
-35 -

TYPE EQUIVALENCE IN STRONGLY TYPE D
LANGUAGES : ONE MORE LOOK

by

{Daniel M . Berry' , Richard L . Schwartz 2 }

Faculty of Mathematic s
Weizmann Institute of Scienc e

Rehovot, Israe l

Keywords : Language Design, Type Equivalence, Strong Typing, ALGOL 68 ,
Euclid .

Introduction

Despite quite a few published papers examining the issue of typ e
equivalence (e .g ., [WSH 1977, Pop 1977, Ten 1978]), we see the nee d
for further clarification of the issues surrounding type equivalence .
We have recently witnessed several current research languages introduc e
breaches in their (strong) type systems because of an inappropriat e
definition of type equivalence . In this paper we re-examine th e
fundamental approaches to type equivalence, pointing out severa l
problems in current proposals . It is suggested that in the absence o f
complete data type encapsulation, the Euclid [Lam 1977] approac h
provides a good way of introducing optimal type encapsulation without
sacrificing data type security .

There appears to be general agreement that strong typing i n
programming languages is desirable . In a strongly typed language, eac h
value has a unique type . The key impact of this is that, starting with
a knowledge of the type of each identifier and constant appearing i n
the program, it is possible to determine the type of every expressio n
in the program .

Given this complete typing of expressions in the language, a n
important issue to be resolved is the question of when two types ar e

'Also at Faculty of Mathematics, Hebrew University, Jerusalem, Israel .
On sabbatical from Computer Science Department, UCLA, Los Angeles ,
California, 90024, U .S .A . Work supported in part by Department o f
Energy (USA), Contract EY-76-5-03-0034, PA 214, ONR Contract N00014 -
78-C-0656, and the Lady Davis Foundation (Israel) .

2Work supported in part by ONR Contract N00014-78-C-0656, and a
Weizmann Post-Doctoral Fellowship at the Weizmann Institute of Scienc e
(Israel) .



-36 -

equivalent . The answer to this question determines the usability o f
values of a given type . In general, where a value of a given type i s
usable, any value of an equivalent type may be used in its place . The
resolution of type equivalence determines, for example, the compat-
ibility of the source and target in assignments and during paramete r
passing . In type-extensible languages such as Pascal [JeW 1975] ,
Algol 68 [vWi 1975] and almost all recent languages, this questio n
becomes particularly critical* . With the possibility for the user t o
define new types in terms of existing ones, the equivalence of define d
and defining types is non-trivial .

Structural TypeEquivalence

The structural type equivalence approach, that used by Algol 68 ,
says that all types with identical structure, i .e . implementation, ar e
the same type . The type declaration

mode newmode = oldmode

introduces a new type newmode and causes it to be equivalent to oldmode .
In the simplest case, newmode serves as an abbreviation for th e
possibly more complex type expression oldmode . This is the case for
example in a type declaration such a s

mode complex = struct(real re,im )

Because of the possibility of mutually recursive type definitions ,
newmode is not always simply an abbreviation for oldmode, and the
question of type equivalence becomes complicated . For example, in
Algol 68 the three types a, b, and c defined below are in fact al l
equivalent :

mode a = struct(int x,ref a y )

mm dee b = struct(int x,ref g _y )

mode c = struct(int x,ref b y )

Loosely speaking, they are equivalent because when their recursiv e
definitions are expanded into infinite trees with edges marked b y
selectors and leaves by basic types, they produce identical trees .
This is very loosely speaking, as the formal statement of when two type s
are equivalent constitutes a major part of the W-grammar syntax fo r

*Unfortunately, the Pascal Repor t-[JeW 1975] and axiomatic definition
[HoW 1973] do not address this issue . This has led to differin g
decisions being taken by different Pascal implementations [Ten 1978 ]
and inconsistent decisions within implementations [WSH 1977] .



_37 _

Algol 68 and is probably the most foreboding part of the syntax to th e
reader (Note that the fact that the rules are in the syntax indicate s
an intent for compile-time enforcement .) . Complaints about this
complexity are a major reason for Algol 68's lack of popularity .

The problem with the Algol 68 approach is that it negates th e
protection that strong typing is to provide . Given the declaration s

int i ; bool b

One cannot do either of

i :=b
or b :=i .

If, however, one has declare d

mode newint = bool ;

	

integers in range 0 and l

newint i ; bool b

One is allowed to do both

i :=b
and

b := i

simply because newint and bool are equivalent types . In addition, an y
operation defined for either type works on values of the other type .

One of the ramifications of this is that it is not possible t o
introduce true abstract data types . Each new type introduced via a
type definition is simply another name for the defining type . Thus ,
there is no way to hide the implementation of an introduced data type .

Complete Encapsulation

The other extreme in the issue of type equivalence is to forc e
complete encapsulation of defined data types . In complete encapsulation ,
a type is defined in some closed scope (e .g ., module or cluster
[LiZ 1974]) which hides the representing type . The module then
contains the representation of the type and the bodies of all operation s
requiring knowledge of the representation of the type . The only
identifiers visible outside the construct are the type identifie r
itself and the operation identifiers . The language (e .g ., as propose d
in [BEL 1977]) is constructed so that each definition makes a new typ e
and only the operations defined within the type have access to th e
representation of the type . All other routines working on values o f
the type must be programmed using these visible operations . The
language is also constrained so that the only way to introduce a ne w
type is through such an encapsulated definition . Thus, all programming
is done with encapsulated, abstract types (including the built-in basi c
types which are by nature encapsulated since their implementation i s
hidden) . This may be best from the programming point of view because



-38 -

it forces a greater degree of modularity and independence .

The drawback to complete encapsulation is that it may be to o
extreme in its dictation of program style in that it forces att type
definitions to be encapsulated . An encapsulated definition i s
inconvenient (and inefficient) when the defined type is to inherit ate
the operations of the representing type and does not allow th e
introduction of a defined type as an equivalent abbreviation for th e
representing type . Because of these considerations, we addres s
languages in which encapsulation is provided as an option but is no t
required . With such an approach, what to do with unencapsulated data
type definitions remains .

Compromise Definitions of Type Equivalenc e

Some languages try to provide some kind of compromise between th e
Algol 68 structural equivalence and the complete encapsulation approach .

The simplest of these compromises, the so-called name-egui,va..ence
[WSH 1977] approach, is used in the U .S . Department of Defense Red
language proposal [DOD 1978a] . In this proposal, each occurence of a
type constructor, e .g . array, introduces a new type . Thus, to captur e
a constructed type for use in several declarations, the constructe d
type must be given a name in a type declaration, e .g . as in

type matrix = array 1 . .n,l . .n of real .

The language may provide that only named types, i .e . single identifiers ,
may be used as the type in declarations for variables, constants, and
parameters . The language prohibits assignments and parameter passings
in which the source and target do not have identical type names .
Finally the operations defined for a type are those of its definition ,
i .e ., for a matrix, the operations are those of array 1 . .n,l . .n of real .

There is no way to avoid a defined type's inheriting the definin g
type's operations . Given the type equivalence criterion and th e
requirement that the type of actual parameters be equivalent to that o f
their formals, without these inherited operations, it would be impossibl e
to define any operation on the new type [Ten 1978] . Thus, in

type table = array 1 . .100 of intege r
type stack = record tp : integer ,

stk : table
endrecord ;

type stuck = record tp : integer ,
stk : table

endrecord ;
var a : stack ,

u : stuck

stack and stuck are different types, a and u cannot be assigne d
directly to each other as in



-39 -

a :=u or u :=a

but it is permissible to do

a .tp : = a .tp+l ;
u .tp : = u .tp+l

If not, it would be impossible to write the various operations needed ,
e .g ., push, pop, top, is empty, etc .

However, this very inheritance of the defining type's operation s
permits subverting the intent of the type equivalencing rule . To
perform the effect of u :=a which itself is not allowed, one need d o
only

u .tp : = a .tp ;
u .stk : = a .stk

These assignments are allowed because the components are of identica l
types . Thus, the attempt to get the protection of distinct type s
for non-encapsulated defined types does not work .

There are some languages with even more complicated compromises .
For example, the Green Department of Defense language proposa l
[DOD 1978b] has one in which for only some of the type constructors ,
does each distinct use make a new type ; for others, all uses with the
same actual parameters make the same type . Such an approach suffer s
from the possibilities for subversion as well as the added complexit y
of nonuniformity .

The best approach for providing unencapsulated type definition s
in a language permitting but not requiring encapsulation is the Eucli d
approach which may be characterized as an orthogonal combination o f
the Algol 68 approach and encapsulation . Simply stated :

1. All built-in types are distinct .

2. Each encapsulated (non-parameterized) type definition introduce s
a type distinct from all others .

3. For types introduced by use of constructors, e .g . army of ,
by use of type defining equations, e .g . type tl=t, or by a
combination thereof, the equivalence is decided as in Algol 68 .
That is, two types are equivalent if and only if thei r
definitions, understood recursively, are the same .

In other words, encapsulation must be used to obtain a distinc t
type with full protection against inappropriate operator application .
Apart from encapsulation, type definition by equation (as one migh t
expect from the use of the equal sign) produces totally equivalent type s
with no pretense of any protection . Thus, there is no surprise whe n
protection is not obtained .



-40 -

A Digression

A footnote in the introduction pointed out that the Pasca l
definition neglected to deal with the issue of type equivalence .

	

At
the same time, the folklore is replete with claims of language an d
definitional simplicity for Pascal (see for example [WSH 1977, GMK 1976]) .
Such claims for simplicity seem to miss the point . A language' s
simplicity has to be measured on the basis of its primitive features ,
its composition rules and its exceptions to the rules -- not necessaril y
on the readability of its definition . If that readability is obtained
at the expense of completeness, complexity is in fact added to th e
language, as it is not certain what is the language . This leads to
various dialects of the language being created, all under the sam e
name -- clearly a complex situation .

Conclusion

We have seen that in the absence of complete encapsulation of dat a
types, some form of structural equivalence of data types must b e
adopted to avoid type insecurities . It has been shown that the Eucli d
method of introducing optional encapsulation within a type system wit h
structural equivalence is a viable way of achieving type security an d
the ability to introduce true abstract data types without excessiv e
overhead .

References

[BEL 1977] Berry, D .M., Z . Erlich, C . Lucena,

	

"Pointers and Dat a
Abstractions in High-Level Languages - I :

	

Language
Proposals," Journal of Computer Languages, Vol . 2 ,
pp .

	

135-148,

	

1977 .

[DOD 1978a] Department of Defense, Red Programming Languag e
Specification, February, 1978 .

[DOD 1978b] Department of Defense, Green Programming Languag e
Specification, February, 1978 .

[GMK 1978] Goodenough, J .B ., C .L . McGowan and J .R . Kelly ,
"Evaluation of Algol 68, Jovial J3B, Pascal, SIMUL A
and TACPOL vs . TINMAN Requirements for a Common High

67,

Order Programming Language," Softech Inc ., December, 1976 .

[HoW 1973]

	

Hoare, C .A .R ., N . Wirth, "An Axiomatic Definition o f
the Programming Language Pascal," Acta Informatica ,
2, 1973 .

[JeW 1975]

	

Jensen, K ., N . Wirth, Pascal User Manual and Report ,
Springer Verlag, Berlin, 1975 .



-41 -

[Lam 1977]

	

Lampson, B ., et al ., "Report on the Programming Language
Euclid," SIGPLANNotices, 12 :2, 1977 .

[LiZ 1974] Liskov, B ., S . Zilles, "Programming with Abstract Data
Types," SIGPLAN Symposium on Very High Level Languages ,
SIGPLAN Notices, 9 :5, 1974 .

[Pop 1977]

	

Popek, G ., et al ., "Notes on the Design of Euclid, "
Proceedings of the ACM Conference on Language Desig n
for Reliable Software, SIGPLAN Notices, Vol . 12, No . 3 ,
1977 .

[Ten 1978]

	

Tennent, R., "Another Look at Type Compatibility in
Pascal," Software Practice and Experience, Vol . 8 ,
pp . 429-437, 1978 .

[vWi 1975]

	

van Wijngaarden, et al ., Editor, "Revised Report on th e
Algorithmic Language Algol 68," Acta Informatica, 5, 1975 .

[WSH 1977]

	

Welsh, J ., J . Sneeringer, C .A .R . Hoare, "Ambiguitie s
and Insecurities in Pascal," Software Practice and
Experience, Vol . 7, pp . 685-696, 1977 .


