had not.

It was desired to determine if findphrases is effective in helping the
human RA to find, in the natural language transcripts of interviews about a
system under development, all of the abstractions that serve as the basis for
the requirements, design, and implementation. It was deemed effective if
we, as humans, do indeed recognize the same set of abstractions in the out-
puts of findphrases run (with the appropriate parameter files in each case)
on all versions of the same problem. Finding the same set of abstractions in
all versions says that the abstractions found in the first version, the natural
language description, are sufficient to cover all abstractions that will be
needed for all subsequent versions, including the code and that no other
abstractions will need to be invented.

The first experiment is Abbott’s example of programming with the help
of natural language. This example is the focus of a paper [8] that points to
the need of this phrase finding tool. For this experiment, three versions of the
program solution are compared. The first version was written in standard
English, the second in an Ada™2-based program design language, and the
third in Ada. The second experiment is the problem of writing the phrase
finder itself. In writing the phrase finder, the manual page served as the
requirements document. findphrases was run with its own manaual page to
see if the same abstractions that formed the basis for the modular decomposi-
tion used in writing the code are identified from the information provided by
findphrases. The third experiment takes Mitchell’s text book [22) example
of writing a sorting program starting from the English statement of the
requirements and ending with a Pascal program developed with a structured
programming method. Four versions of the program solution are compared,
the initial English description, two program design language descriptions,
and the final Pascal program.

The fourth experiment takes Wiener and Sincovec’s text book [33]
example of writing a spelling checker program. They start with a statement
of the requirements, develop a modular decomposition for the solution, and
produce an Ada program.

In these experiments, findphrases was found to be effective in aiding
the human RA to identify abstractions. However, one particular weakness
was noticed. A repeated phrase finder fails to count as a repetition of book
a flight the phrase book the f£flight. Were each of these phrases
to appear only once, the concept of booking a flight would not show up at all
in the list of repeated phrases. In many cases, concepts do not appear as
adjacent words but rather a set of words separated by not more than a few

2Ada was a trademark of the U.S. Dept. of Defense (ATPO).

198

words. Most of these concepts appear as closely separated pairs of words
standing for an agent-object relation. Moreover, this relational information
often allows distinguishing between semantically distinct uses of the same
word by showing the context from which the word comes.

7. LEXICAL AFFINITIES

We propose to take lexical affinities (LAs) as the atomic unit for identi-
fying major abstractions within a text. An LA stands for the correlation of
the common appearance of two items in sentences of the language [14]. For
our purposes, we restrict this definition, by observing LAs within a finite
document rather than on the whole language. For instance, in this paper,
requirement and analysis are bound by a lexical affinity. For our purpose, we
consider only LAs involving open-class words as meaning bearing. Open
classes gather nouns, verbs, adjectives and adverbs whereas closed-class
words are represented by pronouns, prepositions, conjunctions and interjec-
tions [18]. The LA finder’s output is a list of lexical affinities with their
associated frequency of appearance within the considered text. For instance,
the analysis of the rm manual page in the UNIX™> environment, retumns as
the most frequent LAs, the list (delete file), (file file), (file
permission), etc. which all appear three times within the one-page
document. Were the manual page taken as a statement of the requirements of
rm, we believe that this list of LAs would be of great help for assisting the
human RA in his or her process of extracting requirements. As we see in the
above example, among the three LAs cited, two represent major abstractions.
This can be much improved by accounting for the general context or
universe to which the document belongs. This would allow filtering out such
LAsas (file file) cited above.

In order to account for the general context or universe, LAs need to be
scaled according to their specific contribution in the given documemt. As a
measure of their contribution, we propose evaluating the resolving power of
every LA. We define the resolving power p of an LA is a function of its
quantity of information and its frequency of appearance within the con-
sidered text. The quantity of information represented by a word w in a given
textual universe is defined as [29]

INFO(w)=loga P{w }.

Thus, if a word asterisk occurs once in every 20 000 words, its quantity
of information is estimated to be

INFO(ast erisk)=log; 5x1075=14.29.

In contrast, the word the that occurs once in every 15 words, has its infor-
mation contents estimated to be

INFO(t he)=3.9.

Drawing on this definition of the quantity of information for single words,
we define the resolving power of an LA within a document d as follows.

Let (wy,w3,f) be a tuple retrieved while analyzing a docurnent d, where
(w,,w3) is an LA appearing f times in d. The resolving power of this LA in d
is defined as:

P((w1,w2.f))=fXINFO(w ; JINFO(w;)

The higher the resolving power of an LA is, the more characteristic it is of
the considered document. The best LAs, in terms of resolving power, within
a document, represent key concepts of the considered document. These LAs
may therefore provide valuable assistance to the human RA in the process of
extracting requirements.

In order to conduct a first test of the effectiveness of LAs in helping the
human RA to find abstractions, we have tried to use LAs to find the abstrac-
tions in ome of the examples used to test findphrases, namely the
findphrases manual page.

8. THE findphrases MANUAL PAGE

One of the original experiments for the repeated phrase finder con-
sidered the problem of developing a program for findphrases. That is,
findphrases was tested using its own manual page, which is found in the
appendix. The data abstractions identified by findphrases from this

SUNIX is a registered trademark of AT&T Bell Laboratories.

application were compared with the abstractions used in the decomposition
for the final program. Space limitations prevent showing the actual output of
the running of findphrases on the manual page. However, it can be found
in [3].

The decomposition used to write the findphrases program includes
fifteen different modules, as illustrated in Figure 3. (See Chapter 3, Section 3
of [4] for a description of the modules.) The modules with dashed outlines
are built into the implementing programming language. Nine of the non-
built-in modules, i.e., those with the thicker outlines, are data abstraction
packages. Table 1 below shows the correspondence between these packages
and some of the repeated phrases identified by findphrases from the manual
page description:

THE DATA
ABSTRACTION PACKAGES
string_type_file
argument_line

THE REPEATED PHRASES

strings, character strings
argument, option

output_file output,
tables of the output
chunk_file file(s), free-format

punct_keyword_table punctuation, keyword(s),
punctuation/keyword(s),

punctuation-keyword-file
multi_tokens_table multi-tokens,

multi-tokens-file

text_file text, input,
arbitrary text

phrases phrase(s),
ignored phrases,
repeated phrases

sentences sentence (s)

Table 1:Packages and Phrases

The name of each abstraction, except for chunk_file, directly corresponds to
at least one repeated phrase appearing in the manual page. Although the
phrase chunk does not appear in the description, the chunk_file abstraction
is implied by the phrases indicated above. During the program’s develop-
ment, chunk_file was recognized as the abstraction to be used by the pro-
cedures that read the various free-format files. Thus, this abstraction is
indirectly identified by repeated phrases appearing in the tables. Note that it
does not bother us that we had to do some thinking to make these connec-
tions. We believe that this kind of thinking is precisely what an RA is doing
when presented with such a list of concepts.

In this experiment, the repeated phrases tables produced by findphrases
include phrases that identify the abstractions that were used in the program
decomposition. The tables act as guides to the user when looking for the
abstractions. The user’s attention is first focused on the phrases with the
highest frequency and then on possibly related phrases. The line numbers
printed in the tables enable the user to locate the phrases in the text. By
analyzing the context of the sentences containing the phrase, the importance
of the phrase as a potential abstraction can be determined.

In addition to finding the list of abstractions, as the user analyzes the
context of each phrase usage, a list of statements related to that phrase can be
extracted. For example, consider the phrases multi-token, multi-
tokens and multi-tokens—file. By examining the context of the
lines that contain these phrases, one finds the following information:

1. the optional muiti-tokens-file contains in free format the list of character
strings to be taken as multi-tokens;

2. a multi-token is a string consisting of more than one symbolcharacter
(non-word character);

3. if the —m option is present, the input text is parsed using the information
provided by the multi-tokens-file;

4, atoken may be a multi-token;

5. if the —v and the —m options are present, the list of multi-tokens is
printed.

199

These statements represent requirements for the data abstraction muiti-
token. Located by the manual method, these same statements were used
when the initial decomposition and implementation were developed. The
final program uses a procedure to read the multi-tokens-file and a package to
handle a multi-tokens table. These statements also guided the development
of the text parsing routines. :

Thus, in this experiment, the human RA finds in the repeated phrases
generated from the manual page the very abstractions used in the modular
decomposition and implementation.

9. THE LAs for THE findphrases MANUAL PAGE

We have extracted the LAs from the findphrases manual page and ranked
them according to their resolving power. The whole UNIX manual has been
used as the textual universe, in order to determine the quantity of information
of each word. The 30 LAs with the highest resolving power are given in
Table 2.

LEXICAL AFFINITY P

ignore-phrase 699.123546
phrase-repeat 696.600983
malti-token 483.353302
file-phrase 418.820829
contain-phrase 299.996707
file-keyword 281.335816
keyword-punctuate 271.657352
file-token 268.032537
file-punctuate 263.292488
format-free 232.582511
option-present 228.395449
begin-phrase 208.569285
phrase-table 207.914468
repeat-table 186.06694 1
file-ignore 163.864523
file-multi 160.532580
phrase-token 138.637142
entry-table 132.656315
contain-file 131.339831
list-token 128.602978
phrase-tally 124.433003
contain-ignore 122.670819
number-supply 119.521321
list-phrase 116.148446
occurrent-phrase 112.433009
contain-list 112.236757
phrase-sentence 111.806985
phrase-provide 106.772850
length-phrase 105.449181
free-token 102.949931

Table 2: Most significant LAs

As a first step, the human RA quickly selects, among the top LAs, the main
abstractions which are marked in boldface in Table 2. In our example, these
abstractions are ignore-phrase, phrase-repeat, multi-token,
keyword-punctuate and phrase-sentence. Single words can also
be selected when they are involved in many of the most significant LAs, for
instance, in our example, the word phrase appears to be a major abstrac-
tion. Some other abstractions can also be found after a finer analysis?, such
as churk, represented by free-format, argument-line represented by
option-present or text_file by noticing all the occurences of file-
phrase and text.

In a second step, the human RA obtains more information on the main
abstractions by performing a keyword-based search on the whole list of the
LAs. The correspondence between the abstractions, selected at the first step,
and the LAs selected during this search is given in Table 3. The most
significant LAs leading identification of abstractions are in italics. These
might form an initial list of operations, attributes, or methods of the abstrac-
tions.

“Pleasc note that at this stage, the human RA is required to understand the transcript.

ABSTRACTIONS
ignored phrase

LEXICAL AFFINITIES
ignore-phrase
file-ignore
phrase-repeat
repeat-table
find-repeat

repetition

multi-token
file-token
phrase-token
list-token
keyword-punctuate
file~-punctuate
file-keyword

multi_tokens

punctuation_keyword

keyword-phrase
sentence phrase-sentence
occurring-sentence
consecutive-sentence
sentence-token
present-sentence
entry-sentence
ignore phrase
phrase-repeat
file-phrase
contain-phrase
begin-phrase
phrase-table
format-free
option-present
multi-option

phrase

chunk
argument_line

argument-present

argument-option
text_file file-phrase
arbitrary-text
phrase-text

repeat-text

Table 3: Packages and LAs

10. CONCLUSIONS

The initial attempt to use LAs to assist a human RA in finding abstrac-

tions looks promising. The LAs help the RA identify the same abstractions
that were used to build the implementation. In addition, the LAs were help-
ful in organizing the information in the descriptions and allowed the user to
focus on the important phrases. It will now be necessary to try out the LAs
on other problems.

It is not clear at this time which is better, LAs or repeated phrases. The

use of LAs finds repeated phrases whose key elements are not necessarily
adjacent and are not necessarily appearing in the exact same form each time.
However, at present the LA finder does not find LAs consisting of more than
two words. It finds only verb-noun, adjective-noun, and other common gram-
matical structure pairs. LAs of more than two words must be inferred as
joins of binary relations. Of course, the repeated phrase finder has no prob-
lems finding phrases of more than two words. Perhaps both should be used,
and tools for dealing with both should be available to the users of REGEE.
Perhaps a combined tool should be built in which non-adjacency, synonyms,
and varying parts of speech are tolerated in finding repeated phrases.

REFERENCES

1.

“Requirements for the Ada Programming Support Environment: STONEMAN,”
Technical Report, U.S. Department of Defense (1981).

IEEE Software 5(2) (March, 1988).

C. Aguilera and D.M. Berry, “The Use of a Repeated Phrase Finder in Require-
ments Extraction,” Journal of Systems and Software(9) (1990 (To appear)).

CS. Aguilera, “Finding Abstractions in Problem Descriptions using
findphrases,” M.S. Thesis, Computer Science Department, UCLA, Los
Angeles, CA (October, 1987).

200

10.

11

12.

13.

14.

15.

16.

17.

19.
20.

21.

22.

23.

24.
25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

M.W. Alford, “A Requirements Enginecring Methodology for Realtime Process-
ing Requi s,” IEEE Transactions of Software Engineering SE-3(1), pp.
60-69 (1977).

M.W. Alford, “Software Requi. B ing Methodology (SREM) at the
Age of Two,” in COMPSAC 78 Proceedings (November, 1978).

M.W. Alford, “SREM at the Age of Eight; The Distributed Computing Design
System,” Computer 18(4), pp. 36-46 (April, 1985).

D.M. Berry, N.M. Yavne, and M. Yavne, “Application of Program Design
Language Tools to Abboit’s Mcthod of Program Design by Informal Natural
Language Descriptions,” Journal of Software and Systems(7), pp. 221-247
(1987).

V. Berzins, M. Gray, and D. Nauvmann, “Abstraction-Based Software Develop-
ment,” Communications of the ACM 29(5), pp. 402-415 (May, 1986).

G. Booch, Software Engineering with Ada, Benjamin-Ci i
CA (1986). Second Edition.

A. Borgida, S. Greenspan, and J. Mylopolous, “Knowledge Representation as
the Basis for Requirements Specifications,” Computer 18(4), pp. 82-91 (April,
1985).

M.D. Burstin, “Requirements Analysis of Large Softwarc Systems,” Ph.D.
Dissertation, Department of Management, Tel Aviv University, Tel Aviv, Israel
(1984).

J. Conklin, “A Survey of Hypertext,” MCC Technical Report No. STP-356-86,
Rev. I, MCC, Austin, TX (February 9, 1987).

D.A. Cruse, Lexical Semantics, Cambridge University Press, Cambridge (1986).

N.M. Delisle and M.D. Schwartz, “Contexts — A Partitioning Concept for
Hypertext,” ACM Transactions on Office Information Systems 5(2), pp. 168-186
(April, 1987).

P.K. Garg and W. Scacchi, “Maintaining Software Life Cycle Documents as
Hypertext: Issues, Analysis, and Directions,” Technical Report, University of
Southemn California, Los Angeles, California (1987).

D. Harel, “On Visual Formalisms,” Communications of the ACM 30(6) (June,
1987).

B
ents E

San F;

i

. R. Huddleston, Introduction te the Grammar of English, Cambridge University

Press, Cambridge (1984).

M.A. Jackson, Principles of Program Design, Academic Press, London (1975).
M.M. Lehman, “Programs, Life Cycles, and Laws of Software Evolution,”
Proceedings of the IEEE 68(9), pp. 1060-1076 (September, 1980).

M. Luhn, “The Automatic Creation of Literature Abstracts,” IBM Journal of
Research and Development 2(2), pp. 159-165 (April, 1958).

W. Mitchell, A Prelude to Programming: Problem Solving and Algorithms, Res-
ton Publishing, Reston, VA (1984).

G.J. Myers, Composite/Structured Design, van Nostrand Reinhold, New York,
NY (1979).

K.T. Orr, Structured Systems Development, Yourdon, New York (1977).

K.T. Orr, Structured Requi ts Engi ing, Ken Orr & Associates, Topeka,
KS (1981).

D.L. Pamas, “On the Criteria to be Used in Decomposing Systems into
Modules,” Communications of the ACM 15(2), pp. 1053-1058 (December,
1972).

D.T. Ross, “Structured Analysis (SA): A 1 ge for C icating Ideas.”
1EEE Transactions on Software Engineering SE-3(1), pp. 16-33 (January, 1977).
D.T. Ross and K.E. Schoman, Jr., “Structured Analysis for Requirements
Definition,” IEEE Transactions on Software Engineering SE-3(1), pp. 6-15
(January, 1977).

G. Salton and M.J. McGill, Introduction to Modern Information Retrieval,
McGraw-Hill, New York (1983).

P.A. Scheffer, A.H. IlI Stone, and W.E. Rzepka, “A Case Study of SREM,”
Computer 18(4), pp. 47-54 (April, 1985).

G.E. Sievert and T.A. Mizell, “Specification-Based Software Engincering with
TAGS,” Compuier 18(4), pp. 56-66 (April, 1985).

D. Teichroew and E.A. Hershey, HI, “PSL/PSA: A Computer-Aided Technique
for Structure Documentation and Analysis of Information Processing Systems,”
1EEE Transactions of Software Engineering SE-3(1), pp. 41-48 (January, 1977).
R. Wiener and R. Sincovec, Software Engineering with Modula-2 and Ada, John
Wiley & Sons, New York (1984).

J. Winchester and G. Estrin, “Requirements Definition and Its Interface to the
SARA Design Methodology for Computer-Based Systems,” AFIPS Conference
Proceedings 51, pp. 369-379 (June, 1982).

N. Yankelovich, N. Mecycrowitz, and A. van Dam, “Reading and Writing the
Electronic Book,” Computer 10(18), pp. 15-30 (October, 1985).

Figure 3: findphrases DECOMPOSITION

find_phrases
v ! v v '
determine_max_no read_in_punct read_in_multi read_in_ignored sentences
_tokens_per_phrase _keywords _tokens _phrases
T
convert \ \
_to_integer I
Tr_/ﬁ_.
argument_line (text_file
argument_line punctuation multi_tokens (
chunk_file, output_file _keyword_table _table \
l N — N
ot Q Yy \
: text_io :
1 l chunk_file
e o
' all other modules —
S A e
X string_type_file : output_file
]
Lo 3
APPENDIX findphrases MANUAL PAGE
FINDPHRASES (LOCAL) UNIX Programmer’s Manual FINDPHRASES (LOCAL)
NAME
findphrases — find repeated phrases in an arbitrary text
SYNOPSIS
findphrases [—nnumber | —ppunctuation-keyword-file [—xignored-phrases-file 1[—mmulti-tokens-file 1[—u1{-b]1[-s][-t]J{—v][—-<c]
DESCRIPTION

All files mentioned in the synopsis provide their data in what is referred to as free format subject to particular restrictions to be described for each case.
In free format, the items of the file may be entered zero or several per line with a mixture of blanks and tabs before, in between, and after the items.
Consequently, no item can include a blank, a tab, or a newline.

The —n argument is optional and if present provides a number number serving as the maximum length phrase (to be described later) to be tallied. If this
argument is not present, if it does not supply a number, or if the supplied number is outside the reasonable range of greater than zero and less than or
equal to 50, then number is taken as 10.

The punctuation-keyword-file contains in free format a list of those character strings to be taken as punctuation/keywords (see below). The optional
ignored-phrases-file contains one-per-line a list of phrases to be ignored in the tallying (see below). In each line, the tokens (see below) are in free
format. The optional mudlti-tokens-file contains in free format a list of those character strings consisting of more than one symbolcharacter (see below)
which are to be taken as multi-tokens (see below).

No assumptions are made about the standard input, thus it may be an arbitrary text. The program parses the text into words and symbolcharacters.
These in tum are formed and classified into tokens and punctuation/keywords based on the information provided by the punctuation-keyword-file and,
when the —m option is present, the rulti-tokens-file.

First some definitions are necessary:
Whitespace: blank, tab, newline, beginning-of-fle, end-of-file
Wordcharacter: letter, digit, _
Symbolcharacter: any printable character which is neither a wordcharacter nor a blank

201

Word: any sequence of wordcharacters delimited on each side by whitespace or a symbolcharacter

Punctuation/Keyword: whatever is in the punctuation-keyword-file, the symboicharacter strings are called punctuation and the wordcharacter
strings are called keywords

Multi-token: whatever is in the multi-tokens-file

Token. any word, symbolcharacter, or multi-token which is not listed in the punctuation-keyword-file
Sentence: list of tokens delimited on each side by punctuation/keyword

Phrase: one or more consecutive tokens occurring within one sentence

The main job of this program is to tally the occurrence of all phrases in all sentences. The maximum length phrase that has to be considered is that of
number tokens. If the ignored-phrases-file is provided, then the phrases given in the file are to be ignored in the tallying. If the —b option is used along
with the ignored-phrases-file, then phrases which begin with an ignored phrase are also ignored in the talying.

The standard output consists of:

a copy of the input as is, with the lines numbered and the punctuation/keywords overstruck two times (i.e., printed three times in place) so that
they can be spotted easily,

a frequency ranked table of the repeated phrases. i.e., those appearing more than once among the sentences; that is the entries of the table are
given in order of decreasing frequency, and

an alphabetically ordered table of the repeated phrases.
In the two tables, the entry for a repeated phrase consists of:
a sequence of asterisks indicating the phrase’s frequency as a percentage of the maximum frequencys; in this one asterisk represents 10%,
the actual number of occurrences of the repeated phrase,
the repeated phrase itself, and
a list of the numbers of all lines containing the beginning of the repeated phrase.

In printing the repeated phrase itself in a table entry, the underscores, i.e., *_"’, are printed as blanks. This means that an underscore can be used
immediately preceeding or following a word that looks like a keyword to prevent it from being considered a keyword.

Note that the definition of *‘phrase’’ is independent of the number of times it occurs in the sentences. An ignored phrase is simply one to be ignored in
the tallying but not in searching for phrases. A phrase which contains an ignored phrase which itself is not ignored is to be tallied. When the —b option
is present, a phrase which begins with an ignored phrase is not to be tallied. A repeated phrase is one whose final tally is greater than one. Only the
repeated phrases show up in the tables of the output.

Typically, the ignored-phrases-file will contain so-called noise phrases such as *‘a’’, ‘‘an’’, ““the’’, “‘of”’, “‘of the™", etc. plus any useless phrases found
in previous ruans of the program.
One particular configuration of the files is as follows:
Punctuation-keyword-file: ; [] abort accept access all and array at begin body case constant declare delta digits do else elsif end entry
exception exit for function generic goto if in is limited loop mod new not nulil of or others out package pragma private procedure raise
range record rem renames return reverse select separate subtype task terminate then type use when while with xor
Multi-tokens-file: #* = <= >= /= . <> << >>
This configuration is suited for finding repeated phrases in Ada™ (Ada is a trademark of the U. S. Department of Defense.) or in an Ada-based program
design language.
If the —u option is present, then only the unique phrases that are not wholly and everywhere contained in another phrase are listed in the tables of the
output. In addition to the already specified output, if the —s option is present, then all the sentences are listed; if the —t option is present, then all the
tokens are listed; if the —v option is present, then the output is verbose with the punctuation/keywords listed, and when the —m, and respectively the ~x,
option is present, the multi-tokens, and respectively the ignored phrases, are listed. If the —c option is present, then upper and lower case distinctions
are to be applied in determining whether a phrase is in a sentence. The default is to ignore case distinction in the comparisons.
DIAGNOSTICS
They are good, of course.
BUGS
There are none, of course.

As an example, when running findphrases against its own manual page, the following findphrases options were used:
i. The punctuation-keyword-file consisted of a standard set of punctuation: period, comma, colon, semi-colon, question mark, and exclamation point.

it. The ignored-phrases-file consisted of a list of sixty-sevem phrases to be ignored: apostrophe, opening and closing double quotes, opening and closing
parentheses, opening and closing brackets, dash, colon, underscore, 10, a, ada, all, an, and, any, are, as, based, be, begin, beginning, below,
by, called, can, configuration, course, described, e, each, end, entry, file, for, i, if, in, into, is, it, items, may, not,
number is, of, on, or, respectively, see, so, synopsis, taken, than, that, the, then, this, those, thus, times, to, tokens,
(see below), when, which, and with. These phrases were found in prior runs,

iii. The multi-tokens-file consisted of the following symbols: 7 ' ** := <= >= /= .. < << >>

iv. The —u and —b options were used to print the Tables of Repeated Phrases. The —b option was used to ignore in the tallying of repeated phrases those phrases
which began with an ignored phrase. The number used with the —n option was 11.

202

