
Higher Quality Requirements Specifications through Natural Language Patterns

Christian Denger Daniel M. Berry Erik Kamsties
Fraunhofer Institute for School of Computer Science Software Systems Engineering

Experimental Software Engineering University of Waterloo University of Essen
D-67663 Kaiserslautern Waterloo, ON N2L 3G1 D-45117 Essen

Germany Canada Germany
denger a�iese⋅fhg⋅de dberry a�uwaterloo⋅ca kamsties a�sse⋅uni-essen⋅de

Abstract

In most current industrial software engineering projects, the
majority of requirements documents are written almost entirely
in natural language. However, specifying the requirements in
natural language has one major drawback, namely the inherent
imprecision, i.e., ambiguity, incompleteness, and inaccuracy, of
natural language. Since the requirements document forms the
basis of the whole development process, such defects can have
severe consequences for the whole project. Therefore, it is
important to deal with these defects in a requirements specifica-
tion right from the start. This paper presents an approach for
reducing the problem of imprecision in natural language re-
quirements specifications with the use of natural language pat-
terns, which allow formulating requirements sentences in a less
ambiguous, more complete, and more accurate way. To ensure
the applicability of our approach we based our patterns on a
metamodel for requirements statements for embedded systems.
With this metamodel, we ensure that all forms of requirements
statements are described with the patterns. We validated the
effectiveness of the patterns by using them to rewrite a substan-
tial, previously written, requirements specification to eliminate
its imprecisions.

Keywords: accuracy, ambiguity, authoring, completeness,
embedded systems, metamodel, natural language, patterns, pre-
cision, quality, requirements specification, rewriting

1. Introduction
For a software project to be successful, it is essential that the

requirements of a software system reflect the user’s needs. De-
spite the availability of other notations such as tables, diagrams,
formal notations, and pseudo-code, most industrial requirements
documents are written primarily in natural language. Since the
requirements document forms the basis of the whole develop-
ment process, the requirements document must be at the very
least correct, complete, and unambiguous. However, specifying
requirements in natural language has one major drawback,
namely the inherent imprecision, i.e., the inherent ambiguity,
incompleteness, and inaccuracy of natural language. We use

“imprecision” to mean the union of all three problems, ambi-
guity, incompleteness, and inaccuracy.

An imprecise requirement can have severe consequences for
a project, such as wrongly implemented requirements and, as a
result, high costs for rework and for delayed product releases.
Often, the different stakeholders of the process are not even
aware of the imprecision. Each stakeholder has her own under-
standing of the requirement and none is aware that the others
may have different understandings [8]. Recent research on
approaches [6] for overcoming the problems of the use of
natural language show that this topic needs more serious con-
sideration in the requirements engineering community. The idea
to use requirements statement patterns to improve the quality of
requirements specifications is considered also in recent research
[9].

Detecting imprecisions after the requirements are written is
one approach to analyze the requirements document for impreci-
sions and other requirements defects. The approach of this paper
is to avoid introducing such problems during the authoring pro-
cess rather than checking for the defects after the requirements
are written. The proposal is for the requirements author to use
natural language patterns that guide her in specifying require-
ments that are less ambiguous, more complete, and more accu-
rate. Hereinafter, these natural language patterns are usually
called simply “patterns”. Occasionally, they are called “lan-
guage patterns” when they need to be distinguished from other
kinds of patterns.

With these patterns, the level of imprecision in the require-
ments specifications is reduced right from the start. Because
requirements defects are at least an order of magnitude more
expensive to correct when they are undetected until later, imple-
mentation stages [16], we believe the approach to be cost effec-
tive, even if it doubles the time to write the requirements
specifications.

More and more of the systems and devices we use everyday,
e.g., automobiles, aircraft, and pacemakers, contain computers
controlling the behaviors of these systems and devices. These
computers are called embedded systems. Failures in embedded
systems can be catastrophic because human lives may depend on
the systems and devices that contain the embedded systems.
Given the importance of the embedded systems domain, it is

1
Proceedings of the IEEE International Conference on Software—Science, Technology & Engineering (SwSTE’03)
0-7695-2047-2/03 $ 17.00 © 2003 IEEE

surprising that there is hardly any advice in the literature on
writing natural language requirements specifications in this
domain. Therefore, the focus of our approach is on requirements
for embedded systems. Accordingly, we developed a metamodel
for requirements statements in embedded systems, defining the
elements needed to specify requirements in this domain. The
metamodel serves as a basis for developing the patterns and
ensures their completeness, i.e., all elements that are needed to
describe a requirement of an embedded system can be specified.

Section 2 gives a brief overview of related work. Section 3
discusses a metamodel for requirements of embedded systems
and some of the patterns based on the metamodel. Section 4
describes the validation of our approach. Section 5 presents the
lessons we learned during validation and the impact of the vali-
dation on our approach. Finally, Section 6 summarizes the paper
and gives some hints about future work.

2. Related Work and Our Work
A survey of the literature on the use of natural language in

requirements documents shows that there are several approaches
to reduce the problems arising from the use of natural language.
These approaches may be divided into two main types:

� approaches for detecting imprecision in previously written
requirements documents [5, 6, 7, 15, 18], and

� approaches for preventing the introduction of imprecision
into requirements documents being written [2, 3, 11, 12, 14].

The aim of the first type of approaches is to improve inspection.
Thus, keywords and rules are identified to help a requirements
engineer detect potentially ambiguous, incomplete, and inaccu-
rate requirements statements in a previously written require-
ments specification.

Our approach is of the second type and aims to prevent the
introduction of imprecision during authoring. Thus, we consider
only the related work about the second type of approaches.

The patterns defined by Rolland and Proix [13, 14], by
Ohnishi [11, 12], and by Ben Achour [3] help reduce the level
of imprecision of requirements statements in the information
system and the database domain. In each approach, its authors
define a small set of whole-sentence patterns that may be used to
describe and standardize requirements in its domain.

The patterns devised by Barr [2] focus on the specification of
time constraints in embedded systems, and not on other aspects
of requirements in this domain. Barr’s patterns are used to check
the completeness of our time-constraint patterns; we made sure
that the coverage of our patterns is at least that of Barr’s.

Each of the approaches found in the literature has proved to
be useful to help make requirements statements more precise.
Since our approach aims at reducing the problems of the use of
natural language in the embedded system domain, we have con-
verted some of the ideas of verb classes [11] and of cases
[13, 14] to this domain.

In contrast to earlier approaches, our approach is based on a
requirements-statements metamodel, developed specially for
embedded systems. The metamodel serves as a basis for
developing patterns for requirements statement regarding an

embedded system [10]. Thus, the patterns describe the elements
that need to be in such requirements statements. Since the
metamodel describes all possible requirements statements for
the domain, the completeness of the patterns derived from the
metamodel can be ensured.

Konrad and Cheng [9] explore the idea of using a metamodel
of a system’s requirements to characterize the requirements
specifications for the system. Our metamodel focuses on small-
scale requirements statements in the context of embedded sys-
tems and not on large-scale aspects, such as sensor-actuator
dependencies or fault handlers, which are described by Konrad
and Cheng’s patterns. Their metamodel is on a higher level than
ours, which is for single requirements sentences. However, their
metamodel should be useful should we ever need to extend our
approach with large-scale patterns.

Finally, Smith, Avrunin, Clarke, and Osterweil provide pat-
terns for disciplined natural language descriptions of software
properties in the context of formalizing informal requirements
[17]. For the simple reason that practitioners, for better or for
worse, will not work with formal specifiations regardless of the
benefits, our focus is staying with natural language specifica-
tions, but making them as clear and unambiguous as possible.

Our approach focuses not on complete-sentence patterns, but
on language patterns for sentence parts, e.g., for events, condi-
tions, system reactions, exceptions, etc. These patterns are then
combined into sentence patterns describing complete require-
ment statements. Afterwards, the sentence patterns are com-
bined into scenarios for complete requirements specifications.
Thus, the patterns are modular, and thus, they are more flexible
than those of approaches that focus on complete sentence pat-
terns. The requirements writer may combine the different ele-
ments of a requirements statement, e.g. events, conditions, reac-
tions, and exceptions as needed in a given situation. In addition,
the structure of the sentence patterns guides the requirements
writer in performing the combination. Thus, our approach gives
the author more freedom of expression during authoring while
obtaining more precise requirements specifications through stan-
dardization. Finally, the metamodel facilitates changing and
extending the patterns.

In addition to the patterns, we developed authoring rules to
be used in combination with the patterns. These rules describe
how to use natural language and the patterns themselves in order
to achieve the desired reduction of ambiguity, incompleteness,
and poor understandability of requirements. Space limitations
prevent presenting these rules in this paper, although we occa-
sionally do justify a textual change by appeal to these here-
unstated rules. Fortunately, the rules make sense also in every-
day writing. The full set of authoring rules can be found in the
first author’s Master’s thesis [4].

3. Metamodel and Language Patterns
This section gives only an excerpt of the metamodel and pat-

terns for requirements statements in the embedded systems
domain. Due to space restrictions we could not include the com-
plete metamodel and all of the patterns. To facilitate the expla-
nation, we focus on those parts of the metamodel that are most

2
Proceedings of the IEEE International Conference on Software—Science, Technology & Engineering (SwSTE’03)
0-7695-2047-2/03 $ 17.00 © 2003 IEEE

relevant in describing a user’s interaction with a system, i.e.,
user events or actions and system reactions. Only the patterns
describing events, reactions, and conditions are presented. The
complete metamodel and the full set of patterns can be found in
the first author’s Master’s thesis [4].

3.1. Metamodel for Embedded Systems
Devising language patterns requires identifying what must be

described with the patterns. The focus of our approach is on pat-
terns for functional requirements of embedded systems. There-
fore, we developed a metamodel that describes the elements of
statements of user-level functional requirements of embedded
systems. This metamodel was developed by analyzing (1) the
literature about embedded systems and (2) existing requirements
specifications of embedded systems to determine the types of
behaviors that are specified for embedded systems and the
language elements are needed to specify these behaviors. These
elements are then represented in the metamodel.

Some benefits that we gain by using a metamodel to derive
the patterns are, in order of increasing importance:

1. Each element of the metamodel describes a language ele-
ment that is used in specifying the behaviors of embedded
systems. Then, each element of the metamodel is covered by
at least one pattern. Thus, to the extent that the metamodel
captures all relevant aspects of embedded-systems-require-
ments statements, we know that the derived patterns are
complete.

2. Because each pattern is related to a metamodel element,
whenever the domain changes and thus the metamodel
changes, the requirements engineer can easily identify the
patterns that need to be changed.

3. The metamodel gives us modular patterns. The metamodel
defines how the elements of a requirements statement are
related to each other and how they may be combined into
complete requirements sentences. Thus, a requirements
writer may combine elements as needed. This ability to
combine elements makes our approach more flexible than
those that define only sentence patterns whose elements can-
not be combined as needed.

Figure 1 (Figures 1 and 2 are after the references.) shows
one diagram of the metamodel for requirements statements for
embedded systems. Notice the root class Partial Function and
its two subclasses Continuous Behavior and Discrete
Behavior. These two Behavior subclasses have a number of
components, some of them shared. The diagram thus specifies
that a requirements statement may be describing what is called a
“partial function” and that two types of partial functions are con-
tinuous behaviors and discrete behaviors. (We say only “may
be”, because we are, as explained, not showing the full metamo-
del, which describes all possible requirements statements.) The
componentry of the two Behavior subclasses describe the
language elements that are needed to describe the semantics of
the Behaviors. For example, the metamodel insists that a
requirements statement that describes a Discrete Behavior of
an embedded system consist of one or more Events followed by
one or more Reactions triggered by those Events.

Some details of the componentry of the Behavior are
described in the same diagram, and other details are best given
in another diagram, such as that of Figure 2. The division of the
metamodel into diagrams is dictated by the need to avoid overly
complex and cluttered diagrams. Figure 2’s diagram describes
additional elements that are needed to completely describe
Events and Reactions. For example, the diagram says that there
are three types of Events and two types of Reactions. It says
also that a Reaction may have a duration that defines how long
the Reaction is performed or that it may have an explicitly
defined Begin and an explicitly defined Completion.

The following section gives some of the patterns needed to
specify a discrete behavior of an embedded system. They are all
derived from the portion of the metamodel shown in this section
and are sufficient to deal with the example requirement state-
ment given later in the paper.

3.2. Selected Language Patterns
Table 1 summarizes the full set of patterns derived from the

metamodel. In any row of Table 1, the pattern name in first
column serves to describe the situation in which to use the
specific patterns listed in the second column. The following
abbreviations are used in this table: SP = sentence pattern, EP =
event pattern, RP = reaction pattern, CRP = conditioned reaction
pattern, ABCP = abstract boolean condition pattern, BCP =
boolean condition pattern, SCP = state condition pattern, TCP =
time condition pattern, CCP = continuous computation pattern,
PP = priority pattern, OP = order pattern, EXP = exception pat-
tern, ERP = exception reaction pattern, RoRP = realization of
reaction pattern, RoCP = realization of computation pattern,
CoRP = completion of reaction pattern, ADP = assumption dura-
tion pattern, NFRP = nonfunctional requirements pattern.

In the descriptions of the patterns, the following notational
conventions are used. Each parenthesized all-upper-case Times-
Roman term defines the role that the preceding sentence part
plays in the containing requirements statement. In the case of a
verb, an all-upper-case term specifies the verb-class. A light-
faced Courier term represents a pattern class. A bold-faced
Courier term represents a constant pattern element. A light-faced
Courier oblique term represents a variable pattern element. An
angle-bracketed term represents an optional pattern element.
Each parenthesized all-lower-case Times-Roman term specifies
additional information about the preceding sentence part. Each
Helvetica term refers to an element that is defined in the
metamodel. A pair of curly braces, “{ }”, serves to delimit the
scope of the contained “|”, meaning “or”.

The subset of the patterns that are relevant to the example we
use to illustrate our approach is shown in Figures 3 through 6.
They cover key portions of patterns for requirements sentences,
events, conditions, and reactions. Following the metamodel
excerpt, a requirements sentence describes either a discrete
behavior or a continuous behavior. Furthermore, the metamodel
insists that if a requirements sentence describes a discrete
behavior, then the sentence consists of one or more events and
one or more reactions. If the sentence describes a continuous
behavior, then the sentence consists of a starting event, a compu-
tation, and a stopping event. Alternatively, the sentence may

3
Proceedings of the IEEE International Conference on Software—Science, Technology & Engineering (SwSTE’03)
0-7695-2047-2/03 $ 17.00 © 2003 IEEE

Pattern Content Pattern Name
Functional Requirement Sentence Patterns SPD, SPC
Event Patterns EP1, EP2, EP3, EP4, EP5, EP6
Reaction Patterns CRP, RP1, RP2
Computation Pattern CCP
Condition Patterns ABCP, BCP, SCP, TCP1, TCP2, TCP3, TCP4, TCP5, TCP6
Relationships Patterns PP, OP1, OP2, OP3, OP4, OP5, OP6
Exception Patterns EXP1, EXP2, ERP1, ERP2, ERP3
Patterns for Special Aspects RoRP, RoCP, CoRP, ADP
Nonfunctional Requirement Sentence Pattern NFRP

Table 1: Overview of Patterns

SPD: Phrase that contains an event (EVENT)
then Phrase that contains a reaction (REACTION)

SPC: Phrase that contains a start event (EVENT)
Phrase that contains a continuous behavior (COMPUTATION)
{ for as long as Phrase that contains a condition (CONDITION) |

until Phrase that contains a stop event (EVENT) }

Figure 3: Functional Requirement Setence Patterns

EP1: <When | If> (conjunction)
noun phrase (VARIABLE) verb (VALUE CHANGE)

{numeral adjective (VARIABLE VALUE) | noun phrase (VARIABLE)}

EP3: <When | If> (conjunction)
noun phrase (ACTOR | RECEIVER) verb (ACTION | COMMUNICATION) noun phrase (ACTUATOR | OBJECT)

EP5: <When | If> (conjunction)
noun phrase (ACTOR | VARIABLE | STATE OF)

within time (variable of type Time)

Figure 4: Event Patterns

BCP: If (conjunction)
noun phrase (VARIABLE) {is | is not} (CURRENT VALUE)
<adjective phrase (comparison statement, e.g. greater than, less than, etc.)>
comparison complement (VARIABLE VALUE | VARIABLE) <TCP1 - TCP5> (DURATION)

then (conjunction)
<ERP1> (else case of the condition)

TCP1: for time (variable of type Time)

TCP2: for at least time (variable of type Time)

TCP3: {for <not> more than | for at most} time (variable of type Time)

TCP4: TCP2 {but|and} TCP3

TCP5: {for as long as | while} ABCP | BCP | SCP

TCP6: until {EP1 | EP2 | EP3}

Figure 5: Condition Pattern

CRP: BCP | SCP | TCPx (CONDITION) {RP1 | RP2} (REACTION)

RP1: <EP1 | EP2 | EP3 | EP4> (BEGIN) noun phrase (ACTOR) verb (ACTION) noun phrase (ACTUATOR)
{ <Phrase that contains a timed condition> (DURATION) |

<Phrase expressing a completion time> (COMPLETION) }
<Phrase expressing how the reaction is realized> (REALIZATION)

Figure 6: Reaction Patterns

4
Proceedings of the IEEE International Conference on Software—Science, Technology & Engineering (SwSTE’03)
0-7695-2047-2/03 $ 17.00 © 2003 IEEE

consist of a computation and a condition describing the duration
of the computation. Of course, it is possible that an instance of
one pattern contains instances of the same pattern or other pat-
terns. For example, an instance of a reaction pattern may contain
an instance of an event pattern or of a condition pattern. An
instance of a relationship pattern is used to connect two or more
sentences and to describe the ordering or the priorities of the
connected sentences. An instance of an exception pattern is used
to describe a nonroutine system behavior or a deviations from
expected behavior.

3.2.1. Some Sentence Patterns
Two of the sentence patterns are found in Figure 3. Discrete

behavior is described with the SPD1; and continuous behavior is
described with the SPC. A discrete behavior specifies a system
reaction in response to an event. A continuous behavior specifies
a reaction of the system that is started by a certain event and is
performed until another event occurs or a certain condition
comes true.

3.2.2. Some Event Patterns
The metamodel describes several types of events that can

occur in the embedded systems domain. Some of the event pat-
terns derived from the metamodel are found in Figure 4.

The EP1 describes an event in which the value of a variable
in the environment of the system is changed. An instance of the
EP1 is2:

If (conjunction) the water pressure (VARIABLE) rises above
(VALUE CHANGE), the maximum value (VARIABLE) ...

The EP3 describes a specific form of signal event, namely a
communication event with or within an embedded system. An
instance of the EP3 is:

If the system (ACTOR) receives (COMMUNICATION) the
signal ‘start’ (ACTUATOR) ...

The EP5 describes a time-out event. An instance of the EP5
is:

If (conjunction) the system (RECEIVER) does not receive
(expression of a timeout) the signal ‘temp’ (OBJECT) within
4 ms (variable of type Time), ...

These patterns and others standardize the elements that must
be contained in an instance of an event specification, and thus
help ensure that the event is precisely specified. For example,
the EP3 ensures that when someone is specifying a communica-
tion event, she must specify the ACTOR or sender of the
OBJECT in the communication, the OBJECT that is transmitted
in the communication, and the RECEIVER of the OBJECT in
the communication. Furthermore, she gets explicit guidance

��

1Note that each of the pattern names is an acronym for a phrase that
includes the word “pattern”. Therefore, it is both incorrect and unneces-
sary to say “SPD pattern”

2Whenever an instance of a pattern is given, the roles of components are
identified by parenthesized expressions following the components.

about which kind of pattern should be used for which kind of
event.

3.2.3. Some Condition Patterns
The metamodel describes several types of conditions that can

be used to constrain events in the embedded systems domain.
Some of the condition patterns derived from the metamodel are
found in Figure 5.

The difference between an event and a condition must be
clarified. An event is a change in the value of a variable or a
change in the system state. A condition is a test of the current
value of a variable or a test of the current system state. Thus, a
condition is a predicate about a variable or the system state.

In the full metamodel, two classes of conditions are differen-
tiated, simple and complex. The BCP describes simple condi-
tions. An instance of the BCP is: is:

If (conjunction) the battery value (VARIABLE) is
(CURRENT VALUE) less than (comparison statement) 9 V
(VARIABLE VALUE) for more than 4 sec (DURATION),
then ...

The phrase “If the battery value is less than 9 V, then ...” util-
izes the BCP for boolean conditions. The noun phrase “the bat-
tery value” is the variable that is compared and the verb phrase
“is less than” the adjective phrase “less than” that tells how the
comparison is to be done. The phrase “9 V” is the value to
which the variable is compared. The optional part TCP1 - TCP5
refers to a time condition pattern. The phrase “for more than 4
sec” is an example of a time condition. If the condition is not
fulfilled, the system has to perform a special exception reaction
described by the ERP1, which cannot be described here due to
space limitations.

In general, a time condition is a special form of a simple con-
dition. A time condition represents the duration of a computa-
tion, reaction, or condition, and as a result, must always be con-
nected to a phrase describing a computation, reaction, or condi-
tion. TCP1 through TCP6 are time condition patterns.

3.2.4. Some Reaction Patterns
The portion of the metamodel in Figure 2 shows that patterns

for at least two types of reactions are needed. These patterns are
found in Figure 6.

In normal natural language, the events in a narrative are
understood as taking place in the order in which they are written.
In a conditioned reaction, the condition must be evaluated before
the reaction is performed. Thus, the requirements writer should
state all relevant conditions restricting a reaction immediately
before the reaction is stated. This rule is realized in the pattern,
CRP, for conditioned reactions. An instance of the CRP is:

<Event>. If the current speed is greater than 60 km/h (CON-
DITION), then the system initiates the automatic braking
(REACTION).

The RP1 describes a single, unconditioned reaction that is
not a communication action. To specify a communication action,
a different pattern, not shown here, should be used.

5
Proceedings of the IEEE International Conference on Software—Science, Technology & Engineering (SwSTE’03)
0-7695-2047-2/03 $ 17.00 © 2003 IEEE

4. Validation
The patterns derived from our metamodel of requirements

specifications of embedded system were subjected to validation
of their effectiveness in

1. helping the basic writing of requirements specifications for
embedded systems, and in

2. helping to avoid the introduction of imprecision in these re-
quirements specifications.

Since the focus of the patterns is the reduction of imprecision in
functional requirements statements, the validation focused on
functional requirements.

The reader should observe that the goal of the case study was
to validate only the structure of the patterns, to prove the con-
cept of the approach. The practical usefulness of the patterns
and of the approach in terms of effort to apply the patterns is an
open issue that will be dealt with in our future work.

To carry out the validation, we rewrote an existing require-
ments document using the patterns. During validation, we asked
of each requirements statement:

1. Is it possible to use the patterns to completely rewrite the
requirements statement?

2 Is it possible to rewrite the requirements statement without
lengthening the statement?

3. Is it possible to improve the precision of the requirements
statement by using the patterns? This question includes the
subquestions:

a. Is it possible to reduce the ambiguity of the statement?
b. Is it possible to improve the completeness of the state-

ment?
c. Is it possible to improve the accuracy of the statement?

These questions served as our evaluation criteria.
We rewrote the requirements specification of the Enhanced

Voice Mail System (EMS), a system situated in the field of com-
munication systems. The EMS was developed for a case study
on scenario networks [1] and is a multifunction system for tele-
phone voice messaging. The requirements were written jointly
by a domain expert and a requirements engineering expert. It
must be understood that the requirements of the EMS are not
stated in any particular specification form, but that they repre-
sent only functional requirements. In total, 42 system require-
ments were specified. Besides the system requirements, several
scenarios are presented to clarify the requirements. These sce-
narios were not rewritten as part of the validation exercise.
However, whenever a requirement was not clear, the related
scenario was considered to clarify the requirement. In particular,
several conditions are specified only in the scenarios. The rele-
vant snippets of natural language scenario specification were
considered requirements specification and were subjected to
rewriting.

To rewrite the requirements of the EMS, the requirements
statements of the original document were analyzed in order to
identify defects. The original requirements were reviewed with
the help of the authoring rules we developed in addition to the
patterns. Whenever an original requirements statement violated

a rule, the nature of the violation was noted. Then, the patterns
were used to rewrite the statement into one without the viola-
tion. That is, the original statement was classified into its type
according to what it is trying to describe, e.g., discrete behavior
or continuous behavior. From the type, the relevant patterns
were identified. The statement was decomposed into its parts,
describing events, conditions, reactions, etc. The closest match-
ing pattern was identified by attempting to match the parts of the
statement to parts of the relevant patterns. Once the closest
matching pattern was identified, it was possible to see which
parts of the pattern had no matching part in the statement, and
thus what parts are missing in the statement. Then, the statement
was rewritten according to the pattern. Finally, the original and
the rewritten statements were compared according to the evalua-
tion criteria given at the beginning of this section.

Sections 4.1 and 4.2 show one representative problematic
requirements statement and its rewrite. Space limitations pre-
clude going into more than one example. The complete analysis
and rewriting of the EMS requirements specifications can be
found in the first author’s Master’s thesis [4].

4.1. Analysis of the Original Requirements
One of the original requirements statements is:

R3.1.4. Stuttered dial tone: EMS shall support notification by
stuttered dial tone played for as long as no key is pressed;
that is, EMS shall interact as necessary with other systems so
that when the subscriber has one or more new messages, the
subscribed phone will give a stuttered dial tone rather than a
standard dial tone.

Analysis of this requirement reveals several ambiguous phrases.
The first clause, “EMS shall support notification by stuttered dial
tone played for as long as no key is pressed”, is refined in the
second clause, “EMS shall interact as necessary with other sys-
tems so that when the subscriber has one or more new messages,
the subscribed phone will give a stuttered dial tone rather than a
standard dial tone.”, following the phrase “that is”. The reader
who has seen the original requirements specification can see that
the phrase “played for as long as no key is pressed” was added
to the original requirements specification so that we could apply
more of the patterns. The first clause is recognized as matching
RoRP. The clause contains a condition “when the subscriber has
one or more messages” and a reaction “the subscriber’s phone
plays a stuttered dial tone”. The event that triggers the reaction
is not specified because the event is implicitly described via the
vague phrase “EMS shall interact as necessary with other sys-
tems” and the name of the requirement “Stuttered dial tone”.
This vague phrase contains two sources of imprecision, namely
the phrases “interact as necessary” and “other systems”. The
phrase “as necessary” violates one of our authoring rules,
namely the one that is against using phrases that are open to sub-
jective interpretations. The phrase “other systems” is also ambi-
guous, since it is not clear which other systems are referenced.
Finally, the phrase “rather than a standard dial tone” is removed
as redundant, since a stuttered dial tone is not the standard dial
tone.

6
Proceedings of the IEEE International Conference on Software—Science, Technology & Engineering (SwSTE’03)
0-7695-2047-2/03 $ 17.00 © 2003 IEEE

4.2. Rewriting the Requirement
The requirement R3.1.4 can be rewritten with the SPD, since

R3.1.4 describes a discrete behavior. The event follows the EP3,
and the reaction follows the CRP. The reaction within the CRP
can be described by the RP1, which has a duration, which in
turn can be described by the TCP5. The EMS’s interaction “as
necessary with other systems” is describable by RP2. The time
ordering of the reactions is described by the OP2. The condition
of the reaction is described by the SCP, and the exception reac-
tion for when the condition is not fulfilled is described by the
ERP2. The rewritten requirements statement is:

3.1.4 FR.Stuttered_Dial_Tone: If the subscriber picks up the
phone and a message is waiting, then the subscriber’s phone
plays a stuttered dial tone for as long as no key is pressed.
For this purpose, the central office system sends the signal
‘has new messages’ to the subscriber’s phone. Then, if the
subscriber’s phone state is ‘has new’, the EMS sends the sig-
nal new messages’ to the central office. Then, the central
office sends a stuttered dial tone to the subscriber’s phone for
as long as no key is pressed. If the subscriber’s phone state is
‘has no new’, the EMS sends the signal ‘no new messages’ to
the central office. Then, the central office sends a standard
dial tone to the subscriber’s phone, for as long as no key is
pressed.

This example shows how applying the patterns helps elim-
inate ambiguous, incomplete, and inaccurate requirements state-
ments. Basically, the requirements writer has to supply all essen-
tial parts. Thus, the event that triggers the reaction in this exam-
ple “If the subscriber picks up the phone and a message is wait-
ing” gets specified. Moreover, the implicitly specified exception
reaction that is performed when the condition does not hold ends
up being explicitly specified. Finally, the vague phrase “other
systems” is replaced by the explicit name of the system with
which the EMS interacts. When information is missing, it is
necessary to learn it, usually from the client or user. In this case,
neither the client nor user was readily accessible. Fortunately,
the event that triggers the interaction and the interaction itself
were described in full detail in the accompanying scenario docu-
ment.

4.3. Evaluation of the Rewriting
After the sources of imprecision in the original requirements

statements were identified and the imprecise statements were
rewritten according to the patterns, it was necessary to evaluate
the results according to the questions raised at the beginning of
Section 4. The full evaluation is found in the first author’s
Master’s thesis [4]. Here, we answer these questions for the
example requirements statement analyzed and rewritten in Sub-
sections 4.1 and 4.2.

Clearly the patterns were used to completely rewrite the
imprecise requirements statement. The resulting statement is
clearly more precise than the original; it provides all the infor-
mation that was missing in the original:

� it provides the triggering event,
� it provides the exception reaction for when the condition

does not hold,

� it provides the name of the other system,
� it provides the full details of the interaction with the other

system, and
� it provides an explicit ordering of the events, condition test-

ing, and reaction,

that were missing in the original statement. The rewritten state-
ment is less ambiguous, more complete, and more accurate.

However, it was not possible to rewrite the requirements
statement without lengthening it. In fact, in most cases, the
rewritten statement is longer than the original. In this case, the
original statement was missing information. Adding missing in-
formation to any statement is bound to make the statement
longer. When information is missing in a statement, making the
statement longer by adding the missing information must be
regarded as a virtue. If it is necessary to use a longer statement
in order to get a more precise statement, so be it.

There is yet another possible drawback of the rewritten state-
ment. It can be regarded as clumsier, less clear, and not as well
written as the original. While the increase in length in the rewrit-
ten statements can be regarded as a virtue because missing infor-
mation is provided, the resulting clumsiness of expression can-
not be regarded as a virtue. Indeed, a referee of a previous ver-
sion of the paper said that he or she thought that the rewritten
version is harder to read than the original and even suggested a
better rewriting, using passive voice:

R3.1.4. Stuttered dial tone: EMS shall support notification of
new messages as follows. When the phone is idle and one or
more new messages are waiting, then if the phone senses
offhook, it plays a stuttered dial tone for no longer than 0.5
seconds after offhook until a key is pressed or onhook is
sensed.

Prompted by the referee’s rewriting, we produced yet another
rewriting, using active voice:

3.1.4 FR.Stuttered_Dial_Tone: The subscriber picks up the
phone. If the subscriber has one or more new messages, then
the subscriber’s phone plays a stuttered dial tone for as long
as no key is pressed or the phone is onhook. If the subscriber
has no new messages, then the subscriber’s phone plays a
standard dial tone for as long as no key is pressed or the
phone is onhook.

We agree that these rewritings are improvements over our
pattern-directed rewriting. Each is at once less clumsy, clearer,
shorter, and more to the point than our rewritten statement. In
particular, it is less clumsy than the original statement because it
replaces each instance of the repeated “the subscriber’s phone
state is ‘XXX’” construction, which smacks of implementation
detail, by a clear user-relevant adjective that means the same
thing. Moreover, neither rewriting suffers from any of the impre-
cisions of the original. The comments and suggestions of the
referee’s report indicate that the referee is an expert in ambiguity
in natural language requirements specifications and is very
skilled in writing precise requirements specifications. More-
over, for the second rewriting prompted by the referee’s rewrit-
ing, we were in a more artistic writing mode, not constrained by
an obligation to adhere to the patterns.

In defense of our approach, we say only that whenever a

7
Proceedings of the IEEE International Conference on Software—Science, Technology & Engineering (SwSTE’03)
0-7695-2047-2/03 $ 17.00 © 2003 IEEE

skilled, ambiguity-aware, domain-expert writer is available to
completely rewrite a requirements specification to eliminate all
imprecision, he should be given the job. In the usual case in
which a less-than-ideal writer is available, the patterns provide
useful guidance to the writer that is available. The results, while
not as good as that which can be produced by the skilled writer,
should nevertheless be an improvement over what could have
been.

On the other hand, part of the length reduction and increased
clarity of the non-pattern-directed rewriting was due to a deci-
sion on the part of the writer to make the requirements statement
more user oriented by leaving out details of the communication
between the EMS, the central office, and the telephone. Such a
decision requires judgement and cannot be encoded into the pat-
terns. The patterns expose missing information, and it is up to
the human writer to decide whether the information is indeed
relevant given the audience, purpose, and level of the
specification. Observe that if the patterns were to be applied to
the referee’s or our rewriting, then the missing information
would be exposed, and supplying it would make the resulting
statement longer.

Table 2 shows the defects detected in the original complete
requirements. Note that incomplete requirements and implicit
assumptions are related to each other; incomplete requirements
cause the reader to make implicit assumptions, and implicit
assumptions are symptoms of incomplete requirements:

���
Ambiguous pronoun references 3
Complex sentences, including nontemporal order 11
Incomplete requirements 9
Tacit assumptions or information 9
Misplaced words 3
Vague and subjective words and phrases 5
Use of synonyms and homonyms 1���

Table 2: Frequencies of Kinds of Defects

There is yet another threat to our evaluation mentioned in the
full report that needs to be mentioned here, even though only a
small portion of the case study is reported here. It must be
admitted that not all patterns could be validated in the case
study. The EMS document does not contain enough require-
ments to cover all patterns. Therefore, it is recommended that
the patterns be used in real industrial projects or in large experi-
mental case studies in order to validate the patterns more fully.
Nevertheless, a majority of the patterns were validated by the
present case study. It was possible to rewrite each sentence of
requirements document of the case study with the patterns.

To conclude this section, overall, applying the rules and the
patterns helps to clarify requirements, makes requirements easier
to understand, facilitates their interpretation, and eliminates
several potential sources of imprecision, i.e., ambiguity, incom-
pleteness, and inaccuracy.

5. Observations and Lessons Learned
During the rewriting, we observed that the original require-

ments document contains only a few subjective and vague

phrases and no optional requirements. The requirements state-
ments are almost all specified with short sentences, and complex
descriptions are quite rare. Synonyms and homonyms occur in
only one requirement. Thus, the original requirements document
was actually quite well written, probably because the authors of
the EMS requirements are domain and requirements experts
with many years of experience.

We observed also that a single requirements statement that is
supposed to mention an event, a condition, and a reaction often
mentions only a condition and a reaction, leaving the event only
implicitly mentioned in the form of the name of the requirement
or in the form of a phrase that describes a feature the system
allows the user to perform. Such a requirements statement is
poorly written by its mixing another kind of requirements state-
ment with its description of a discrete behavior. Adherence to
the patterns reduces the incidence of these kinds of defects.

It is sometimes difficult to rewrite requirements with the pat-
terns, since the information that is needed according to the pat-
tern is not available in the original requirement. If the required
information is nowhere in the requirements document, then the
client and users must be consulted and asked to supply the miss-
ing information. On the other hand, the use of the patterns from
the beginning helps avoid incomplete statements, since the
requirements writer must exactly follow the predefined structure.
This structure prescribes each necessary part of a requirements
statement and, consequently, helps a requirements engineer to
ask the right questions to elicit the missing information.

To make the patterns usable in industrial projects, we real-
ized that it is necessary to recommend how to use the patterns.
These recommendations help a requirements writer to identify
the applicable pattern in any situation and give detailed advice
on how to specify a functional requirement of an embedded sys-
tem. These recommendations are completely described in the
first author’s Master’s thesis [4].

During validation and in several discussions with other scien-
tists, we could see that the patterns approach would be applica-
ble in domains other than embedded systems. We now believe
that the patterns approach is applicable for all reactive systems,
including those that have heavy interaction with users. We saw
also that the patterns can be used for detecting imprecision prob-
lems in already written requirements specifications. Of course,
these other applications of patterns need to be validated in future
research activities.

6. Conclusion and Future Work
This paper addresses the problem of improving the precision

of natural langauge requirements specifications for embedded
systems by reducing ambiguity, incompleteness, and inaccuracy
in the statements of the requirements specifications. The ap-
proach described in this paper calls for the use of domain-depen-
dent language patterns to help the embedded system require-
ments writer write more precise natural language requirements
statements. The same patterns can help a requirements inspector
find the sources of imprecision in already written natural
language requirements specifications for embedded systems.

The approach required developing a metamodel for describ-
ing all possible requirements statements in the embedded

8
Proceedings of the IEEE International Conference on Software—Science, Technology & Engineering (SwSTE’03)
0-7695-2047-2/03 $ 17.00 © 2003 IEEE

systems domain. From the metamodel, patterns describing all
possible embedded systems requirements statements were
derived. To the extent that the metamodel completely describes
embedded systems requirements statements, so do the patterns.

The metamodel and its patterns were applied in a case study
in order to validate their effectiveness in assisting the authors to
write precise requirements about an embedded system. This
paper has shown snippets from this case study, that is, it has
shown portions of the metamodel, some of the patterns, one par-
ticular but typical imprecise requirements statement, and a
rewriting of that requirements statement according to the pat-
terns into a more precise requirements statement. The portion of
the metamodel, the specific patterns, and the particular require-
ment statement were chosen to complement each other in order
to allow the reader to get a flavor of how each is used in the
approach. The reader that is interested in the full details should
consult the first author’s Master’s thesis [4].

This paper has shown the part of the evaluation of the
effectiveness of the approach that involves the exhibited portions
of the metamodel, patterns, and original and rewritten require-
ments statement. The evaluation concluded that the patterns do
allow reduction of imprecision in natural language requirements
statements about embedded systems, however not without the
possibility of lengthening the specification and not without the
possibility of using clumsier language. We accepted that re-
quirements statements are bound to be lengthened as missing
information is supplied. Avoiding clumsier language requires
writing skill that may not always be available.

There are other issues that need to evaluated:

� The domain of the case study is embedded systems. Does
the approach work in domains other than embedded sys-
tems?

� The case study involved a previously written, actually quite
polished requirements specification produced by few people
for a not too large system that was the subject of academic
research. Does the approach work in practice in an industrial
setting, with large requirements specifications pieced togeth-
er from the viewpoints of hundreds of stakeholders for a
large, highly interacting system?

� The case study demonstrates only that the patterns can be
used to write more precise specifications. Moreover, the per-
son carrying out the case study was the author of the pat-
terns; there is no question that he understood the approach
and the patterns. The case study did not validate that the pat-
terns can be used effectively by anyone and that the resulting
requirements specification will be precise or at least signifi-
cantly better than they would have been

� without the use of the patterns,
� if other author-guiding approaches had been applied,
� if other imprecision-avoidance approaches had been

applied, or
� if imprecision-removal approaches, e.g., inspection, had

been applied?

Does avoidance of imprecisions in the writing of require-
ments specifications result in more precise requirements
specifications than finding and removing imprecisions

during inspection?
� The case study was carried out in a setting in which there

were no project deadlines, other than that of finishing the
whole Master’s thesis. Is the approach cost effective? Does
writing requirements according to these patterns and then
finding fewer imprecisions during inspection take less time
than just writing requirements and finding and correcting
more imprecisions during inspection?

It may very well be that because of the effort to learn and use
these patterns, our approach does not work in practice without
strong tool support. Thus, it is necessary to consider the devel-
opment of a tool to semi-automate the use of the patterns,
perhaps in finding common signs of imprecision in draft state-
ments, in finding applicable patterns, and in prompting for all
the required parts of statements being written.

Acknowledgments
The authors thank the referees of this and previous versions

of this paper for their comments.
D.M. Berry’s work was supported in part by NSERC grant

NSERC-RGPIN227055-00.

References
[1] Alspaugh, T.A. and Antón, A.I., “Scenario Networks: A Case Study

of the Enhanced Messaging System”, in Seventh International
Workshop on Requirements Engineering: Foundation of Software
Quality (REFSQ’01), Interlaken, Switzerland (2001).

[2] Barr, V., “Identifikation von Spezifikationsmustern im Echtzeitent-
wurf anhand der Fallstudie Antiblockiersystem”, Diplomarbeit der
Universität Oldenburg, Fachbereich Informatik (1999).

[3] Ben Achour, C., “Guiding Scenario Authoring”, pp. 152–171 in
Proceedings of the Eighth European-Japanese Conference on
Information Modeling and Knowledge Bases, IOS Press, Vamala,
Finland (25–29 May 1998).

[4] Denger, C., “High Quality Requirements Specifications for Embed-
ded Systems through Authoring Rules and Language Patterns”,
M.Sc. Thesis, Fachbereich Informatik, Universität Kaiserslautern,
Kaiserslautern, Germany (2002).

[5] Fabbrini, F., Fusani, M., Gnesi, G., and Lami, G., “Quality Evolu-
tion of Software Requirements Specifications”, in Proceedings
Software and Internet Quality Week 2000 Conference, San Fran-
cisco, CA (2000).

[6] Fantechi, A., Gnesi, G., Lami, G., and Maccari, A., “Application of
Linguistic Techniques for Use Case Analysis”, in Proceedings of
the IEEE Joint International Requirements Engineering Conference
(RE’02), IEEE Computer Society Press, Essen, Germany.

[7] Götz, R. and Rupp, C., “Regelwerk Natürlichsprachliche Methode”,
Sophist, Nürnberg, Germany (1999), http://www.sophist.de.

[8] Kamsties, E., “Surfacing Ambiguity in Natural Language Require-
ments”, Ph.D. Dissertation, Fachbereich Informatik, Universität
Kaiserslautern, Germany, also Volume 5 of Ph.D. Theses in Experi-
mental Software Engineering, Fraunhofer IRB Verlag, Stuttgart,
Germany (2001).

[9] Konrad, S. and Cheng, B., “Requirements Patterns for Embedded
Systems”, in Proceedings of the IEEE Joint International Require-
ments Engineering Conference (RE’02), IEEE Computer Society
Press, Essen, Germany (2002).

[10] Melchisedech, R., “Verwaltung und Prüfung natürlichsprachlicher
Spezifikationen”, Ph.D. Dissertation, Institut für Informatik,

9
Proceedings of the IEEE International Conference on Software—Science, Technology & Engineering (SwSTE’03)
0-7695-2047-2/03 $ 17.00 © 2003 IEEE

Universität of Stuttgart (2000).
[11] Ohnishi, A., “Customizable Software Requirements Languages”, in

Proceedings of the Eighth International Computer Software and
Application Conference (COMPSAC), IEEE Computer Society, Los
Alamitos, CA (1994).

[12] Ohnishi, A., “Software Requirements Specification Database Based
on Requirements Frame Model”, pp. 221–228 in Proceedings of
Second IEEE International Conference on Requirements Engineer-
ing (ICRE’96), IEEE Computer Society Press, Colorado Springs,
CO (15–18 April 1996).

[13] Rolland, C. and Proix, C., “A Natural Language Approach for
Requirements Engineering”, pp. 257–277 in Proceedings of
Conference on Advanced Information Systems Engineering, CAiSE
1992, Manchester, UK (12–15 May 1992).

[14] Rolland, C. and Proix, C., “Guiding the Construction of Textual
Use Case Specifications”, CREWS Report Series 98–1, Lehrstuhl
für Informatik V, Aachen, Germany (1998).

[15] Rupp, C., Requirements-Engineering und -Management, Second
Edition, Hanser, Munich, Germany.

[16] Schach, S.R., Object-Oriented and Classical Software Engineering,
Fifth Edition, McGraw-Hill, New York, NY (2002).

[17] Smith, R.L., Avrunin, G.S., Clarke, L.A., and Osterweil, L.J.,
“PROPEL: An Approach Supporting Property Elucidation”, pp.
11–21 in Proceedings of the 24th International Conference on
Software Engineering, Buenos Aires, Argentina moved to Orlando,
FL (2002).

[18] Wilson, W.M., Rosenberg, L.H., and Hyatt, L.E., “Automated
Quality Analysis of Natural Language Requirements Specifica-
tions”, NASA Software Assurance Technology Center, The
Software Assurance Technology Center (SATC), NASA Goddard
Space Flight Center (GSFC), Greenbelt, MD (1996),
http://satc.gsfc.nasa.gov/support/PNSQC_OCT96/pnq.html.

Variable

Discrete Behavior1

1..*

1

1..*

ReactionEvent

-output *

1..*

-triggers
1..*

-triggered
1..*

Partial Function

Continuous Behavior

Input

Output

1

1..*

11..*Local NFR

1

*

-actor : Natural Language
-actuator : Natural Language
-description : Natural Language

Computation

11..*

-o_variable

*

*

-i_variable

*

*

Repetition

Condition

1
-duration *1

-s
ta

rt 1..*

1

-s
to

p1..*

<<ordered>><<ordered>>

Figure 1: Metamodel for Requirements Statements

10
Proceedings of the IEEE International Conference on Software—Science, Technology & Engineering (SwSTE’03)
0-7695-2047-2/03 $ 17.00 © 2003 IEEE

Unconditioned ReactionConditioned Reaction

-actor : Natural Language
-description : Natural Language

Event

Condition

Change Event Time EventSignal Event

-actor : Natural Language
-actuator : Natural Language
-description : Natural Language

Reaction

Duration Completion

1

1

Local NFR

1

0..1

Timeout

Begin

1

0..1

1

0..1
1

1

1

1

1

*

1

-time

*

1

*

Figure 2: Metamodel for Events and Reactions

11
Proceedings of the IEEE International Conference on Software—Science, Technology & Engineering (SwSTE’03)
0-7695-2047-2/03 $ 17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

