
The Use of Lexical Affinities in Requirements Extraction

YoWe S. Maarek* and Daniel M. Benyfj

Computer Science Department, Technion, Haifa 32000, Israel

Abstract

The use of lexical afftnities to help a human requirements analyst find
abstractions in problem descriptions is explored. It is hoped that a lexical
athnities tinding tool can be used as part of an environment to help organize
the sentences and phrases of a natural language problem description to aid
the requirements analyst in the extraction of requirements. An experiment to
confirm its effectiveness is described.

1. INTRODUCTION

The first steps in the development of any computational system should
be the writing of requirements with the client’s help. It may be necessary to
build a prototype tirst, but ultimately before building a production-quality
version, it is necessary to agree upon what is to be in the system. Winchester
and Bstrin [34] list a number of requirements for the requimments them-
selves. The main of these from the programmer-client perspective ate that
the requirements must be understandable to both the customers and the
designers and builders; the parts of the requirements must be consistent with
each other; and the requirements must be complete so that the designers and
builders do not have to make unintended value judgements during their
WOdL

This paper deals ultimately with, describes, and determines the
effectiveness of one tool designed to assist in one part of the psocess of writ-
ing requirements. It is essential that the reader understand the context in
which this tool is expected to operate. Hence, Sections 2 through 5 are
devoted to briefly describing this context.

2. THE PROBLEM

Many system design or programming methods, e.g. those of Jackson
[19], Pamas [26], Booth [lo], Myers [23], Orr [24,25], etc.,. start from a
clear statement of the requirements and show how to arrive at a design of a
program or even at a program meeting these requirements. However, none of
these methods really explain how these requirements are obtained in the tirst
place. It seems clear to us (at least) that the writing of the requirements is a
major part of the problem, and that once these are available, the arrival at an
implementation, by comparison, is relatively straightforward.

Large E type [20] software, for which it is difficult or even impossible to
obtain clear requirements, is usually developed for a client organization in
which there are many people who have some view or say as to what the

Address correspondence to the second author.
$ This work was supported in parts by the Univcnity of California MICRO program, Uniays
Corporation. and NCR Corporation.
l Current Afiilietion: IBM T.I. Watson Research Cixtcr, P.O.B. 704. Yorktown Heights, NY

10598

Permission to copy without fee all or part of this material is granted provided that the cop&s BTC
not made or distributed for dkct commercial advantage, the ACM copyright notice and the title
of the publication and its date appear. and notice is given that cvying is by permission of tk
Association for Computing Machinery. To copy othsnviss, or to npublish, requires a ice and/or
apecilic permission.

desired system should do. These views range from being totally unrelated to
each other to being totally inconsistent with each other. It is no wonder that
the distillation of these views into a consistent, complete, and unambiguous
statement of the requirements. albeit in natural language. is a major part of
the problem of developing software which meets the client’s needs. Tbere-
fore, it is essential to have methods and took that help in distilling these
many views into coharent requirements.

3. PAST WORK

There are already a variety of systems, tools, snd methods for dealing
with requirements. These include SADT 128,271, IORL 1311, PSL/PSA
[32], RDL [34], RSL [5,6,7], RML [ll] and Burstin’s prototype [12] tool.
The tirst two are graphically oriented, and the second of these is automated.
The remainder work from highly constrained subsets of English consisting of
sentences, each of which states one requirement to which the final imple-
mentation must adhere. These sentences can be considered as relations in a
database. Those which ate automated have tools for working with the sen-
tences and abstractions of the requirements document once these sentences
and abstractions have been recognized and stated. Due to space limitations,
only those having a direct impact on this wodc am described in detail herein.
A more complete discussion can be found in 133

Burstin’s prototytpe tool allows tuples of a relation, i.e., sentences, each
with a verb and objects, to be organized into a hierarchy of abstractions.
Each abstraction contains those sentences sharing a common collection of
objects, with the verbs representing procedures of the abstraction. There ate
tools for introducing and moving sentences to and from abstractions and for
placing and moving abstractions in the hierarchy. Them is also a rudimentary
application-oriented expert system that helps recognize when two or mom
phrases of sentences may be talking about the same thing, e.g., “plane” and
“airplane” or “passenger” and “flier.”

All of the mentioned systems are useful for woddng with sentences and
abstractions of a requirements document, once they are recognized and
formed. Organizations implementing and using two of these, PSL/PSA and
SREM, report much user satisfaction [32,7,30].

It is interesting that all of the above requirements analysis systems deal
with relations and that all but the first two, which am not picture-oriented,
have gone to the use of a relational database for storing the relations. All can
be used to support an abstraction-based requirement development which
leads naturally to an abstraction-based software development [9].

However, none of the methods and tools give much help iu actually
obtaining the sentences in the hrst place and in recognizing the relevant
abstractions, especially in the context of a large client organization. The
descriptions of all of the methods either fail to mention how to get the sen-
tences or say something to the effect of “get them and write them down” as if
them were nothing to it.

Teichroew and Hershey [32] offer that “since most of the data must be
obtained through personal contact, interviews will still he required.” PSA
does help this gathering process in that its “intermediate outputs . . . also pro-
vide convenient checklists for deciding what additional information is
needed and for recording it for input.”

Alford [S] says that the “SRBM steps address the sequence of activities
and usage of RSL and REVS to generate and validate the requirements. It

01989 ACM 0-89791-3051/89/0500/0196$00.7!5
196

osswnes [italics are not in the original] that system function and perfor-
mances have been allocated to the data processor, and have been coBected
into a Data Processing Subsystem Performance Requirement or DPSPR.”

Even eight years later, Scheffer. Stone, and Rzepka 1301. from a com-
pletely different company which had been using SREM, state only that the
“initial input to SRBM is a system specification that is translated into RSL
and interpreted to determine the interfaces with the outside world, the mes-
sages across these interfaces, and the tequired pmcessiog relationships and
flows.”

The Orst step of tbe TAGS method [31] is the. concepmalization step.
“User concepts and requirements arc used to develop a conceptual model
that is the basis for subsequent engineering.” This conceptual model is the
top level SBD. In the cited article, there is advice on the issues that should be
dealt with in arriving at it. However, no tools are provided, since the TAGS
method deals with activities that follow the production of this tirst SBD.

Therefore, we feel that tbe gap between tbe initial fuzzy natural
language statements from the individuals in the client organization to the
sentences, i.e., relations, with which these tools work is still too large.
Methods snd tools are needed to close this gap.

4. ENVISIONED REQUIREMENTS GATHERING ENVIRONMENT

We ultimately envision au integrated environment, REGEE, for gather-
ing, sifting, and writing requirements. This environment may very well be
part of a larger environment used for software development, deployment,
and maintenance [1,2]. REGBB is in the very rudimentary prototyping
stage, as we do not understand the. process it is supposed to assist. For now,
REGEE is described as helping the human requirements analyst (RA) mas-
sage transcripts of interviews with members of a client organization into a
consistent, complete, unambiguous, coherent, and concise statement of what
the organization wants. We do not care what language is being used either
for the interview transcripts or for the final requirements. REGEE should
support any possibility. Usually the input, transcript language wilI be some
natural language, possibly with pictures [17]. However, the output language,
in which the requirements are written, can be anything from natural
language, possibly with pictures, to predicate calculus; in particular, it should
be possible to use any of the requirements expression languages mentioned
in Section 3.

We do not know enough about effective requirements writing in order to
be able to codify the process. Thus at least for now, a completely automated
expe&system approach is out of the question. We therefore envision an
environment consisting of clerical tools that help with the tedious, error-
prone steps of what one particular human RA, the second author, does.

We view a requirements document both in the process of being written
and in tinal form as a network, very often a hierarchy, of nodes each denot-
ing an abstraction and containing a description of all that is known and
required about the abstraction. The srcs between the nodes can be used to
describe the “us& relation or any other basis for organizing tbc set of
abstractions.

REGEE needs two basic kinds of tools,

1. to help identify the abstractions that will make the nodes from the tran-
scripts of the interviews, and

2. to help organize the abstractions into a network of abstraction-nodes,
each to contain a consistent, complete, unambiguous, coherent. and cou-
cisc description of that abstraction.

This paper deals with a proposed tool of the first kind, a lexical aftinities
tinder, to be described below. To understand the rationale behind the lexical
a8Inities finder, it is useful to understand the envisioned tool of the second
kind. We are building a significant enhancement of the Burstin tool mea-
tioned in Section 3. This tool provides a medium in which nodes, imple-
mented as windows on a work station screen, can be organized into a net-
work, as suggested by Figure 1. Each window can be made to hold arbitrary
text, including text that causes displaying of a picture. Any arbitrary element
of the text of any window can be given lii connecting the element to any
window or to any element, possibly in another window. Figure 2 shows two
windows from a description of an airline reservation system.

The liuks connect an element to windows giving more details about the
element or to other elements talking about the same or related concepts, as

Figure 1: Network of Nodes

Figure 2: Lii

the, human RA desires. The RA can use these iii to navigate through the
windows as he or she is tracking down the. information that allows the con-
tents of each window to be refined into a consistent, complete, unambiguous,
coherent, and concise description of the window’s abstraction.

This description of the tool of tbe second kind suggests building it on top
oE some existing hypertext system [35,13,15]. Indeed, Garg and Scacchi
have suggested maintaining ail life-cycle documents as hypertext [161.

5. ABSTRACTION IDENTIFICATION

The way identification of abstractions is done now is that the human RA
scans the transcripts trying to note importaut subjects snd objects of sen-
tences, i.e., nouns, The problem is tbat humans get tired, get bored. fall
asleep, and overlook relevant ideas. So we want a tool that does the clerical
part of the search without getting tired, getting bored, falliig asleep, and
overlooking anything. The human RA still does all the thinking with the out-
put of this tool, conlident that no occurrence of any noun has been over-
looked.

Our 8rst idea, reported in [8]. was to use a parser to tind the nouns.
However, we tried it and found that the few errors it made were so distract-
ing that it was more comfortable to do it by hand. Moreover, we realized that
even a better, but still imperfect, parser would still be distracting. Huts, the.
program did not inspire confidence that it found everything. Maybe there
was an important noun that was overlooked because it appeared to the parser
as a verb. Even a better, but still ultimately imperfect, parser does not solve
this confidence problem. We want something with guaranteed coverage,
even if it is less intelligent. lbe lack of intelbgence in tbc tool is no problem
because a human ls applying bis or her intelligence to the output of the tool.

6. REPEATED PHRASE FINDER

A second idea, reported in [4,3], (Most of this introductory material is
borrowed from this paper.) is to use findphrases, a repeated phrase finder.
The i&a is based on the observation that the frequency of occurrence of a
term within a text carries much information on the importance of this term in
the text. Indeed, it has been empirically verified that a writer repeats wonts
of importance in a text as she explains or varies her argument [21]. Just
counting repeated words witbln a document is not sufficient for identifying
its major abstractions. In counting isolated single words, a lot of infonuakion
is lost. In particular, information on the relationships in which words are
involved is lost. Therefore, it is necessary to consider the phrases in which
the words appear.

197

In its simplest application, the user provides findphrases with the text
to be analyzed snd a lile containing punctuation and keywords. The puno
tuation and keywords are used by findphrases to break the text into sen-
tences. findphrases processes the phrases of the sentences and produces a
series of reports. The basic output contains: (1) the input tile as is with lines
numbered and the punctuation and keywords overstruck, (2) a frequency
ranked table of repeated phrases, and (3) an alphabetically ordered table of
repeated phrases. Each entry in these tables gives the numbers of the lines in
which the phrase occurs, so that each phrase may be examined in its original
context to decide which abstraction is really represented by the phrase. A
number of options rue provided that the user may use to controll the parsing
of the input text into tokens and phrases, to control the printing of the
phrases in the tables of the output, and to indicate which additional tables are
to be printed.

Observe that there is a learning process involved in using findphrases
effectively. First, it appears that there are dilferent characteristic
punctuation-keyword, multi-token and initial ignored-phrases files for each
language. These can be catalogued for general use. In addition for each class
of applications, there appears also to be. a characteristic set of additional
ignored phrases. Fmally, as one is doing a particular application. one. hnds it
useful to extend the ignored phrases file with common words that are actu-
ally important abstractions, but whose presence skews the list and populates
it with too much noise for finding the other abstractions.

The works [4.3] describe tests of effectiveness of findphrases in help
ing the human RA identify abstractions.

The tests involved four examples of program development, each of
which had multiple versions of the same program ranging fmm natural
language descriptions, through designs, decompositions, etc., to code. lluee
of these had been published in the literature and one had not.

It was desired to determine if findphrases is effective in helping the
human RA to find, in the natural language transcripts of interviews about a
system under development, 011 of the abstractions that serve as the basis for
the requirements, design, and implementation. It was deemed effective if
we, as humans, do indeed recognize the same set of abstractions in the out-
puts of findphrases run (with the appropriate parameter files in each case)
on at1 versions of the same problem. Finding the same set of abstractions in
all versions says that the abstractions found in the tirst version, the natural
language description, are sufficient to cover all abstractions that will be
needed for all subsequent versions, including the code snd that no other
abstractions will need to be invented.

The first experiment is Abbott’s example of programming with the help
of natural language. This example is the focus of a paper [8] that points to
the need of this phrase linding tool. For this experiment, three versions of the
program solution are compared. Ibe first version was written in standard
English, the. second in an Ada M2-based program design language, and the
third in Ada. The second experiment is the problem of writing the phrase
linder itself. In writing the phrase finder. the manual page served as the
requirements document. findphrases was nm with its own manual page to
see if the same abstractions that formed the basis for the modular decomposi-
tion used in writing the code are identified from the information provided by
findphrases. The third experiment takes Mitchell’s text book (221 example
of writing a sorting program starting from the English statement of the
requirements and ending with a Pascal program developed with a structured
programming method. Four versions of the program solution ate compared,
the. initial English description, two program design language ~descriptions,
and tbe final Pascal program.

The fourth experiment takes Wiener and Sincovec’s text book [33]
example of writing a spelling checker program. They start with a statement
of the requirements, develop a modular decomposition for the solution. and
produce an Ada program.

In these experiments, findphrases was found to be effective in aiding
the human RA to identify abstractions. However, one particular weakness
was noticed. A repeated phrase finder fails to count as a repetition of book
a flightthephrase book the flight. Wereeach ofthesephrases
to appear only once, the concept of booking (I ~7ighr wouId not show up at aJl
in tbe list of repeated phrases. In many cases, concepts do not appear as
adjacent words but rather a set of words separated by not mom than a few

words. Most of these concepts appear as closely separated pain3 of words
standing for an agent-object relation. Moreover, this relational information
often allows distinguishing between SemanticalIy distinct uses of the same
word by showing the context from which the word comes.

7. LEXICAL AFFINITIES

We propose to take lexical ajinities (LAS) as the atomic unit for identi-
fying major abstractions within a text. An LA stands for the correlation of
the common appearance of two items in sentences of the language [14]. For
our purposes, we restrict this definition, by observing LAs within a linite
document rather than on the whole language. For instance, ~JI this paper,
requirement and anulysis are bound by a lexical alRnity. For our purpose, we
consider only LAS involving open-cluss words as meting hearing. Open
classes gather nouns, verbs, adjectives and adverbs whereas closed-class
words are represented by pronouns, prepositions, conjunctions and interjec-
tions [18]. The LA 6nder’s output is a list of lexical alRnities with their
associated frequency of appearance within the considered text. For instance,
the analysis of the rm manual page in the UMxru3 environment. returns as
themostfrequentLAs,thelist (delete file), (file file), (file
permission), etc. which alI appear thme times within the. one-page
document. Were the manual page taken as a statement of the requirements of
m, we believe that this list of LAS would ha of great help for assisting the
human RA in his or her process of extracting requirements. As we see in the
above example, among the thme LAs cited, two represent major abstractions.
This can be much improved by accounting for the general context or
universe to which the document belongs. This would allow lilteting out such
LAsas (file file) citedabove.

ln order to account for the general context or universe, LAa need to be
scaled according to their specific contributiun in the given document. Aa a
measure of their contribution, we propose evaluating the resolving power of
every LA. We define the resolving power p of an LA is a limction of its
quantity of infotmation and its liequency of appearance within the ccm-
sidered text. The quantity of information represented by a word w in a given
textual universe is defined as [29]

Thus, if a word asterisk occurs once in every 20 000 words, its quantity
of information is estimated to be

In contrast, the word the that occurs once in every 15 words, has its infor-
mation contents estimated to be

lNFO(t he)=39

Drawing on this deftition of tbz quantity of information for single words,
we dehne the resolving power of an LA within a document d as follows.

Let (w , .w2f) be a tuple retrieved while analyzing a document d, where
(w , , w2) is an LA appearing f times in d. The resolving power of this LA in d
is deliaed as:

The higher the resolving power of an LA is. the more characteristic it is of
the considered document. The best LAS. in terms of resolving power, within
a document, represent key concepts of the considered document. These LAS
may thetefore provide valuable assistance to the htunan RA in tha process of
extracting tequirements.

In order to conduct a first test of the effectiveness of LAS in helping the
human RA to lind abstractions, we have tried to use LAS to lind the abstrac-
tions in one of the examples used to test findphrases, namely the
findphrases manual page.

8. THE findphrases MANUAL PAGE

One of the original experiments for the repeated phrase linder con-
sidered the problem of developing a pmgram for findphrases. That is,
findphrases was tested using its own manual page, which is found in the
appendix. The data abstractions identified by fidphrases from this

198

application were compared with tbe abstractions used in the decomposition
for the final program. Space limitations prevent showing the actual output of
the nmuing of findphrases on the manual page. However, it can be found
in [3].

The decomposition used to write the findphrases program includes
fifteen different modules, as illustrated in Figure 3. (See Chapter 3, Section 3
of [4] for a description of the modules.) The modules with dashed outlines
are built into the implementing programming language. Nine of the non-
built-in modules, i.e., those with the thicker outlines, are data abstraction
packages. Table 1 below shows the correspondence between these packages
and some of the repeated phrases identified by findphrases from the manual
page description:

THEDATA ~RIipBATBDPHRASES
AESIRACIIONPACUGES

string-type-file strings, character strings
argumentjina argument, option
output-file output,

tables of the output
chunk-file file(s), free-format
punct-keyword-table punctuation, keyword(s),

punctuation/keyword(s),
punctuation-keyword-file

multi-tokens-table multi-tokens,
multi-tokens-file

text-file text, input,
arbitrary text

phrases phrase(s),
ignored phrases,
repeated phrases

sentences sentence (9)

Table 1:Package-s and Phrases

The name of each abstraction, except for chunk-file, directly corresponds to
at least one repeated phrase appearing in the manual page. Although the
phrase chunk does not appear in the description, the chunk-file abstraction
is implied by the phrases indicated above. During the program’s develop-
ment, chunk-file was recognized as the abstraction to he used by the pro-
cedures that read the various free-format files. Thus, this abstraction is
indirectly identified by repeated phrases appearing in the tables. Note that it
does not bother us that we had to do some thinking to make these cormec-
tions. We believe that this kind of thinking is precisely what an RA is doing
when presented with such a list of concepts.

In this experiment. the repeated phrases tables produced by findphrases
include phrases that identify the abstractions that were used iu the program
decomposition. The tables act as guides to the user when loolring for the
abstractions. The user’s attention is first focused on the phrases with the
highest frequency and then on possibly related phrases. The line numbers
printed in the tables enable the user to locate the phrases in the text. By
analyzing the context of the sentences containing the pbmse, tbe importance
of the phrase as a potential abstraction can be determined.

In addition to finding the list of abstractions, as the user analyzes the
context of each phrase usage, a list of statements related to that phrase can be
extracted. For example, consider tbe phrases multi-token, multi-
tokens and multi-tokens-file. By examining the context of the
lines that contain these phrases, one finds the following information:

1. the optional multi-fokens-file contains in free format the list of character
strings to be taken as multi-tokens;

2. a multi-token is a string consisting of more than one symbolcharacter
(non-word character);

3. if the m option is present, the input text is parsed using the information
provided by the multi-tokens-jle;

4. a token may be a multi-token;

5. if the -v and the m options rue present, the list of multi-tokens is
printed.

LEKIc.uAITmrrY P
699.123546 ignor* -phrar*

phrase-rrprrt
multi-tokmn
fib-pb.rr*a
contain-plurar
filekmywotd
kmyword-punatuatr

file-token
file-punctuate
fonlut-frra
Option-prrrmIt
begin-pbrerr
pbrrro-table
repeat-table
file-ignore
file-multi
phrrre-token
entry-table
contain-file
list-token
pbrrrwtally
contain-ignore
number-supply
list-phrase
occurrent-phrase
contain-list
phrrr*-**nt~na*
phrrrr-provide
length-phrew
free-token

696.600983
483.353302
418.820829
299.996701
281.335816
271.657352
268.032537
263.292488
232.582511
228.395449
208.569285
207.914468
186.06694 1
163.864523
160.532580
138.637142
132.656315
131.339831
128.602978
124.433003
122.670819
119.521321
116.148446
112.433009
112.236751
111.806985
106.772850
105.449l8 1
102.94993 1

These statements represent requirements for the data abstraction multi-
token. Located by the manual method, these same statements were used
when the initial decomposition and implementation were developed. The
fmal program uses a procedure to read the multi-tokens-file and a package to
handle a multi-tokens table. These statements also guided Ihe development
of the text parsing routines.

Thus, in this experiment, the human RA linds in the repeated phrases
generated from the manual page the very abstractions used in the modular
decomposition and implementation.

9. THE LAS for THE findphrases MANUAL PAGE

We have extracted the LAS from the findphrases manual page and ranked
them according to their resolving power. The whole UNIX manual has been
used as the. textual universe, in order to determine the. quantity of information
of each word. The 30 LAS with the highest resolviug power are given in
Table 2.

Table 2: Most significant LAS

As a first step, the human RA quickly selects, among the top LAS, the main
abstractions which are marked in boldface in Table 2. In our exampIe. these
abstractions are ignore-phrase. phrase-repeat, multi-token:
keyword-punctuate and phrase-sentence. Single words can also
be selected when (hey are involved in many of the most significant LAS, for
instance, in our example, the word phrase appears to be a major abstrac-
tion. Some other abstractions can also be found after a finer analysis4, such
as chunk, represented by free-format, argument-line represented by
option-present or text-file by noticing alJ the occurences of file-
phrase and text.

In a second step, the human RA obtains more information on the main
abstractions by performing a keyword-based search on the whole list of the
LAS. The correspondence between the abstrac$ons, selected at the fit step,
and UK. LAS selected during this search is given in Table 3. The most
sign&ant LAS leading identication of abstractions are in italics. These
might form au initial list of operations, attributes, or methods of the abseac-
ti0ll.S.

199

AB.¶RAcrloNs LsxtcALAFFINlws

ignored phrase i ynore-phrase

file-ignore

repetition phrase-repeat

repeat-table

find-repeat

multi-tokens mu1 ti -t oken
file-token

phrase-token

list-token

punctuation-keyword keyword-punctuate

file-punctuate

file-keyword

keyword-phrase

sentence phrase-sentence

occurring-sentence

consecutive-sentence

sentence-token

present-sentence

entry-sentence
phrase ignore phrase

phrase-repeat
file-phrase

contain-phrase

begin-phrase
phrase-table
format-free chunk

argument-line

text-file

option-present

multi-option

argument-present

argument-option

file-phrase
arbitrary-text
phrase-text
repeat-text

Table 3: Packages and LAs

10. CONCLUSIONS

The initial attempt to use LAS to assist a human RA in finding abstrac-
tions looks promising. The LAS help the RA identify the same abstractions
tbat were used to build the implementation. In addition, the LAS were help-
ful in organizing the information in the descriptions and allowed the user to
focus on the important phrases. It will now he necessary to try out the LAs
on other problems.

It is not clear at this time which is better, LAS or repeated phrases. The
use of LAs fmds repeated phrases whose key elements are not necessarily
adjacent and are not neeessariIy appearing in the exact same form each time.
However, at present the LA finder does not find LAs consisting of more than
two words. It finds only verb-noun, adjective-noun, and other common gtam-
matical structure pairs. LAS of more than two words must he inferred as
joins of binary relations. Of course, the repeated phrase finder has no prob-
lems finding phrases of more than two words. Perhaps both should he used.
and tools for dealing with both should be available to the users of REGEE.
Perhaps a combined tool should be built in which non-adjacency, synonyms,
ad varying parts of speech are tolerated in finding repeated phrases.

REFERENCES

1. “Rquirements for the Ada Programming Support Environment: STONBMAN,”
Technical Report, U.S. Department of Defense (1981).

2. iEEE Software g(2) (March, 1988).
3. C. Aguilera and D.M. Berry, “The Use of a Repeated Pbmse Finder in Require-

ments Extraction,” Jourmzf OfSystems and Softw(lre(9) (1990 (To appear)).
4. C.S. Aguiiera, “Finding Abstractions in Pmblcm Descriptions using

findphrases.’ MS. Thesis, Computer Science Department, UCLA, Los
Angeles, CA (October, 1987).

5. M.W. Alford. “A Rqmrements B@neering Metboddogy for Reaitime Process-
ing Requirements.” IEEE Transactions of S&are Engineering SE3(1), pp.
60-69 (1977).

6. M.W. Alford, “Softwam Requirements Engineering Methodology (SRBM) at tbc
Age of Two,” in COMFSAC 78 Proceedings (November, 1978).

7. M.W. Alford. “SREM at the Age of Bigbs The Distrilmled Computing Design
System,” Computer 18(4). Pp. 36-46 (April, 1985).

8. D.M. Berry, NM. Yavne, and M. Yovnc, “Application of Program Dmign
Language Tools to Abbott’s Method of Program Design by Infmmai Natural
Language Descriptions,” Journal of Software and Sysrems(7), pp. 221-24’1
(1987).

9. V. Benins. hi. Gray, and D. Naumum, “Abstraction-Based Software Develop
mat,” Communications of the ACM 29(5), pp. 402-415 (May, 1986).

10. G. Booth. Sofrwarc Engineering with A&, Benjamin-Cummins, San Francisco,

CA (1986). Second Edition.
11. A. Borgida, S. Greenspan, and J. Mylopolous. “Knowledge Repmsentation m

the Basis for Rquiremcnta Sptciftcatiars,” Compufer U(4), pp. 82-91 (April,
1985).

12. M.D. Burstin, “Requirements Analysis of Large S&ware Systems,” Ph.D.
Dissertation. Department of Management, Tel Aviv University, Tel Aviv, Israel
(1984).

13. J. Conklin, “A Survey of Hypertext,” MCC Technical Report No. SIP-356-86,
Rev. 1, MCC. Austin, TX (Pebmary 9.1987).

14. D.A. CNSZ, Luicof Semadcs, Cambridge University Press, Cambridge (1986).
15. N.M. Delisle and M.D. Schwmtz, “Contexts - A Partitioning Concept for

Hypertext,” ACM Transactions on Ofice Information Systems 5(2), pp. 168-186
(April, 1987). .

16. P.K. Garg and W. Scacchi. “Maintaining Software Life Cycle Documents as
Hypertext: Issues, Analysis, and Directions,” Technical Report, University of
Southern California. Los Angeles, California (1987).

17. D. Hare& “On Visual Formalisms.” Communications of the ACM 30(6) (June.
1987).

18. R. Huddleston. Introduction to the Grammar of English. Cambridge University
Press, Cambridge (1984).

19. M.A. Jackson, Principles ofProgram Design. Academic Press, London (1975).
20. M.M. Lehman, “F’rograms, Lie Cycles, and Laws of Software Evolution,”

Proceedings of the IEEE 68(9). pp. 1060-1076 (September, 1980).

21. M. L&m, ‘The Automatic Creation of Literahue Abstracts,” IBM Journal #>f

Research and Development 2(2), pp. 159- 165 (April, 1958).
22. W. Mitchell, A Prelude to Programming: Problem Solving and Algorithms. Res-

ton Publishing, Reston, VA (1984).
23. G.J. Myers. Composite/Structured Design. van Nostrand Reinhold, New York,

NY (1979).
24. K.T. On, Structured Systems Development. Yourdon, New York (1977).
25. KT. Orr, Structured Requirements Engineering, Ken Orr & Associates. Topeka.

KS (1981).
26. D.L. Pamas, “On the Criteria to be Used in Decomposing Systems into

Modules,” Communicafions 4 the ACM 15(2), pp. 1053-1058 (December,
1972).

27. D.T. Ross, “Structured Analysis (SA): A Language for Communicating Ideas.”

IEEE Transactions on S&wore Engineering SE3(1). pp. 16-33 (January, 1977).
28. D.T. Ross and ICE. Schoman, Jr.. “Structured Analysis for Requirements

Definition,” IEEE Transactions on Softwore Engineering SE3(1), pp. 6-15
(January, 1977).

29. G. S&m and MJ. McGill, Introduction to Modern I@ormation Retrieval.

McGraw-Hill, New York (1983).
30. P.A. Scheffer, A.H. Ill Stone, and W.E. Rzepka, “A Case Study of SREM,”

Computer U(4), pp. 47-54 (April, 1985).
31. G.E. Sievea and T.A. Mizell, “Specification-Based Software Engineering with

TAGS,” Computer 18(4), pp. 56-66 (April, 1985).
32. D. Teich- and E.A. Hershey, ill, “PSLA’SA: A Computer-Aided Techniqoz

for Structure Documentation and Analysis of Information Processing Systems,’
IEEE Tronsactiona of Sofhvare Engineering SE3(1). pp. 41-48 (January, 1977).

33. R. Wiener and R. Sincovec, Software Engineering with Mod&-Z and Ada, John
Wiley & Sons. New York (1984).

34. J. Winchester and G. E&in, “Rquiremmts Definition and Its Interface to the
SARA Design Methodology for Computer-Based Systems,” AFIPS Conference

Proceedings 51. pp. 369-379 (June, 1982).
35. N. Yankelovich, N. Meycmwitz. and A. van Dam, “Reading and Writing the

Electronic Book: Computer 10(18), pp. 1530 (October, 1985).

200

Figure 3: findphrases DECOMPOSIIION

b

determine-ma-no
-tokensqer&rase

1

convert
to-integer

c

read-inqunct
-keywords

6lKlJlUaSeS

c

readjt-multi
-tokens

argument&e,
chunkJlle, output-gle

A r------q
I 1
4 text-i0 0

punctuation

-keyword-table

L

multi-iokens
-table

textlile

I I L-----,J

1
all other modules

r-------- -/

I st.ringtypeJile :
I I
L--------J

V

output-hle

APPEND= findphrases MANUAL PAGE

UNIX Programmer’s Manual FINDPHRASES (LOCAL) PINDPHRASES (LOCAL)

NAME
tindphrases - lind repeated phrases in an arbitrary text

SYNOPSIS
lindphrases [-nnumber] -ppunchaation-keyword-file [-x&ore&phrases-jlee] [-mmulti-tokens-file] [-u] [-b] [-s] [-t] [-v] [-c]

DESCRIPTION
All liles mentioned in the synopsis provide their data in what is referred to as free format subject to particular restrictions to be described for each case.
In free format, the items of the flIe may be entered zero or several per line with a mixture of blanks and tabs before, in between, and after the items.
Consequently, no item can include a blank, a tab, or a newline.

The -n argument is optional and if present provides a number number serving as the maximum length phrase (to be described later) to be tallied. If this
argument is not present, if it does not supply a number, or if the supphed number is outside the reasonable range of greater than zero and less than or
equal to 50, then number is taken as 10.

The punctuation-keyword-file contains in free format a list of those character strings to be taken as punctuation/keywords (see below). The optional
ignored-phrases-j/e contains one-per-line a list of phrases to be ignored in the tallying (see below). ln each line, the tokens (see below) am in free
format. The optional multi-tokens-file contains in free format a list of those character strings consisting of more than one symbolcharacter (see below)
which are to be taken as multi-tokens (see below).

No assumptions are ma& about the standard input, thus it may be. an arbitrary text. The program parses the text into words and symbol&ua&m.
These in turn are formed and classified into tokens and punctnatior&eywords based on the information provided by the punchmtion-keyword-file and,
when the -m option is present, the multi-tokens-file.

First some detinirions am necessary:

Whitespace: blank, tab, newline. beginning-@-file. emf-t&file

Wordcharacter: letter, digit, _

Symbolcharacter: any printable character which is neither a wordcharacter nor a blank

201

Word: any sequence of wordcharacters delimited on each side by whitespace or a symbolcharacter

PunctuutionK~ord: whatever is in the punctuation-keyword-jle; the symbolcharacter strings are called punctuation and the wordcharacter
strings are called keywords

Multi-token: whatever is in the multi-tokens-jle

Token: any word, symbolcharacter. or multi-token which is not listed in tbe.punctuation-keyword-file

Sentence: list of tokens delimited on each side by punctuation/keyword

Phrase: oneor moreconsecutivetokensoccurringwithinonesentence

The main job of this program is to tally the occurrence of all phrases in all sentences. The maximum length phrase that has to be considered is that of
number tokens. If the ignored-phruses-jle is provided, then the phrases given in the file are to be ignored in the tallying. If the -h option is used along
with the ignored-phrases-file. then phrases which begin with an ignored phrase are also ignored in the tallying.

The standard output consists of:

a copy of the input as is. with the lines numbered and the punctuation/key-words overstruck two times (i.e., printed three times in place) so that
they can be spotted easily,

a frequency ranked table of the repeated phrases. i.e., those appearing more than once among the sentences; that is the entries of the table ate
given in order of decreasing frequency, and

an alphabetically ordered table of the repeated phrases.

In the hvo tables, the entry for a repeated phrase consists oE

a sequence of asterisks indicating the phrase’s frequency as a percentage of the maximum frequency; in this one asterisk represents 10%.

the actual number of occurrences of the repeated phrase,

the repeated phrase itself, and

a lit of the numbers of all lines containing the beginning of the repeated phrase.

In printing the repeated phrase itself in a table entry, the underscores, i.e., “_“, are printed as blanks. This means that an underscore can be used
immediately proceeding or following a word that looks like a keyword to prevent it from being considered a keyword.

Note that the definition of “phrase” is independent of the number of times it occurs in the sentences. An ignoredphrase is simply one to be ignored in
the tallying but not in searching for phrases. A phrase which contains ao ignored phrase which itself is not ignored is to be tallied. When the -b option
is present, a phrase which begins with an ignored phrase is not to be tallied. A repeatedphrase is one whose final tally is greater than one. Only the
repeated phrases show up in the tables of the output.

Typically, the ignored-phrases-file will contain so-called noise phrases such as “a”, “an”. “the”, “of”, “ of the”, etc. plus any useless phrases found
in previous run3 of the program.

One particular conliguratiou of the files is as follows:

Punctuution-key+vord-frle: ; [] abort accept access all and array at begin body case constant declare delta digits do else elsii end entry
exception exit for function generic goto if in is limited loop mod new not null of or others out package pragma private procedure raise
range record rem renames return reverse select separate subtype task terminate then type use when while with xor

Multi-tokenr-file: ** := <= >= /= . . <> << >B

This configuration is suited for finding repeated phrases in Ada m (Ada is a trademark of the U. S. Department of Defense.) or in an Ada-based program
design language.

If the -u option is present, then only the unique phrases that are not wholly and everywhere contained in another phrase are listed in the tables of the
output. In addition to the already specified output, if uhe -s option is present, then all the sentences are listed; if the -t option is present, then all the
tokens are listed; if the -v option is present, then the output is verbose with the punctuation/keywords listed, and when the -m. and respectively the -x,
option is present, the multi-tokens, and respectively the ignored phrases, are listed. If the -c option is present, then upper and lower case distinctions
a~ to be applied in determining whether a phrase is in ;a sentence. The default is to ignore case distinction in the comparisons.

DIAGNOSTICS
They are good, of course.

BUGS
There are none. of course.

As an example, when running findphrases against its own manual page, the following findphrases options were use&

i. The punctuation-keyword-file consisted of a standard set of punctuation: period, comma, colon, semi-colon, question mark. and exclamation point.

ii. The ignored-phruses-file consisted of a list of sixty-seven phrases to be ignored: apostrophe, opening and closing double quotes, opening and &&g
parenthest!s, opening and closing brackets, dash, colon. undWc~re, 10. a, ada, all, an, and, any, are. as, based, be, begin, beginning, below,
by,called, can, configuration,course, described,e,each, end,entry, file, for,i,if,in,into, is, it,items,may, not,
number is,of,on,or, respectively,see, so, ~rynopsis,taken,than,that,the,then,this,those,thus,times,to,tokans,
(see below),when,which,andwith.These phrases’werefo~ndinpriorruns.

iii. ‘zhe multi-tokens#c co&&d of the following symbols: ’ ’ ’ ’ * * := <= >= /= .* <> i< >>

iv. The -u and -b options were used to print the Tables of Repeated Pbrases. The -b option was used to ignore in the tallying of repeated phrases those phrases
which began with an ignored phrase. The number used with the --n option was 11.

202

