~35-

TYPE EQUIVALENCE IN STRONGLY TYPED
LANGUAGES: ONE MORE LOOK

by

. 2
{Dpaniel M. Berryl, Richard L. Schwartz’ }

Faculty of Mathematics
Weizmann Institute of Science
Rehovot, Israel

Keywords: Language Design, Type Equivalence, Strong Typing, ALGOL 68,
Euclid.

Introduction

Despite quite a few published papers examining the issue of type
equivalence (e.g., [WSH 1977, Pop 1977, Ten 1978]), we see the need
for further clarification of the issues surrounding type equivalence.
We have recently witnessed several current research languages introduce
breaches in their (strong) type systems because of an inappropriate
definition of type equivalence. In this paper we re-examine the
fundamental approaches to type equivalence, pointing out several
problems in current proposals. It is suggested that in the absence of
complete data type encapsulation, the Euclid [Lam 1977] approach
provides a good way of introducing optimal type encapsulation without
sacrificing data type security.

There appears to be general agreement that strong typing in
programming languages is desirable. In a strongly typed language, each
value has a unique type. The key impact of this is that, starting with
a knowledge of the type of each identifier and constant appearing in
the program, it is possible to determine the type of every expression
in the program.

Given this complete typing of expressions in the language, an
important issue to be resolved is the question of when two types are

1Also at Faculty of Mathematics, Hebrew University, Jerusalem, Israel.

On sabbatical from Computer Science Department, UCLA, Los Angeles,
California, 90024, U.S.A. Work supported in part by Department of
Energy (USA), Contract EY-76-5-03-0034, PA 214, ONR Contract NO0OOl4-
78-C~-0656, and the Lady Davis Foundation (Israel).

2Work supported in part by ONR Contract N0OO0l4-78-C-0656, and a
Weizmann Post-Doctoral Fellowship at the Weizmann Institute of Science
(Israel).



-36-

equivalent. The answer to this question determines the usability of
values of a given type. In general, where a value of a given type is
usable, any value of an equivalent type may be used in its place. The
regolution of type equivalence determines, for example, the compat-
ibility of the source and target in assignments and during parameter
passing. In type-extensible languages such as Pascal [JeW 1975],
Algol 68 [vWi 1975]) and almost all recent languages, this question
becomes particularly critical*. With the possibility for the user to
define new types in terms of existing ones, the equivalence of defined
and defining types is non-trivial.

Structural Type Equivalence

The structural type equivalence approach, that used by Algol 68,
says that all types with identical structure, i.e. implementation, are
the same type. The type declaration

mode newnmode = oldmode

introduces a new type newmode and causes it to be equivalent to pldmode.
In the simplest case, newmode serves as an abbreviation for the
possibly more complex type expression gldmode. This is the case for
example in a type declaration such as

mode complex = gtruct(xeal re,im)

Because of the possibility of mutually recursive type definitions,
newmode is not always simply an abbreviation for oldmode, and the

guestion of type equivalence becomes complicated. For example, in
Algol 68 the three types a, b, and ¢ defined below are in fact all

equivalent:

mode g = struct(int x,ref a y)
mode b = struct (int x,ref ¢ y)
mode ¢ = gtruct(int x,ref b y)

Loosely speaking, they are equivalent because when their recursive
definitions are expanded into infinite trees with edges marked by
selectors and leaves by basic types, they produce identical trees.

This is very loosely speaking, as the formal statement of when two types
are equivalent constitutes a major part of the W-grammar syntax for

*Unfortunately, the Pascal Report [JeW 1975] and axiomatic definition
[HoWw 1973] do not address this issue. This has led to differing
decisions being taken by different Pascal implementations [Ten 1978]
and inconsistent decisions within implementations [WSH 1977].



-37-

Algol 68 and is probably the most foreboding part of the syntax to the
reader (Note that the fact that the rules are in the syntax indicates
an intent for compile-time enforcement). Complaints about this
complexity are a major reason for Algol 68's lack of popularity.

The problem with the Algol 68 approach is that it negates the
protection that strong typing is to provide. Given the declarations

int i; bool b
One cannot do either of
i:=b
or bi=i.
If, however, one has declared
mode newint = bool; ¢ integers in range 0 and l¢
newint i; bool b
One is allowed to do both
i:=b
and

b:=1i

simply because pewint and bool are equivalent types. In adaition, any
operation defined for either type works on values of the other type.

One of the ramifications of this is that it is not possible to
introduce true abstract data types. Each new type introduced via a
type definition is simply another name for the defining type. Thus,
there is no way to hide the implementation of an introduced data type.

Complete Encapsulation

The other extreme in the issue of type equivalence is to force
complete encapsulation of defined data types. In complete encapsulation,
a type is defined in some closed scope (e.g., module or cluster
[LiZ 1974]) which hides the representing type. The module then
contains the representation of the type and the bodies of all operations
requiring knowledge of the representation of the type. The only
identifiers vigible outside the construct are the type identifier
itself and the operation identifiers. The language (e.g., as proposed
in [BEL 1977]) is constructed so that each definition makes a new type
and only the operations defined within the type have access to the
representation of the type. All other routines working on values of
the type must be programmed using these visible operations. The
language is also constrained so that the only way to introduce a new
type is through such an encapsulated definition. Thus, all programming
is done with encapsulated, abstract types (including the built-in basic
types which are by nature encapsulated since their implementation is
hidden). This may be best from the programming point of view because



~38-

it forces a greater degree of modularity and independence.

The drawback to complete encapsulation is that it may be too
extreme in its dictation of program style in that it forces all type
definitions to be encapsulated. An encapsulated definition is
inconvenient (and inefficient) when the defined type is to inherit afl
the operations of the representing type and does not allow the
introduction of a defined type as an equivalent abbreviation for the
representing type. Because of these considerations, we address
languages in which encapsulation is provided as an option but is not
required. With such an approach, what to do with unencapsulated data
type definitions remains.

Compromise Definitions of Type Egquivalence

Some languages try to provide some kind of compromise between the
Algol 68 structural equivalence and the complete encapsulation approach.

The simplest of these compromises, the so-called name-equivafence
[WSH 1977] approach, is used in the U.S. Department of Defense Red
language proposal [DOD 1978al. In this proposal, each occurence of a
type constructor, e.g. array, introduces a new type. Thus, to capture
a constructed type for use in several declarations, the constructed
type must be given a name in a type declaration, e.g. as in

type matrix = array l..n,l..n of real .

The language may provide that only named types, i.e. single identifiers,
may be used as the type in declarations for wvariables, constants, and
parameters. The language prohibits assignments and parameter passings
in which the source and target do not have identical type names.

Finally the operations defined for a type are those of its definition,
i.e., for a matrix, the operations are those of array l..n,l..n of real.

There is no way to avoid a defined type's inheriting the defining
type's operations. Given the type equivalence criterion and the
reqguirement that the type of actual parameters be equivalent to that of
their formals, without these inherited operations, it would be impossible
to define any operation on the new type [Ten 1978]. Thus, in

Ltype table = array 1..100 of integer
type stack = record tp: integer,
stk: table
endrecord;
type stuck = record tp: integer,
stk: table
endrecord;
var a: stack,
u: stuck

stack and stuck are different types, a and u cannot be assigned
directly to each other as in



-39

a:=u or u:=a
but it is permissible to do

a.tp: = a.tp+l;
u.tp: = u.tp+l

If not, it would be impossible to write the various operations needed,
e.g., push, pop, top, is_empty, etc.

However, this very inheritance of the defining type's operations
permits subverting the intent of the type equivalencing rule. To
perform the effect of u:=a which itself is not allowed, one need do
only

u.tp: = a.tp;
u.stk: = a.stk

These assignments are allowed because the components are of identical
types. Thus, the attempt to get the protection of distinct types
for non-encapsulated defined types does not work.

There are some languages with even more complicated compromises.
For example, the Green Department of Defense language proposal
[DOD 1978b] has one in which for only some of the type constructors,
does each distinct use make a new type; for others, all uses with the
same actual parameters make the same type. Such an approach suffers
from the possibilities for subversion as well as the added complexity
of nonuniformity.

The best approach for providing unencapsulated type definitions
in a language permitting but not requiring encapsulation is the Euclid
approach which may be characterized as an orthogonal combination of
the Algol 68 approach and encapsulation. Simply stated:

1. All built-in types are distinct.

2. Each encapsulated (non-parameterized) type definition introduces
a type distinct from all others.

3. For types introduced by use of constructors, e.g. array of,
by use of type defining equations, e.g. Ltype tl=t, or by a
combination thereof, the equivalence is decided as in Algol 68.
That 1s, two types are equivalent if and only if their
definitions, understood recursively, are the same.

In other words, encapsulation must be used to obtain a distinct
type with full protection against inappropriate operator application.
Apart from encapsulation, type definition by equation (as one might
expect from the use of the equal sign) produces totally equivalent types
with no pretense of any protection. Thus, there is no surprise when
protection is not obtained.



-40 -

A Digression

A footnote in the introduction pointed out that the Pascal
definition neglected to deal with the issue of type equivalence. At
the same time, the folklore is replete with claims of language and
definitional simplicity for Pascal (see for example [WSH 1977, GMK 1976]).
Such claims for simplicity seem to miss the point. A language's
simplicity has to be measured on the basis of its primitive features,
its composition rules and its exceptions to the rules -- not necessarily
on the readability of its definition. If that readability is obtained
at the expense of completeness, complexity is in fact added to the
language, as it is not certain what is the language. This leads to
various dialects of the language being created, all under the same
name -- clearly a complex situation.

Conclusion

We have seen that in the absence of complete encapsulation of data
types, some form of structural equivalence of data types must be
adopted to avoid type insecurities. It has been shown that the Fuclid
method of introducing optional encapsulation within a type system with
structural eguivalence is a viable way of achieving type security and
the ability to introduce true abstract data types without excessive
overhead.

References

[BEL 1977] Berry, D.M., Z. Erlich, C. Lucena, "Pointers and Data
Abstractions in High-Level Languages - I: Language
Proposals," Journal of Computer Languages, Vol. 2,
pp. 135-148, 1977.

[DOD 1978al Department of Defense, Red Programming Language
Specification, February, 1978,

[DOD 1978b] Department of Defense, Green Programming Language
Specification, February, 1978.

[GMK 1978] Goodenough, J.B., C.L. McGowan and J.R. Kelly,
"Evaluation of Algol 68, Jovial J3B, Pascal, SIMULA 67,
and TACPOL vs. TINMAN Requirements for a Common High
Order Programming Language," Softech Inc., December, 1976.

[HoW 1973} Hoare, C.A.R., N. Wirth, "An Axiomatic Definition of
the Programming Language Pascal," Acta Informatica,

2, 1973.
[JeWw 1975] Jensen, K., N. Wirth, Pascal User Manual and Report,

Springer Verlag, Berlin, 1975.



4]~

[Lam 1977] Lampson, B., et al., "Report on the Programming Language
Fuclid," SIGPLAN Notices, 12:2, 1977.

(LiZz 1974] Liskov, B., S. Zilles, "Programming with Abstract Data
Types,"”" SIGPLAN Symposium on Very High Level Languages,
SIGPLAN Notices, 9:5, 1974.

[Pop 1977] Popek, G., et al., "Notes on the Design of Euclid,"
Proceedings of the ACM Conference on Language Design
for Reliable Software, SIGPLAN Notices, Vol. 12, No. 3,
1977.

[Ten 1978] Tennent, R., "Another Look at Type Compatibility in
Pascal," Software Practice and Experience, Vol. 8,
pp. 429-437, 1978.

[viWwi 1975] van Wijngaarden, et al., Editor, "Revised Report on the
Algorithmic Language Algol 68," Acta Informatica, 5, 1975.

[WwsH 1977] Welsh, J., J. Sneeringer, C.A.R. Hoare, "Ambiguities
and Insecurities in Pascal," Software Practice and
Experience, Vol. 7, pp. 685-696, 1977.




